• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 40
  • 25
  • 12
  • 10
  • 8
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 201
  • 66
  • 32
  • 29
  • 23
  • 18
  • 17
  • 17
  • 14
  • 14
  • 13
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

SELECTIVE OXIDATION AND REACTIVE WETTING OF FE-0.1C-6MN-2SI-xSN ADVANCED HIGH STRENGTH STEELS DURING CONTINUOUS HOT-DIP GALVANIZING

Pourmajidian, Maedeh January 2018 (has links)
Third generation advanced high-strength steels (3G-AHSS) have received significant interest from leading auto steel industries and OEMs as candidate materials for reduced mass Body In White (BIW) components due to their unique combination of high specific strength and ductility. However, the continuous hot-dip galvanizing of these steels is challenging due to selective oxidation of the main alloying elements such as Mn, Si, Al and Cr at the steel surface during the annealing step prior to immersion in the galvanizing Zn(Al, Fe) bath, as extensive coverage of the substrate surface by these oxides is detrimental to reactive wetting, good coating adhesion and integrity. Simulated galvanizing treatments were conducted on two prototype Fe-0.1C-6Mn-2Si (wt pct) 3G steels; one as the reference steel and the other with 0.05 wt pct Sn added to the composition. The combined effects of annealing temperature, time, process atmosphere oxygen partial pressure and 0.05 wt pct Sn addition on the selective oxidation of the steel substrates were determined. Subsequently, the reactive wetting of the steels with respect to the pre-immersion surface structures of the samples annealed for 120 s was examined. Annealing heat treatments were carried out at 800˚C and 690˚C in a N2-5 vol pct H2 process atmosphere under three dew points of –50˚C, –30˚C and +5˚C, covering process atmosphere oxygen partial pressures within the range of 1.20  10-27 atm to 1.29  10-20 atm. MnO was present at the outmost layer of the external oxides on all samples after annealing. However, the morphology, distribution, thickness and surface coverage were significantly affected by the experimental variables. Annealing the reference steel under the low dew point process atmospheres, i.e. –50˚C and –30˚C, resulted in the highest Mn surface concentration as well as maximum surface oxide coverage and thickness. The oxides formed under these process atmospheres generally comprised coarse, compact and continuous film forming nodules, whereas the surface morphologies and distributions obtained under the +5˚C dew point process atmosphere, which was consistent with the internal oxidation mode, exhibited wider spacing between finer and thinner MnO nodules. The grain boundary internal oxide networks had a multi layer structure with SiO2 and MnSiO3 at the oxide cores and shells, respectively. Significant morphological changes were obtained as a result of Sn addition. The continuous film-like external MnO nodules were modified to a fine and discrete globular morphology, with less surface coverage by the oxides and reduced external oxide thickness. Both the external and internal oxidations followed parabolic growth kinetics, where the depth of the internal oxidation zone decreased with Sn addition and decreasing oxygen partial pressure. Poor reactive wetting was observed for the reference steel substrates that were annealed for 120 s under the –50˚C and –30˚C dew point process atmospheres at 800˚C and under the –50˚C dew point atmosphere at 690˚C, such that no integral metallic coating was formed after the 4 s immersion in the Zn(Al, Fe) bath. By contrast, excellent coating quality was obtained for the Sn-added steels when the –30˚C and +5˚C dew point process atmospheres were employed when annealing at 690˚C. The remainder of the experimental conditions demonstrated good reactive wetting with intermediate coating quality. For the two reference steels annealed at 800˚C under the –50˚C and –30˚C dew point process atmospheres, poor reactive wetting was due to full coverage of the surface by 116 nm and 121 nm thick and continuous MnO films. In the case of the 690˚C  –50˚C reference steel with the external layer thickness of only 35 nm, however, poor wetting was attributed to substantial coverage of the surface by continuous, film-like oxides. In both cases, exposure of the underlying substrate to the bath alloy and an intimate contact between the substrate Fe and the bath dissolved Al could not take place and the formation of the Fe2Al5Znx interfacial layer was hidered. For the processing conditions that satisfactory reactive wetting was obtained despite the pre-immersion selective oxidation of the surfaces, several reactive wetting mechanisms were determined. For the samples with a sufficiently thin external MnO layer, good reactive wetting was attributed to partial reduction of MnO by the bath dissolved Al, as well as bridging of the Mn sub-oxides by the Zn coating or Fe2Al5Znx interfacial intermetallics. Partial or full formation of the Fe2Al5Znx interfacial layer was observed in the successfully galvanized substrates with Fe-Al crystals formed between, underneath and also on top of the reduced oxides. Furthermore, for cases with widely-spaced, fine oxide nodules, it was found that the liquid bath alloy was able to infiltrate the external oxide/substrate interface, resulting in surface oxide lift-off and enhanced coating adhesion. It was globally concluded that the thin, discrete and fine globular morphology of external MnO, resultant of annealing the steel substrates with 0.05 wt pct Sn addition under the process atmosphere oxygen partial pressures consistent with internal oxidation, allowed for an enhanced reactive wetting by the Zn(Al, Fe) galvanizing bath which was manifested by increased amount of Al uptake and population of the Fe2Al5Znx intermetallics at the coating/steel interface. / Thesis / Doctor of Science (PhD)
92

Manufacturing Silicone In-House For The Creation Of Customized Neurovascular Blood Vessel Mimics

Perisho, Jacob Wilbert 01 May 2024 (has links) (PDF)
The Tissue Engineering Lab at California Polytechnic State University San Luis Obispo focuses on creating tissue-engineered Blood Vessel Mimics (BVMs) designed for the preclinical testing of neurovascular devices. These BVMs are composed of silicone models, representing anatomically accurate neurovasculatures, that are sodded with vascular cell types and then cultivated in bioreactors (which maintain physiologic conditions). These silicone models are currently sourced externally from industry partners, so the primary goal of this thesis was to develop the means and methods for the Tissue Engineering Lab to manufacture silicone models in-house. The first aim of this thesis was to develop and explore injection molding as a possible technique for manufacturing silicone models; this included prototyping various designs of molds, developing a viable workflow for injection molding, then assessing the resulting silicone models through measurement characterization, cytotoxicity screening, and BVM set-ups. The first aim found that injection molding was a viable manufacturing technique for making silicone models. The second aim of this thesis explored an alternative manufacturing method, dip-casting, to produce silicone models. The development of dip-casting was similar to injection molding, where several prototyping stages resulted in a viable workflow for making silicone models; the resulting silicone models were then assessed via measurement characterization and a BVM set-up. The second aim found that, in addition to injection molding, dip-casting was a viable technique for making silicone models, although the overall morphology of the resulting models was less desirable than those made by injection molding. The third and final aim of this thesis compared both manufacturing techniques (i.e., injection molding and dip-casting); this aim established that injection molding was preferable for making simple (less intricate) silicone models, whereas dip-casting was preferable for producing complex (more intricate) silicone models. Although the dip-casting technique requires more development to capture complex shapes and produce models with desirable morphologies, the injection molding protocol was formalized into a prescribed workflow for the Tissue Engineering Lab to reference. Overall, this thesis developed and explored two different manufacturing techniques for making silicone models and found that both were capable of making silicone models that could be used to create tissue-engineered BVMs, with injection molded models being ready to implement as the dip-casting process continues to be refined.
93

Building Velocity Models for Steep-Dip Prestack Depth Migration through First Arrival Traveltime Tomography

Carney, Brooke J. 14 February 2001 (has links)
Although the petroleum industry has imaged reflections from the sides of salt domes, steeply dipping structures have not been imaged as reflectors outside of sedimentary basins; to do so requires appropriate data acquisition, prestack depth migration, and an excellent seismic velocity model. Poststack time migrated seismic images, normal moveout velocity analysis, well logs, and other geologic information are used to build the velocity model. In regions of interest outside of sedimentary basins, such as major strike-slip faults, seismic reflectivity is often sparse and little is known of detailed subsurface geology. Alternate methods of velocity model construction must be used. First arrival (refraction and turning ray) traveltime tomography is proposed to construct the preliminary velocity model for steep-dip prestack depth migration in settings with little a priori subsurface information. A densely spaced synthetic seismic data set with long-offset recording, modeled after a real survey across the San Andreas Fault, was constructed using a finite-difference algorithm. First arrival traveltimes were picked from the data and a velocity model was constructed using tomography. The velocity model was used to perform a Kirchhoff prestack depth migration of the synthetic shot gathers. The subsurface structure was sufficiently reconstructed that the velocity model could be refined through migration velocity analysis. A series of tomography tests was used to determine the spatial resolution limits of the velocity model. Isolated erroneous anomalies with sizes near the resolution limits were added to the velocity model derived from tomography and used as input for migration. This pessimistic test provided an adequate image and identifiable arrivals in migrated common image gathers, allowing the velocity model to be improved through migration moveout analysis. Data acquisition requirements for tomography include long recording offsets and times, larger sources, and dense spacings, very similar to the requirements for steep-dip reflection imaging. / Master of Science
94

Air entrainment in dip coating under reduced air pressures

Benkreira, Hadj, Khan, M.I. January 2008 (has links)
Yes / This study examines experimentally and for the first time the effect of reduced air pressure on dynamic wetting. The purpose is to assess the role of air viscosity on dynamic wetting failure which hitherto has been speculated on but not measured. In this paper we used dip coating as the model experimental flow and report data on air entrainment velocity Vae we measured with a series of silicone oils in a range of viscosities in a vacuum chamber where the pressure can be reduced from atmospheric down to a few mbar when the mean molecular free path of air is large and air ceases to have a viscosity. To complement earlier work, we carried out the experiments with a range of substrates of varying roughness. The substrates were chosen so that for each one, their two sides differ in roughness. This enables simultaneous comparative observation of their wetting performance and reduces the experimental error in assessing the role of roughness. The data presented here capture the effects of viscosity, roughness and air pressure but the important result of this study is that Vae can be increased considerably (exponentially) when the pressure is reduced with the suggestion that Vae approaches infinity as pressure approaches zero. In other words, the role of the surrounding air viscosity is important in dynamic wetting. The data from this study have significant implication to the fundamental understanding of dynamic wetting. Indeed they form the missing data link to fully understand this phenomenon. The data presented in this work also confirm the complex role of roughness, in that it can increase or decrease the air entrainment speed depending on the value on the viscosity of the coating solution. The results presented in this paper are very useful in practice as they imply that if one chooses carefully roughness one can coat viscous formulation at unexpectedly very high speeds with a moderate vacuum (50 mbar typically).
95

Air entrainment in angled dip coating

Cohu, O., Benkreira, Hadj January 1998 (has links)
Yes / The coating flow examined here, labelled angled dip coating, is that where a substrate enters a pool of liquid forming an angle ß with the vertical so that it intersects the liquid along a wetting line which is not perpendicular to the direction of its motion. This flow situation is distinctly different from that where the substrate, inclined in the other dimension by the so-called angle of entry ¿, intersects the liquid surface perpendicularly to its motion. Experiments were carried out with various liquids to determine the effect of ß on the substrate velocity at which air is entrained into the liquid. It was observed that as this angle departs from zero, air entrainment is delayed to higher speeds. The data show that the speed which is relevant to air entrainment is not the velocity of the substrate itself but its component normal to the wetting line. This result has important practical implications and suggests that this fundamental principle is also applicable to other coating flows.
96

Velocity Distribution in Open Channel Flows: Analytical Approach for the Outer Region

Lassabatere, L., Pu, Jaan H., Bonakdari, H., Joannis, C., Larrarte, F. 12 April 2012 (has links)
No / This paper presents an integration procedure for the Reynolds-averaged Navier-Stokes equations for the determination of the distribution of the streamwise velocity using the vertical component. This procedure is dedicated to the outer region and central part of channels. The proposed model is applicable to both rough and smooth flow regimes, provided the velocity at the inner-outer boundary has been properly defined. To generate a simplified expansion, a number of hypotheses are proposed, focusing in particular on the analytical modeling of the vertical component by adopting a negligible viscosity. The proposed hypotheses are validated by the experimental data existing in the literature. The proposed simplified expansion is studied through a sensitivity analysis and proved consistent in regards to model experimental data. The proposed model seems capable of demonstrating different kinds of flows, including dip phenomenon flow patterns.
97

Universal Velocity Distribution for Smooth and Rough Open Channel Flows

Pu, Jaan H. January 2013 (has links)
Yes / The Prandtl second kind of secondary current occurs in any narrow channel flow causing velocity dip in the flow velocity distribution by introducing the anisotropic turbulence into the flow. Here, a study was conducted to explain the occurrence of the secondary current in the outer region of flow velocity distribution using a universal expression. Started from the basic Navier-Stokes equation, the velocity profile derivation was accomplished in a universal way for both smooth and rough open channel flows. However, the outcome of the derived theoretical equation shows that the smooth and rough bed flows give different boundary conditions due to the different formation of log law for smooth and rough bed cases in the inner region of velocity distribution. Detailed comparison with a wide range of different measurement results from literatures (from smooth, rough and field measured data) evidences the capability of the proposed law to represent flow under all bed roughness conditions.
98

Intégration et mesures de magnéto-transport de nano-objets magnétiques obtenus par voie chimique / Integration and magneto-transport measurements of magnetic nano-objects obtained by chemical way

Dugay, Julien 13 December 2012 (has links)
L'étude du transport électronique dans des nano-objets métalliques et magnétiques issus de la chimie est un challenge en spintronique. En particulier, le manque de résultats expérimentaux révèle la difficulté à positionner ces nano-objets entre des électrodes de mesures tout en préservant leurs propriétés (magnétisme, intégrité des barrières tunnel organiques...). Ce travail de thèse vise à contourner ces difficultés et à étudier le magnétotransport dans ces systèmes. Pour cela, nous avons conçu et développé à l'intérieur d'une boîte à gants couplée à un bâti de pulvérisation cathodique des systèmes expérimentaux d'assemblages de nano-objets. Nous avons étudié les mécanismes mis en jeu lors de l'assemblage par la technique de dip coating, et réussi à déposer des monocouches de nanoparticules (NPs) de natures différentes (FeCo, Fe, Co) sur des surfaces d'Au, de SiO2 et de résine fine (40 nm). Ces résultats, couplés à une technique de nanoindentation, ont permis de mesurer quelques - voire une- NP(s). Une autre technique, la diélectrophorèse, s'est révélée simple et efficace pour piéger et orienter des nano-objets de taille, de nature, et de forme différentes entre des électrodes. Grâce à cette technique et au dépôt d'une couche protectrice d'alumine, nous avons étudié les propriétés de magnétotransport de plusieurs types de nano-objets sensibles à l'oxydation ou à la vapeur d'eau: NPs de Fe, de Co, FeCo et [Fe(H-trz)2(trz)](BF4)] (composés à transition de spin). Trois jeux de barrières tunnel organiques greffés sur des NPs de fer ont présenté de la magnétorésistance tunnel jusqu'à température ambiante. De plus, des nano-objets de [Fe(H-trz)2(trz)](BF4)] de facteurs de forme variable, ont montré une variation de la conductance liée à la transition de spin. Enfin, nous avons étudié l'influence de la longueur des ligands sur les propriétés de conductions de NPs de Cobalt, qui a validé nos méthodes d'échange de ligands et ont pu être analysées quantitativement. Nos travaux rendent désormais envisageable l'utilisation de NPs issues de la chimie dans différents domaines de la spintronique / The study of charge transport in metallic and magnetic nano-objects chemically synthesized is a challenge in spintronic. Particularly, the lack of experimental results reveals the difficulty in locating such nano-objects in between electrodes while preserving their good properties. This thesis aims to overcome these difficulties in order to study the magnetotransport in such systems. Therefore, we have designed and developed technical processes which induce the self-assembly of the nano-objects inside a glove box-sputtering system. After studying the mechanisms involved in the self-assembly obtained by dip coating, we succeeded to deposit monolayers of nanoparticles (NPs) of different materials (FeCo, Fe, Co) on gold surfaces, SiO2 and thin resin film (40 nm). These results, coupled with a nanoindentation technique allows us to measure a few or a unique NP(s). Another technique, called dielectrophoresis, has been proved to be a simple and versatile way to trap (and align) nano-objects with different (aspect ratio), size, nature, and shape in between the electrodes. Thanks to this technique and the deposit of a protective capping layer of alumina, we studied the magnetotransport properties of a large number of nano-objects sensitive to oxidation or humidity: Fe, Co, FeCo and [Fe(H-trz)2(trz)](BF4)] (spin crossover compounds). Three sets of organic tunnel barriers surrounding different Fe NPs presented tunnel magnetoresistance up to room temperature. Moreover, [Fe(H-trz)2(trz)](BF4)] nano-objects with different aspect ratio, highlighted a change in conductance connected to the spin transition. Finally, we validated our ligands exchange methods by studying the influence of the ligands length on the conduction properties of Co NPs, which have been analyzed quantitatively. Our works demonstrate the possibility to use the chemical NPs in different fields of spintronics
99

Nanostructures de surface obtenues par dépôt de films minces à base d'assemblage supramoléculaire de copolymères blocs

David, Gaspard January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
100

Nanostructures de surface obtenues par dépôt de films minces à base d'assemblage supramoléculaire de copolymères blocs

David, Gaspard January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.

Page generated in 0.021 seconds