Spelling suggestions: "subject:"cystine."" "subject:"lystine.""
21 |
The Cystine Binding Protein (BspA) of Lactobacillus fermentum BR11Hung, Jacky January 2005 (has links)
BspA was first identified on the basis of being the major constituent of 5 M LiCl washes of whole Lactobacillus fermentum BR11 cells. The bspA gene is encoded within a putative ATP-binding cassette (ABC) transport operon, and sequence analysis revealed that it is a member of the family III solute binding proteins. Unlike the majority of solute binding proteins from Gram-positive bacteria, BspA is not tethered to a lipid anchor in the cell membrane, and hence is not a lipoprotein. Extraction of BspA with concentrated salt solutions such as 5 M LiCl is consistent with the notion that electrostatic interactions are responsible for securing it to the L. fermentum BR11 cell. L. fermentum PNG201 is a BspA negative mutant strain created by disrupting bspA. This strain was shown to be incapable of cystine uptake. Thus, the genetic and biochemical evidence strongly suggests BspA is a cystine binding protein of an ABC transporter. Measurement of the binding affinity between BspA and L-cystine has confirmed high affinity binding (dissociation constant is 0.2 µM), and high specificity (over 100-fold excess of non-target amino acids did not disrupt BspA / L-cystine binding). In addition, collagen did not appear to affect BspA/cystine binding, indicating extracellular matrix (ECM) binding capacity noted by other researchers may be unrelated to amino acid binding. An interesting phenotypic characteristic of L. fermentum PNG201 is its apparent increased sensitivity to oxygen and the superoxide-generating chemical - paraquat compared to the parent L. fermentum BR11 strain. Catalase supplemented aerobic cultures of L. fermentum BR11, and L. fermentum PNG201 were protected from oxidative stress, suggesting hydrogen peroxide is responsible for the observed oxidative stress. It was found that addition of cystine to aerobic cultures of L. fermentum BR11 or L. fermentum PNG201 protected both strains from oxidative stress, with L. fermentum BR11 able to utilize smaller concentrations of cystine compared to L. fermentum PNG201. Detection of hydrogen peroxide in aerobic cultures of L. fermentum BR11 and L. fermentum PNG201 confirmed the production of hydrogen peroxide is responsible for causing oxidative stress. The BspA mutant strain L. fermentum PNG201 consistently produced more hydrogen peroxide per optical density compared with the wild type, indicating it overproduced hydrogen peroxide. When 0.4 mM hydrogen peroxide has been accumulated by growing cell cultures, both L. fermentum BR11 and L. fermentum PNG201 enters stationary phase, suggesting both strains have a similar sensitivity to hydrogen peroxide. Small epitopes from the HIV gp41 protein and the Chlamydia psittaci major outer membrane protein have been successfully displayed on the cell surface of L. fermentum BR11 as fusion proteins to the BspA molecule. However, the capability of BspA in exporting larger polypeptides has not been tested. In this study, the large extracellular enzyme - glucosyltransferase (GtfJ) from Streptococcus salivarius ATCC 25975 was fused to BspA to demonstrate that this expression system is capable of exporting large functional enzymes to the cell surface of L. fermentum BR11. The native GtfJ is 160kDa in size and also contained an export signal, which was deleted in the cloning process and replaced with BspA, resulting in a fusion protein of 175kDa. Export of the BspA/GtfJ fusion protein is dependant entirely on BspA's export signal. Recombinant enzyme expression and glucosyltransferase activity were detected by measuring the glucan formed by sonicated cell extracts in acrylamide gels. Enzyme activity measurements on whole cells has revealed the recombinant Lactobacillus was incorporating 20-40 nmol of sucrose-derived-glucose into glucan per ml of cell culture per OD unit, which is comparable to activity levels exhibited by the native bacteria that expressed this enzyme. Comparison of GtfJ enzyme activity between whole cells and sonicated cell extracts of recombinant L. fermentum confirmed the extracellular location of BspA/GtfJ as enzyme activity was essentially identical.
|
22 |
Study of the arginine and cysteine transport systems of the yeast vacuoleCools, Melody 13 April 2018 (has links)
La vacuole de la levure joue un rôle dans le stockage de nutriments, la dégradation des macromolécules et le recyclage de métabolites. En accord avec ces fonctions, des protéines se trouvant à la membrane vacuolaire catalysent le transport de divers composés à travers la membrane. Ceci permet par exemple à la vacuole d’accumuler un grand stock d’arginine et d’autres acides aminés cationiques ainsi que de mobiliser des acides aminés durant une carence en azote. Par ailleurs, les scientifiques soupçonnent l’existence d’un transporteur de cystéine, essentiel au contrôle redox de la vacuole et à la protéolyse. Afin d’étudier plus en détail le transport d’acides aminés dans la vacuole, nous avons mis au point un protocole d’isolement de vacuoles intactes suivi de tests d’entrée d’acides aminés. Dans un premier temps, cela nous a permis de caractériser pour la première fois un transport de cystéine dans les vacuoles intactes. En combinant des analyses bioinformatiques avec un screening d’une collection de souches mutantes pour une sensibilité à la cystéine ou la cystine (un dimère de cystéine), nous avons pu proposer une liste de gènes candidats codant pour un transporteur de cystéine à la membrane vacuolaire. Dans un deuxième temps, nous avons caractérisé la protéine Ypq2 comme un facilitateur de haute affinité catalysant l’export d’arginine hors de la vacuole en condition de carence en azote. En outre, nous avons identifié un nouveau transporteur, Vat1, nécessaire à l’établissement du stock d’arginine vacuolaire. Nos résultats sont conciliables avec l’existence d’un couplage fonctionnel entre les voies de sortie et d’import d’arginine dans la vacuole. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
23 |
Diversité structurale et d'activité biologique des Albumines entomotoxiques de type 1b des graines de LégumineusesLouis, Sandrine 20 February 2004 (has links) (PDF)
PA1b (Pea Albumin 1 sous-unité b), une knottine toxique de 37 acides aminés, présente un grand intérêt dans la lutte contre les charançons des céréales (Sitophilus spp.), principaux ravageurs des céréales stockées.<br />Afin de mieux connaître la nouvelle famille peptidique de PA1b, sa variabilité tant structurale que d'activité biologique a été étudiée au sein des Légumineuses. Après avoir validé notre approche sur 4 espèces végétales "test", nous avons caractérisé 24 gènes homologues chez 18 espèces de Papilionoideae. De plus, l'activité insecticide d'extraits de graines de 60 espèces des trois sous-familles de Légumineuses a été déterminée sur charançons de souche sensible et résistante à PA1b. Afin de relier variations de structure et d'activité, une approche par mutagenèse dirigée a été envisagée. Un système d'expression bactérienne et de purification de PA1b a été mis au point. Bien que de masse conforme (cystéines oxydées), le peptide recombinant ne présente pas d'activité biologique.
|
24 |
Molecular genetic studies on cystinuriaHarnevik, Lotta January 2007 (has links)
Cystinuria is defined as an inherited disorder characterized by increased urinary excretion of cystine and the dibasic amino acids arginine, lysine and ornithine. The only clinical manifestation of cystinuria is renal cystine stone formation due to the low solubility of cystine in the urine. Cystinuria can be attributed to mutations in the SLC3A1 and SLC7A9 genes in the majority of all cases and it has been a common expectation that molecular genetic studies of cystinuria would aid in understanding of the varying clinical outcome seen in the disease. Besides human, the disease has been most extensively studied in the domestic dog. The present study was undertaken to investigate the molecular genetic basis of cystinuria in patients from Sweden and to correlate genetic findings with phenotypes produced regarding cystine and dibasic amino acid excretion. Further, attempts were made to elucidate the molecular genetics of cystinuria in the dog. The entire coding sequences of the SLC3A1 and SLC7A9 genes were analysed by means of SSCA and DNA sequencing in 53 cystinuria patients and genetic findings were related to urinary excretion of cystine and dibasic amino acids in a subset of the patient group. We detected a total number of 22 different mutations in the SLC3A1 and SLC7A9 genes, 18 of which were described for the first time. We have found a probable genetic cause of cystinuria in approximately 74 % of our patients and a possible contribution to the disease in another 19 %. Mutations in the SLC3A1 gene is the major cause of cystinuria in our group, with only a minor contribution of SLC7A9 mutations. The group of patients presenting SLC3A1 mutations in a heterozygous state or lacking mutations in both genes had higher values of total urinary cystine and dibasic amino acids compared to patients homozygous for SLC3A1 mutations. The reason for this discrepancy remains unclear, but the possible impact of medical treatment with sulfhydryl compounds on total cystine values was ruled out. Sequencing of the full-length canine SLC7A9 cDNA was accomplished using the RACE technology and results from mutation analyses of SLC7A9 and SLC3A1 in cystinuric dogs showed that only two out of 13 dogs have mutations with possible impact on protein function in these genes. DNA sequencing was used for all exons of both genes in the dog, and in human cystinuria patients, all samples lacking mutations or showing heterozygosity after SSCA screening were sequenced in both genes as well. This implies that all point mutations present have been detected, but the possibility of mutations escaping PCR based methods as well as mutations in regulatory parts of the SLC3A1 and SLC7A9 genes remains in cases lacking a full molecular genetic explanation of the disease. Finally, clinical and genetic data from our study of cystinuria both in man and dog exemplifies that manifestation and clinical severity of cystinuria is not determined by genetic alterations in the SLC3A1 and SLC7A9 alone. Environmental factors, congenital malformations and modulating genetic factors are all possible contributors to the clinical outcome of cystinuria.
|
25 |
Cytotoxic Cyclotides : Structure, Activity, and Mode of ActionSvangård, Erika January 2005 (has links)
Cyclotides are small cyclic plant proteins, and this thesis addresses their cytotoxic structure-activity properties and their mode of action on human cancer cell lines. Cyclotides were isolated from Viola odorata and Viola tricolor; three novel cyclotide sequences and two known sequences, but of new origin, were identified using mass spectrometry, amino acid analysis, and Edman degradation. The cyclotide structure includes three disulphide bonds in a knotted arrangement, which forces hydrophobic amino acid residues to be exposed on the surface of the molecule; 3-D homology models of cyclotides have revealed an amphipathic surface and charged residues located at similar positions in the molecules. The charged amino acid residues were shown to play a key role in the cytotoxicity of the cyclotide cycloviolacinO2 on a human lymphoma cell line. Methylation of Glu caused a dramatic change in cytotoxicity, lowering the potency 48 times, whereas concealing the charge of Arg with 1,2-cyclohexanedione caused virtually no change in potency. Acetylation of the two Lys caused a 3-fold reduction in potency, and masking all positive charges caused a 7-fold reduction. Additionally, disturbing the amphipathic structure by reducing and alkylating the disulphide bonds abolished the cytotoxicity. The time dependency of cytotoxicity and cell gross morphology after cyclotide exposure were investigated on the lymphoma cell line. Cells exposed to 4 µM of cycloviolacinO2 showed necrotic characteristics, such as membrane disintegration, within 5 min; a membrane disruptive effect of cycloviolacinO2 was also observed in a functional assay based on liposomes at a peptide-to-lipid molar ratio of 6.5. The anti-tumour properties of cycloviolacinO2 were evaluated on three human cancer cell lines using the hollow fibre assay in vitro and in vivo. The cyclotide exhibited potent anti-tumour activity in the micro-molar concentration range on all cell lines in vitro, but no effect on tumour growth could be established in vivo.
|
26 |
Structure and Activity of Circular Plant Proteins : Cytotoxic Effects of Viola CyclotidesHerrmann, Anders January 2007 (has links)
Cyclotides are a family of small and macrocyclic proteins that have been found in Violacaee and Rubiaceae plant species. These proteins contain a cystine knot: two disulfides bonds together with their connecting peptide backbone form an embedded ring which is penetrated by a third disulfide bond. The cyclotides have been attributed a wide range of biological activities, which in combination with their chemical stability and structural plasticity have made them attractive tools for pharmaceutical applications. The sequence of eleven novel cyclotides, vibi A-K, from Viola biflora was determined by the use of both chemical (extraction and characterization) and molecular biology (cDNA analyses) approaches. A clear discrepancy in the results from the two methods was observed. Additionally, one novel cyclotide, vodo O, was isolated from Viola odorata. To correlate cytotoxic potency to sequence, vodo O and vibi D, E, G and H were tested on a lymphoma cell line. Based on the presence or absence of a cis-Pro bond, the cyclotides are divided into the Möbius and bracelet subfamilies. The bracelet proteins have a higher net charge and are more cytotoxic potent than the Möbius ones. To explore these differences, charged and hydrophobic residues in varv A (Möbius) and cycloviolacin O2 (bracelet) were chemically modified and tested for their cytotoxicity. The net-charge of the two proteins was not important for the potency. The Glu residue in cycloviolacin O2 was crucial, while this residue was of minor importance in varv A. Oxidation of the single Trp residue declined the potency significantly in both proteins. To evaluate how the surface properties correlate to the degree of cytotoxic potency, models of all cyclotides hitherto tested were constructed by homology modelling. Calculations showed that the membrane orientation of varv A and cycloviolacin O2 differed significantly, which might explain their difference in potency
|
27 |
Mechanisms for Cadmium Lumen-to-Cell Transport by the Luminal Membrane of the Rabbit Proximal TubuleWang, Yanhua 04 May 2007 (has links)
The lumen-to-cell transport, cellular accumulation, and toxicity of ionic cadmium (109Cd2+) and cadmium-cysteine conjugate (Cys-S-109Cd-S-Cys) were studied in isolated perfused S2 segments of the proximal tubule of the rabbit kidney. All perfusion solutions were HEPES buffered and contained 3H-L-glucose which functioned as a volume and leak marker along with 250 nM FD & C Green dye as a vital dye. When ionic cadmium, 0.73µM Cd2+, or 0.73µM cadmium-cysteine conjugate (Cys-S-109Cd-S-Cys) containing solution was perfused through the lumen of the tubule there was no visual evidence of toxicity such as blebbing of the luminal membrane, cellular vital dye uptake, and cellular swelling. Ionic Cd2+ transport was temperature dependent (87% reduction at 22°C and 100% at 11°C) and inhibited by FeCl2 (42% reduction at 10µM) and ZnCl2 (48% reduction at 20µM), and high Ca2+ concentrations (27% reduction at 1.95mM and 69% at 2.6mM). The ionic Cd2+ transport was not affected by verapamil and diltiazem. The cadmium conjugate (Cys-S-Cd-S-Cys) transport was also temperature dependent (76% reduction at 22°C and 100% at 11°C) and inhibited by the amino acids L-cystine and L-arginine (55% and 50% respectively), stimulated by L-methionine (56%), but not affected by L-aspartate, L-glutamate and Gly-Sar. 2, 3-Dimercaptopropane-1-Sulfonate (DMPS) co-perfused with Cd2+ decreased absorption of 20µM Cd2+ (39% reduction at 30 µM and 94.6% reduction at 200 µM), while DMPS added to the bathing solution has no effect on the luminal transport of Cd2+. DMPS co-perfused with 20 µM Cys-S-Cd-S-Cys substantially reduced Cd2+ transport (62% reduction at 30 µM). We conclude that cadmium can be transported at the luminal membrane of the S2 segment of the proximal tubule by multiple mechanisms, depending on the form which it is presented to membrane. Ionic cadmium appears to be transported by iron (DCT1), zinc (ZTL1) transporters and some kind of calcium-selective channel while cadmium conjugate of L-cysteine appears to be transported by L-cystine transporters (system b0+). Dipeptide transporter is not involved in the transport of cadmium. DMPS appears to be a chelator for cadmium.
|
28 |
Molecular genetic studies on cystinuria /Harnevik, Lotta, January 2007 (has links) (PDF)
Diss. (sammanfattning) Linköping : Linköpings universitet, 2007. / Härtill 4 uppsatser.
|
29 |
Contributions To Venominformatics : Sequence-Structure-Function Studies Of Toxins From Marine Cone Snails. Application Of Order-Statistics Filters For Detecting Membrane-Spanning HelicesMondal, Sukanta 02 1900 (has links)
Venomous animals have evolved a vast array of peptide toxins for prey capture and defense. Nature has evolved the venoms into a huge library of active molecules with high selectivity and affinity, which could be explored as therapeutics or serve as a template for drug design. The individual components of venom i.e. toxins are used in ion channel and receptor studies, drug discovery, and formulation of insecticides. ‘Venominformatics is a systematic bioinformatics approach in which classified, consolidated and cleaned venom data are stored into repositories and integrated with advanced bioinformatics tools and computational biology for the analysis of structure and function of toxins.’
Conus peptides (conopeptides), the main components of Conus venom, represent a unique arsenal of neuropharmacologically active molecules that have been evolutionarily tailored to afford unprecedented and exquisite selectivity for a wide variety of ion-channel subtypes and neuronal receptors. Ziconotide (ω-conotoxin MVIIa from Conus magus (Magician's cone snail)), is proven as an intrathecally administered N-type calcium channel antagonist for the treatment of chronic pain (U.S. Food and Drug Administration. Center for Drug Evaluation and Research) attesting to the pharmaceutical importance of Conus peptides. From the point of view of protein sequence and structure analysis, conopeptides can serve as attractive systems for the studies in sequence comparison, pattern extraction, structure–function correlations, protein–protein interactions and evolutionary analysis. Despite their importance and extensive experimental investigations on them, they have been hardly explored through in silico methods. The present thesis is perhaps the first attempt at deploying a multi-pronged bioinformatics approaches for studies in the burgeoning field of conopeptides.
In the process of sequence-structure-function studies of conopeptides, we have created several sequence patterns of different conopeptide families and these have been accepted for inclusion in international databases such as PROSITE, the first pattern database to have been developed (http://www.expasy.org/prosite) and INTERPRO (http://www.ebi.ac.uk/interpro). More importantly, we have carried out extensive literature survey on the peptides for which we have defined the patterns to create PROSITE compatible documentation files (PDOC6004, PDOC60025 and PDOC60027). We have also created a series of sequence patterns and associated documentation filesof pharmaceutically promising peptides from plants and venomous animals (including O-conotoxin and P-conotoxin superfamily members) with knottin scaffold. Knottins provide appealing scaffolds for protein engineering and drug design due to their small size, high structural stability, strong sequence tolerance and easy access to chemical synthesis. The sequence patterns and associated documentation files created by us should be useful in protein family classification and functional annotation. Even though patterns might be useful at the family level, they may not always be adequate at the superfamily level due to hypervariability of mature toxins. In order to overcome this problem, we have demonstrated the applicationos of multi-class support vector machines (MC-SVMs) for the successful in silico classification of the mature conotoxins into their superfamilies.
TheI- and J-conotoxin-superfamily members were analyzed in greater detail. On the basis of in silico analysis, we have divided the 28 entries previously grouped as I-conotoxin superfamily in UniProtKB/Swiss-Prot (release 49.0) into I1 and I2 superfamilies inview of their having two different types of signal peptides and exhibiting distinct functions. A comparative study of the theoretically modeled structure of ViTx from Conus virgo, a typical member of I2-conotoxin superfamily, reveals the crucial role of C-terminal region of ViTx in blocking therapeutically important voltage-gated potassium channels. Putative complexes created by us of very recently characterized J-superfamily conotoxin p11-4a with Kv1.6 suggest that the peptide interacts with negatively charged extracellular loops and pore-mouth of the potassium channel and blocks the channel by covering the pore as a lid, akin to previously proposed blocking mechanism of kM-conotoxin RIIIK from Conus radiatus to Tsha1 potassium channel. This finding provides a pointer to experimental work to validate the observations made here. Based on differences in the number and distribution of the positively charged residues in other conopeptides from the J-superfamily, we hypothesize different selectivity profile against subtypes of the potassium channels for these conopeptides.
Furthermore, the present thesis reports the application of order-statistic filters and hydrophobicity profiles for predicting the location of membrane-spanning helices. The
Proposed method is in particular effective for the class of helical membrane proteins, namely the therapeutically important voltage-gated ion channels, which are natural targets of several conotoxins. Our suggested ab initio approach is comparatively better than other spatial filters, confirming to the efficacy of including the concept of order or ranking information for prediction of TM helicdes. Such approaches should be of value for improved prediction performance including in large-scale applications.
In addition, anlaysis has been carried out of the role of context in the relationship between form and function for the true PDB hits of some nonCys-rich PROSITE patterns.
We have found specific examples of true hits of some PROSITE patterns displaying structural plasticity by assuming significantly different local conformation, depending upon the context. The work was carried out as a part of the research interest in our group in studying structural and other features of protein sequence patterns.
The Contributions of the candidate to venominormatics include, creation of protein sequence patterns and information highlighting the importance of the patterns as gleaned from the lteratures for family classification: profile HMM and MC-SVMs for conotoxin superfamily classification; in silico characterization of I1 and I2 conotoxin superfamilies; studies of interaction with Kv1 channels of typical members of I2 and 3 conotoxin superfamilies and development of improved methods for detecting membrane-spanning helices.
Chapter I starts with a brief account of venominformatics; bioinformatics for venoms and toxins.
Chapter 2 presents a regular expression based classification of Conus peptides.
Chapter 3 revisits the 28 entries previously grouped as I-conotoxin superfamily in UniProt Swiss-Prot knowledgebase (release 49.0) having four disulfide bonds with Cys arrangement C-C-CC-CC-C-C and they inhibit or modify ion channels of nerve cells.
Chapter 4 describes pseudo-amino acid composition and MC-SVMs approach for conotoxin superfamily classification.
Chapter 5 describes in silico detection of binding mode with Kv1.6 channel of J-superfamily conotoxin p114a from bermivorouos cone snail, Conus planorbis.
Chapter 6 presents a comparative sequence-structure-function analysis of naturally occurring Cys-rich peptides having the Knottin or inhibitor cystine knot(ICK) scaffold, from different plants and venomous animals based on information available in the knottin database(http://knottin.cbs.cnrs.fr/).
Chapter 7 describes the application of order-statistic filters and hydrophobicity profiles for detecting membrane-spanning helices.
Chapter 8 describes the role of context in the relationship between form and function for the true PDB hits of some non Cys-rich PROSITE patterns.
Chapter 9 summaries the important findings of the present studies on naturally occurring bioactive Cys-rich peptides with emphasis on Conus peptides and their interactions with respective target such as voltage-gated ion channels.
|
30 |
Neue Enzyminhibitoren und Rezeptoragonisten durch Variation funktionaler Schleifen von Mikroproteinen / New enzyme inhibitors and receptor agonists by variation of functional loops of microproteinsSchmoldt, Hans-Ulrich 28 April 2005 (has links)
No description available.
|
Page generated in 0.0364 seconds