• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Réalisation d’un convertisseur temps-numérique pour une application de détection monophotonique

Desaulniers Lamy, Étienne January 2015 (has links)
Le Groupe de recherche en appareillage médical de Sherbrooke possède une expertise unique dans la conception de scanners à tomographie d’émission par positrons. Le fonctionnement de la tomographie d’émission par positrons repose sur la détection de photons d’annihilation colinéaires par un agencement de cristaux scintillateurs, photodétecteurs, convertisseurs temps-numérique et électronique de traitement. Une partie du groupe de recherche s’oriente vers l’utilisation des matrices de photodiodes à avalanches opérées en mode Geiger, afin d’obtenir une meilleure résolution temporelle du système et un seuil de détection plus faible que les générations précédentes,ce qui permet de détecter les premiers photons émis par le cristal scintillateur. Le convertisseur temps-numérique (TDC) développé se veut un bloc polyvalent et réutilisable mesurant des intervalles de temps avec grande précision. Son développement cible des applications de détection monophotoniques avec estampilles temporelles comme la tomographie optique dffuse, les caméras 3D ou la tomographie d’émission par positrons. Il s’intègre ici dans un circuit intégré en CMOS 130 nm assemblé verticalement avec plusieurs gaufres et dédié à la détection en tomographie d’émission par positron. La méthodologie de conception du convertisseur temps-numérique s’inspire d’une approche en signaux mixtes avec suprématie du numérique. En simulation, le TDC développé arbore une résolution de 14,5 ps, une non-linéarité différentielle de 1 bits de poids faible, une non-linéarité intégrale de 2,2 bits de poids faible, une fréquence de conversion de 11,1 millions d’échantillons par seconde, une plage dynamique de 5 ns, une puissance moyenne consommée en moyenne de 4,5 mW et une taille de 0,029 mm². Un mécanisme pour améliorer la résolution du TDC a été intégré dans un exemplaire du TDC. Son utilisation a permis d’obtenir une résolution de 12,6 ps sur un exemplaire du circuit fabriqué. Ces travaux ont permis d’explorer l’architecture en oscillateur vernier avec anneaux et d’en faire ressortir plus clairement les avantages, les inconvénients et les écueils à surveiller lors de la conception.
2

Modélisation de photodétecteurs à base de matrices de diodes avalanche monophotoniques pour tomographie d'émission par positrons

Corbeil Therrien, Audrey January 2013 (has links)
La tomographie d'émission par positrons (TEP) est un outil précieux en recherche préclinique et pour le diagnostic médical. Cette technique permet d'obtenir une image quantitative de fonctions métaboliques spécifiques par la détection de photons d'annihilation. La détection des ces photons se fait à l'aide de deux composantes. D'abord, un scintillateur convertit l'énergie du photon 511 keV en photons du spectre visible. Ensuite, un photodétecteur convertit l'énergie lumineuse en signal électrique. Récemment, les photodiodes avalanche monophotoniques (PAMP) disposées en matrice suscitent beaucoup d'intérêt pour la TEP. Ces matrices forment des détecteurs sensibles, robustes, compacts et avec une résolution en temps hors pair. Ces qualités en font un photodétecteur prometteur pour la TEP, mais il faut optimiser les paramètres de la matrice et de l'électronique de lecture afin d'atteindre les performances optimales pour la TEP. L'optimisation de la matrice devient rapidement une opération difficile, car les différents paramètres interagissent de manière complexe avec les processus d'avalanche et de génération de bruit. Enfin, l'électronique de lecture pour les matrices de PAMP demeure encore rudimentaire et il serait profitable d'analyser différentes stratégies de lecture. Pour répondre à cette question, la solution la plus économique est d'utiliser un simulateur pour converger vers la configuration donnant les meilleures performances. Les travaux de ce mémoire présentent le développement d'un tel simulateur. Celui-ci modélise le comportement d'une matrice de PAMP en se basant sur les équations de physique des semiconducteurs et des modèles probabilistes. Il inclut les trois principales sources de bruit, soit le bruit thermique, les déclenchements intempestifs corrélés et la diaphonie optique. Le simulateur permet aussi de tester et de comparer de nouvelles approches pour l'électronique de lecture plus adaptées à ce type de détecteur. Au final, le simulateur vise à quantifier l'impact des paramètres du photodétecteur sur la résolution en énergie et la résolution en temps et ainsi optimiser les performances de la matrice de PAMP. Par exemple, l'augmentation du ratio de surface active améliore les performances, mais seulement jusqu'à un certain point. D'autres phénomènes liés à la surface active, comme le bruit thermique, provoquent une dégradation du résultat. Le simulateur nous permet de trouver un compromis entre ces deux extrêmes. Les simulations avec les paramètres initiaux démontrent une efficacité de détection de 16,7 %, une résolution en énergie de 14,2 % LMH et une résolution en temps de 0.478 ns LMH. Enfin, le simulateur proposé, bien qu'il vise une application en TEP, peut être adapté pour d'autres applications en modifiant la source de photons et en adaptant les objectifs de performances.
3

Conception et modélisation de détecteurs de radiation basés sur des matrices de photodiodes à avalanche monophotoniques pour la tomographie d'émission par positrons / Design and simulation of radiation detectors based on single photon avalanche diodes for positron emission tomography

Corbeil Therrien, Audrey January 2018 (has links)
La tomographie d'émission par positrons (TEP) se distingue des autres modalités d'imagerie par sa capacité à localiser et quantifier la présence de molécules marquées, appelées radiotraceurs, au sein d'un organisme. Cette capacité à mesurer l'activité biologique des différents tissus d'un sujet apporte des informations uniques et essentielles à l'étude de tumeurs cancéreuses, au fonctionnement du cerveau et de ses maladies neurodégénératives et de la pharmacodynamique de nouveaux médicaments. Depuis les tout débuts de la TEP, les scientifiques rêvent de pouvoir utiliser l'information de temps de vol des photons pour améliorer la qualité de l'image TEP. L'arrivée des photodiodes avalanche monophotoniques (PAMP), rend maintenant ce rêve possible. Ces dispositifs détectent la faible émission de lumière des scintillateurs et présentent une réponse grandement amplifiée avec une faible incertitude temporelle. Mais le potentiel des PAMP n'est pas encore entièrement exploré. Plutôt que de faire la somme des courants d'une matrice de PAMP, il est possible d'utiliser leur nature intrinsèquement binaire afin de réaliser un photodétecteur numérique capable de déterminer avec précision le temps d'arrivée de chaque photon de scintillation. Toutefois, la conception de matrices de PAMP numériques en est encore à ses débuts, et les outils de conception se font rares. Ce projet de doctorat propose un simulateur facilitant la conception de matrices de PAMP, que celles-ci soient analogiques ou numériques. Avec cet outil, l'optimisation d'une matrice de PAMP numérique basée dans une technologie Teledyne DALSA HV CMOS \SI{0,8}{\micro\metre} est proposée. En plus de guider les choix de conception de l'équipe, cette optimisation permet de mieux comprendre quels paramètres influencent les performances du détecteur. De plus, puisque le photodétecteur n'est pas l'unique acteur des performances d'un détecteur TEP, une étude sur l'impact des scintillateurs est aussi présentée. Cette étude vérifie l'amélioration apportée par l'intégration de photons prompts dans des scintillateurs LYSO. Enfin, une approche novatrice pour discriminer l'énergie des évènements TEP basée sur l'information temporelle des photons de scintillation a été développée et vérifiée à l'aide du simulateur. Bien que ce simulateur et les études réalisées dans le cadre de cette thèse soient concentrés sur des détecteurs TEP, l'utilité des PAMP et du simulateur ne se limite pas à cette application. Les matrices de PAMP sont prisées pour le développement de détecteur en physique des particules, physique nucléaire, informatique quantique, LIDAR et bien d'autres. / Abstract : Positron emission tomography (PET) stands out among other imaging modalities by its ability to locate and quantify the presence of marked molecules, called radiotracers, within an organism. The capacity to measure biological activity of various organic tissues provides unique information, essential to the study of cancerous tumors, brain functions and the pharmacodynamics of new medications. Since the very beginings of PET, scientists dreamed of using the photon's time-of-flight information to improve PET images. With the recent progress of Single Photon Avalanche Diodes (SPAD), this dream is now possible. These photodetectors detect the scintillators' low light emission and offers a greatly amplified response with only a small time uncertainty. However the potential of SPAD has not yet been entirely explored. Instead of summing the currents of a SPAD array, it is possible to use their intrinsically binary operation to build a digital photodetector, able to establish with precision the time of arrival of each scintillation photon. With this information, the time-of-flight measurements will be much more precise. Yet the design of digital SPAD arrays is in its infancy and design tools for this purpose are rare. This project proposes a simulator to aid the design of SPAD arrays, both analog and digital. With this tool, we propose an optimised design for a digital SPAD array fabricated in Teledyne Dalsa HV CMOS \SI{0.8}{\micro\metre} technology. In addition to guiding the design choices of our team, this optimisation led to a better understanding which parameters influence the performance of a PET detector. In addition, since the photodetector is not the sole actor in the performance of a PET detector, a study on the effect of scintillators is also presented. This study evaluates the improvement brought by incorporating a prompt photon emission mechanism in LYSO crystals. Finally, we describe a novel approach to energy discrimination based on the timing information of scintillation photons was developped and tested using the simulator. While this simulator and the studies presented in this thesis focus on PET detectors, SPAD are not limited to this sole application. SPAD arrays are promising for a wide variety of fields, including particle physics, high energy physics, quantum computing, LIDAR and many more.

Page generated in 0.0971 seconds