• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 343
  • 88
  • 60
  • 60
  • 28
  • 27
  • 21
  • 13
  • 12
  • 9
  • 4
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 824
  • 122
  • 75
  • 72
  • 63
  • 55
  • 54
  • 53
  • 51
  • 51
  • 49
  • 47
  • 47
  • 46
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Bone Healing in Diabetes Mellitus Associated Hyperglycemia

Mahno, Elena 12 January 2011 (has links)
Diabetes mellitus is a systemic condition that remains undiagnosed in a large portion of the population, which presents potential challenges for implant-based rehabilitation. Currently, the effects of diabetes on bone healing are not fully understood. Thus prior to employing a model of diabetes in studies of peri-implant healing, it was important to investigate the temporal effects of hyperglycemia on bone healing. Bone healing of femoral drill-defects was compared between streptozotocin-induced hyperglycemic (DB) and normoglycemic (NDC) rats at 5, 10, 15, and 30 days P.O. Quantitative assessment of bone samples using μCT demonstrated a delay in bone formation occurring up to 10 days in DB animals. Histological assessment confirmed these quantitative findings. Additionally, fluorescently stained bone samples indicated possible defects in mineralization of bone in DB group. In summary hyperglycemia affects bone healing at the early stages of bone formation, concurrent with the osteoconduction phase of bone healing.
102

Bone Healing in Diabetes Mellitus Associated Hyperglycemia

Mahno, Elena 12 January 2011 (has links)
Diabetes mellitus is a systemic condition that remains undiagnosed in a large portion of the population, which presents potential challenges for implant-based rehabilitation. Currently, the effects of diabetes on bone healing are not fully understood. Thus prior to employing a model of diabetes in studies of peri-implant healing, it was important to investigate the temporal effects of hyperglycemia on bone healing. Bone healing of femoral drill-defects was compared between streptozotocin-induced hyperglycemic (DB) and normoglycemic (NDC) rats at 5, 10, 15, and 30 days P.O. Quantitative assessment of bone samples using μCT demonstrated a delay in bone formation occurring up to 10 days in DB animals. Histological assessment confirmed these quantitative findings. Additionally, fluorescently stained bone samples indicated possible defects in mineralization of bone in DB group. In summary hyperglycemia affects bone healing at the early stages of bone formation, concurrent with the osteoconduction phase of bone healing.
103

Molecular Level Assessment of Thermal Transport and Thermoelectricity in Materials: From Bulk Alloys to Nanostructures

Kinaci, Alper 03 October 2013 (has links)
The ability to manipulate material response to dynamical processes depends on the extent of understanding of transport properties and their variation with chemical and structural features in materials. In this perspective, current work focuses on the thermal and electronic transport behavior of technologically important bulk and nanomaterials. Strontium titanate is a potential thermoelectric material due to its large Seebeck coefficient. Here, first principles electronic band structure and Boltzmann transport calculations are employed in studying the thermoelectric properties of this material in doped and deformed states. The calculations verified that excessive carrier concentrations are needed for this material to be used in thermoelectric applications. Carbon- and boron nitride-based nanomaterials also offer new opportunities in many applications from thermoelectrics to fast heat removers. For these materials, molecular dynamics calculations are used to evaluate lattice thermal transport. To do this, first, an energy moment term is reformulated for periodic boundary conditions and tested to calculate thermal conductivity from Einstein relation in various systems. The influences of the structural details (size, dimensionality) and defects (vacancies, Stone-Wales defects, edge roughness, isotopic disorder) on the thermal conductivity of C and BN nanostructures are explored. It is observed that single vacancies scatter phonons stronger than other type of defects due to unsatisfied bonds in their structure. In pristine states, BN nanostructures have 4-6 times lower thermal conductivity compared to C counterparts. The reason of this observation is investigated on the basis of phonon group velocities, life times and heat capacities. The calculations show that both phonon group velocities and life times are smaller in BN systems. Quantum corrections are also discussed for these classical simulations. The chemical and structural diversity that could be attained by mixing hexagonal boron nitride and graphene provide further avenues for tuning thermal and electronic properties. In this work, the thermal conductivity of hybrid graphene/hexagonal-BN structures: stripe superlattices and BN (graphene) dots embedded in graphene (BN) are studied. The largest reduction in thermal conductivity is observed at 50% chemical mixture in dot superlattices. The dot radius appears to have little effect on the magnitude of reduction around large concentrations while smaller dots are more influential at dilute systems.
104

Understanding the Natural Progression of Spina Bifida: Prospective Study

Thibadeau, Judy, Reeder, Matthew R, Andrews, Jennifer, Ong, Katherine, Feldkamp, Marcia L, Rice, Sydney, Alriksson-Schmidt, Ann 14 September 2017 (has links)
Background: Spina bifida (SB) is monitored through birth defects surveillance across the United States and in most developed countries. Although much is known about the management of SB and its many comorbid conditions in affected individuals, there are few systematic, longitudinal studies on population-based cohorts of children or adults. The natural history of SB across the life course of persons with this condition is not well documented. Earlier identification of comorbidities and secondary conditions could allow for earlier intervention that might enhance the developmental trajectory for children with SB. Objective: The purpose of this project was to assess the development, health, and condition progression by prospectively studying children who were born with SB in Arizona and Utah. In addition, the methodology used to collect the data would be evaluated and revised as appropriate. Methods: Parents of children with SB aged 3-6 years were eligible to participate in the study, in English or Spanish. The actual recruitment process was closely documented. Data on medical history were collected from medical records; family functioning, child behaviors, self-care, mobility and functioning, and health and well-being from parent reports; and neuropsychological data from testing of the child. Results: In total, 152 individuals with SB were identified as eligible and their parents were contacted by site personnel for enrollment in the study. Of those, 45 (29.6%) declined to participate and 6 (3.9%) consented but did not follow through. Among 101 parents willing to participate, 81 (80.2%) completed the full protocol and 20 (19.8%) completed the partial protocol. Utah enrolled 72.3% (73/101) of participants, predominately non-Hispanic (60/73, 82%) and male (47/73, 64%). Arizona enrolled 56% (28/50) of participants they had permission to contact, predominately Hispanic (18/28, 64%) and male (16/28, 57%). Conclusions: We observed variance by site for recruitment, due to differences in identification and ascertainment of eligible cases and the required institutional review board processes. Restriction in recruitment and the proportion of minorities likely impacted participation rates in Arizona more than Utah.
105

Native bovine bone morphogenetic protein in the healing of segmental long bone defects

Tuominen, T. (Tapio) 07 September 2001 (has links)
Abstract A new animal model was developed to evaluate the effect of bovine native bone morphogenetic protein (BMP) on the healing of segmental, critical-sized bone defects. Laboratory-bred adult beagle dogs were used in the study. A 2 cm corticoperiosteal defect was created using an oscillating saw in mid-ulna, and the defect was treated with bone grafts and implants fixed by an intramedullary Kirschner wire through predrilled holes in the middle of the implant. Plate and screw fixation was also used in some groups. Coral, hydroxyapatite and demineralized xenograft bone were placed in the defects with or without BMP. Autografts and allografts were used as controls. The BMP was extracted from bovine diaphyseal bone. The follow-up period was 36 weeks. Radiographs were taken at regular intervals during the follow-up period, and bone formation and bone union were evaluated. The radiographs were digitized, and callus was measured and CT scans obtained to define bone density. At the end of the study, the bones were harvested and tested mechanically in a torsion machine until failure. After mechanical testing, the bones were reconstructed and histological sections were made. With autograft and allograft bone grafts, healing was nearly complete. Hydroxyapatite and demineralized xenograft bone did not result in healing of the bone defect, while coral enhanced bone formation, but the healing was not comparable to autografts or allografts. Hydroxyapatite implants did not resorb during the 36 weeks of follow-up to enhance bone healing, and there was a fibrous capsule around the hydroxyapatite implants in histology. Xenograft bone was resorbed, and very little bone formation and extensive fibrosis were seen at the implant site. Coral was resorbed and gradually replaced by new bone, but did not heal the defect completely. With every implant, added BMP had a positive effect on healing as evaluated either radiographically, mechanically or histologically. Coral was the most optimal carrier material for BMP among the materials tested in this study. The animal model seems to be suitable for studying the healing of bone defects, as all the animals were physically active from the first postoperative day and did not seem to have problems with motion during the follow-up period. Intramedullary fixation lacks rotational stability, which may have a negative effect on healing. The bones fixed with a plate and screws showed better scores in radiographs and were mechanically stronger, although the study groups were too small to allow definitive conclusions. As a conclusion, none of the transplants or implants were equally efficient as cortical autograft in healing segmental ulnar defects. BMP did not enhance the poor capacity of hydroxyapatite and xenograft bone to heal the bone defect. According to the present findings, the composite implant consisting of coral and BMP seemed to be the best of the composite implants tested.
106

Thermography approaches for building defect detection

Fox, Matthew William January 2016 (has links)
Thermography is one technology, which can be used to detect thermally significant defects in buildings and is traditionally performed using a walk-through methodology. Yet because of limitations such as transient climatic changes, there is a key performance gap between image capture and interpretation. There are however new methodologies currently available, which actively address some of these limitations. By better understanding alternative methodologies, the performance gap can be reduced. This thesis contrasts three thermography methodologies (Walk-through, time-lapse and pass-by) to learn how they deal with limitations and address specific building defects and thermal performance issues. For each approach, practical methodologies were developed and used on laboratory experiments (hot plate) and real dwelling case studies. For the real building studies, 133 dwellings located in Devon and Cornwall (South West England) were studied; this sample represents a broad spectrum of construction types and building ages. Experiments testing these three methodologies found individual strengths and weaknesses for each approach. Whilst traditional thermography can detect multiple defects, characterisation is not always easy to achieve due to the effects of transient changes, which are largely ignored under this methodology. Time-lapse thermography allows the observation of transient changes from which more accurate assessment of defect behaviour can be gained. This is due to improved differentiation between environmental conditions (such as cloud cover and clear sky reflections), actual material thermal behaviour and construction defects. However time-lapse thermography is slow, complex and normally only observes one view. Walk-past thermography is a much faster methodology, inspecting up to 50 dwellings per survey session. Yet this methodology misses many potential defects due to low spatial resolutions, single (external only) elevation inspection and ignoring transient climate and material changes. The implications of these results for building surveying practice clearly indicate that for an improved defect characterisation of difficult to interpret defects such as moisture ingress, thermographers should make use of time-lapse thermography. A review of methodology practicalities illustrates how the need for improved characterisation can be balanced against time and resources when deciding upon the most suitable approach. In order to help building managers and thermographers to decide on the most suitable thermography approach, two strategies have been developed. The first combines different thermography methodologies into a phased inspection program, where spatial and temporal resolution increase with each subsequent thermography inspection. The second provides a decision-making framework to help select the most appropriate thermography methodology for a given scenario or defect.
107

Atomistic Studies of Point Defect Migration Rates in the Iron-Chromium System

Hetherly, Jeffery 08 1900 (has links)
Generation and migration of helium and other point defects under irradiation causes ferritic steels based on the Fe-Cr system to age and fail. This is motivation to study point defect migration and the He equation of state using atomistic simulations due to the steels' use in future reactors. A new potential for the Fe-Cr-He system developed by collaborators at the Lawrence Livermore National Laboratory was validated using published experimental data. The results for the He equation of state agree well with experimental data. The activation energies for the migration of He- and Fe-interstitials in varying compositions of Fe-Cr lattices agree well with prior work. This research did not find a strong correlation between lattice ordering and interstitial migration energy
108

Defect Passivation and Surface Modification for Efficient and Stable Organic-Inorganic Hybrid Perovskite Solar Cells and Light-Emitting Diodes

Zheng, Xiaopeng 26 February 2020 (has links)
Defect passivation and surface modification of perovskite semiconductors play a key role in achieving highly efficient and stable perovskite solar cells (PSCs) and light-emitting diodes (LEDs). This dissertation describes three novel strategies for such defect passivation and surface modification. In the first strategy, we demonstrate a facile approach using inorganic perovskite quantum dots (QDs) to supply bulk- and surface-passivation agents to combine high power conversion efficiency (PCE) with high stability in CH3NH3PbI3 (MAPbI3) inverted PSCs. This strategy utilizes inorganic perovskite QDs to distribute elemental dopants uniformly across the MAPbI3 film and attach ligands to the film’s surface. Compared with pristine MAPbI3 films, MAPbI3 films processed with QDs show a reduction in tail states, smaller trap-state density, and an increase in carrier recombination lifetime. The strategy results in reduced voltage losses and an improvement in PCE from 18.3% to 21.5%, which is among the highest efficiencies for MAPbI3 devices. The devices maintain 80% of their initial PCE under 1-sun continuous illumination for 500 h and show improved thermal stability. In the second strategy, we reduce the efficiency gap between the inverted PSCs and regular PSCs using a trace amount of surface-anchoring, long-chain alkylamine ligands (AALs) as grain and interface modifiers. We show that long-chain AALs suppress nonradiative carrier recombination and improve the optoelectronic properties of mixed-cation mixed-halide perovskite films. These translate into a certified stabilized PCE of 22.3% (23.0% PCE for lab-measured champion devices). The devices operate for over 1000 hours at the maximum power point (MPP), under simulated AM1.5 illumination, without loss of efficiency. Finally, we report a strategy to passivate Cl vacancies in mixed halide perovskite (MHP) QDs using non-polar-solvent-soluble organic pseudohalide (n-dodecylammonium thiocyanate (DAT)), enabling blue MHP LEDs with enhanced efficiency. Density-function-theory calculations reveal that the thiocyanate (SCN-) groups fill in the Cl vacancies and remove deep electron traps within the bandgap. DAT-treated CsPb(BrxCl1-x)3 QDs exhibit near unity (~100%) photoluminescence quantum yields; and their blue (~470 nm) LEDs are spectrally stable with an external quantum efficiency (EQE) of 6.3% – a record for perovskite LEDs emitting at the 460-480 nm range relevant to Rec. 2020 display standards.
109

DESIGNS AND APPLICATIONS OF PLASMONIC METAMASKS FOR TOPOLOGICAL DEFECT ENGINEERING AND MANUFACTURING OF PANCHARATNAM FLAT OPTICAL ELEMENTS

Jiang, Miao 06 September 2018 (has links)
No description available.
110

Development of State-Of-The-Art Interfacially Polymerized Defect-Free Thin-Film Composite Membranes for Gas- and Liquid Separations

Ali, Zain 04 1900 (has links)
This research was undertaken to develop state-of-the-art interfacially polymerized (IP) defect-free thin-film composite (TFC) membranes and understand their structure-function-performance relationships. Recent research showed the presence of defects in interfacially polymerized commercial membranes which potentially deter performance in liquid separations and render the membranes inadequate for gas separations. Firstly, a modified method (named KRO1) was developed to fabricate interfacially polymerized defect-free TFCs using m-phenylene diamine (MPD) and trimesoyl chloride (TMC). The systematic study revealed the ability to heal defects in-situ by tweaking the reaction time along with considerably improving the membrane crosslinking by controlling the organic solution temperature. The two discoveries were combined to produce highly crosslinked, defect-free MPD-TMC polyamide membranes which showed exceptional performance for separating H2 from CO2. Permeance and pure-gas selectivity of the membrane increased with temperature. H2 permeance of 350 GPU and H2/CO2 selectivity of ~100 at 140 °C were obtained, the highest reported performance for this application using polymeric materials to date. Secondly, the membranes produced using KRO1 were tested for reverse-osmosis (RO) performance which revealed significantly improved boron rejection compared to commercial membranes reaching a maximum of 99% at 15.5 bar feed pressure at pH 10. The study also unveiled direct correlations between membrane crosslinking and salt separation performance in addition to the membrane surface roughness. Thirdly, this was followed by replacing the conventional IP TMC monomer with a large, rigid and contorted tetra-acyl chloride (TripTaC) monomer to enhance the performance of IP TFCs. The fabricated TFCs showed considerable performance boosts especially for separating of small solutes from organic solvents such as methanol. A rise in H2 permeance was also observed compared to the conventional MPD-TMC TFCs while reaching a maximum H2/CO2 selectivity of 9 at 22 °C. Finally, the research was completed by showing the potential of KRO1 for fabrication of defect-free TFCs using a range of aqueous diamine monomers. KRO1 enabled defect-free gas properties for all monomers used showing exceptional performance for separating H2-CO2 and O2-N2 mixtures. It was further shown that the formulation could also improve the RO separation of interfacially polymerized polyamide TFCs beyond those shown by commercially available TFCs.

Page generated in 0.0256 seconds