• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 15
  • 7
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 131
  • 131
  • 131
  • 33
  • 30
  • 29
  • 24
  • 23
  • 22
  • 22
  • 22
  • 21
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Investigation of the role of FXR1 and SLFN11 in cellular response to genotoxic stress / 遺伝毒性ストレスに対する細胞応答におけるFXR1、SLFN11の役割の解析

Qi, Fei 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(人間・環境学) / 甲第24692号 / 人博第1065号 / 新制||人||250(附属図書館) / 2022||人博||1065(吉田南総合図書館) / 京都大学大学院人間・環境学研究科相関環境研究専攻 / (主査)教授 高田 穣, 教授 宮下 英明, 教授 川本 卓男, 教授 原田 浩 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
52

DEVELOPMENT OF 4'-ETHYNYL-2'-DEOXYCYTIDINE (EdC), A REPLICATION-STRESS INDUCING NUCLEOSIDE ANALOG PRODRUG WITH PREFERENTIAL ACTIVITY IN LEUKEMIA AND LYMPHOMA SUBTYPES

Calbert, Marissa, 0000-0003-3005-8679 05 1900 (has links)
Anticancer nucleosides are effective against solid tumors and hematological malignancies, but typically are prone to nucleoside metabolism resistance mechanisms. Using a nucleoside-specific multiplexed high-throughput screening approach, we discovered 4’-ethynyl-2’-deoxycytidine (EdC) as a third-generation anticancer nucleoside prodrug with preferential activity against diffuse large B-cell lymphoma (DLBCL) and acute lymphoblastic leukemia (ALL). EdC requires deoxycytidine kinase (dCK) phosphorylation for its activity and induces replication fork arrest and accumulation of cells in S-phase, indicating it acts as a chain terminator. A 2.1Å co-crystal structure of dCK bound to EdC and UDP reveals how the rigid 4’-alkyne of EdC fits within the active site of dCK. Remarkably, EdC was resistant to cytidine deamination and SAMHD1 metabolism mechanisms and exhibited higher potency against ALL compared to FDA approved nelarabine. Finally, EdC was highly effective against DLBCL tumors and B-ALL in vivo. These data characterize EdC as a pre-clinical nucleoside prodrug candidate for DLBCL and ALL. / Biomedical Sciences
53

Interlocking mechanisms regulating the circadian clock response to DNA damage

Zou, Xianlin 15 June 2021 (has links)
Almost all organisms have an endogenously generated and self-sustained time-keeping system that oscillates with a periodicity of about 24 h, namely the circadian clock, that help them adapt to daily environmental changes. Mammalian circadian rhythms are generated and maintained by transcription-translation feedback loops (TTFLs) and include post-translational modifications to help fine-tune the oscillation. Circadian rhythms control a broad range of cellular signaling pathways including those mechanisms involved in cell division and DNA damage response (DDR). We have previously established that the core clock component PERIOD2 (PER2) binds to the tumor suppressor protein p53, a key regulatory checkpoint component that modulates cell cycle progression and the cellular response to genotoxic stress. PER2 binding to p53 modulates p53's stability, cellular localization, and transcriptional activity. As described in Chapter 2, we now identified PER2 as a previously uncharacterized substrate for the ubiquitin E3 ligase mouse double minute 2 homolog (MDM2), an oncoprotein and negative regulator of p53. Our findings showed that the association between PER2 and MDM2 is independent of the presence of p53. In addition, MDM2 targets PER2 for ubiquitylation and degradation in a phosphorylation-independent fashion. Lastly, our studies showed that MDM2 collaborates with β-transducin repeat-containing proteins (β-TrCPs), an E3 ligase that targets PER2 for ubiquitylation in a phosphorylation-dependent manner, to control PER2 degradation and thus the length of circadian period. Because the p53:MDM2 pathway plays a critical role in the cellular response to genotoxic stress, the project described in Chapter 3 is based on the hypothesis that DNA damage caused by radiation shifts the circadian clock phase via the p53:PER2:MDM2 complex. Firstly, we generated Trp53KO (Trp53 gene encodes mouse p53) cell lines in NIH 3T3 Per2:dLuc reporter cells expressing luciferase driven by the Per2 promoter. Phase-response curves (PRCs) for Trp53WT and Trp53KO reporter cells were obtained in response to ionizing radiation (IR) treatments. Results indicated that Trp53 knockout did not affect radiation-induced circadian phase shifts, whereas increased p53 levels induced by transient inhibitor treatments prevented phase shifts when IR was performed at the trough of PER2 abundance. Additional mechanisms were unveiled that kinases ATM (Ataxia Telangiectasia Mutated), ATR (ATM- and Rad3-related) and CHK2 (Checkpoint Kinase 2) regulate radiation-induced phase shifts. Lastly, we found that CLOCK (Circadian Locomotor Output Cycles Kaput) and CRY1 (CRYPTOCHROME 1) were phosphorylated in response to radiation. Taken together, these results indicate that radiation-induced clock phase shifts involve the activity of kinases ATM, ATR and CHK2, and the modification in CLOCK and CRY1. Chapter 4 is a review of current findings about the interaction between circadian rhythms and the cell division cycle regulation pathway. The article highlights a multidisciplinary approach that combines mathematical modeling and experimental data to reveal how p53:PER2:MDM2 acts as a node controlling timely cell cycle progression. In summary, our work provided evidence that MDM2 targets PER2 for ubiquitylation and degradation in a phosphorylation-independent manner, and this influences circadian oscillation. Furthermore, the exploration of p53:PER2:MDM2 association shed light on how radiation-induced DNA damage shifts clock phase. These findings expose a crosstalk mechanism that senses DNA damage and shifts the clock system. / Doctor of Philosophy / Mammals have a time-keeping system that oscillates with a periodicity of about 24 h, namely the circadian clock, that allows physiological and behavioral adaptation to environmental changes. The circadian clock controls and coordinates processes as diverse as sleep/wake cycle, feeding cycle, daily changes in body temperature, blood pressure and hormone secretion. At the cellular level, the circadian clock exists in almost all cells and controls a broad range of cellular signaling pathways including mechanisms involved in cell division and DNA damage response (DDR) pathway. Circadian disruption, for example, by night shift work, results in accumulation of DNA damage in cells and increases risk of cancer. In my thesis, we found that MDM2, a protein that is involved in the DDR signaling pathway and has the potential to cause cancer, controls the degradation of the core clock protein PERIOD2 (PER2), and thus regulates the length of circadian period. Further work exposed the mechanism for how DNA damage shifts the circadian clock. Our findings will have significant impacts on health and biomedical science, especially shedding light on optimizing the time in a day to give chemo- and radiation therapies to cancer patients.
54

High Glucose Increases DNA Damage and Elevates the Expression of Multiple DDR Genes

Rahmoon, M.A., Elghaish, R.A., Ibrahim, A.A., Alaswad, Z., Gad, M.Z., El-Khamisy, Sherif, Elserafy, M. 01 November 2023 (has links)
Yes / The DNA Damage Response (DDR) pathways sense DNA damage and coordinate robust DNA repair and bypass mechanisms. A series of repair proteins are recruited depending on the type of breaks and lesions to ensure overall survival. An increase in glucose levels was shown to induce genome instability, yet the links between DDR and glucose are still not well investigated. In this study, we aimed to identify dysregulation in the transcriptome of normal and cancerous breast cell lines upon changing glucose levels. We first performed bioinformatics analysis using a microarray dataset containing the triple-negative breast cancer (TNBC) MDA-MB-231 and the normal human mammary epithelium MCF10A cell lines grown in high glucose (HG) or in the presence of the glycolysis inhibitor 2-deoxyglucose (2DG). Interestingly, multiple DDR genes were significantly upregulated in both cell lines grown in HG. In the wet lab, we remarkably found that HG results in severe DNA damage to TNBC cells as observed using the comet assay. In addition, several DDR genes were confirmed to be upregulated using qPCR analysis in the same cell line. Our results propose a strong need for DDR pathways in the presence of HG to oppose the severe DNA damage induced in cells. / Wellcome Trust
55

The phosphatase MKP1 as a target to enhance replicative stress and apoptosis in tumor cells

Jagannathan, Veena 06 May 2015 (has links)
No description available.
56

Reporter-based Synthetic Genetic Analysis of Budding Yeast Reveals Novel MMS-induced Effectors of the RNR3 Promoter

Elnour, Nada January 2016 (has links)
The DNA damage response is a cell-wide response that coordinates repair and cell-cycle progression. Crucial to fidelity of genetic propagation, survival, and apoptosis, dysfunctions in the response are at the root of genome instability syndromes and cancer predisposition in mammalian cells. Within the response lie hubs of coordination, called checkpoints, whose members and organization are ubiquitous amongst eukaryotes. The high conservation of these checkpoints enable the study of their dynamics by proxy via simpler model organisms. We use the budding yeast, Saccharomyces cerevisiae, to study the replication and DNA damage checkpoints --- both implicated in DNA damage repair. Using a yEGFP reporter driven by the RNR3 promoter and reporter-based synthetic genetic array analysis, we created a detector of potential checkpoint activation in response to two doses of MMS, 0.015% and 0.060% (v/v). The high-throughput screens and differential epistasis miniarray analyses (EMAPs) yield unanticipated involvement of oxidative stress response, ribosomal biogenesis, and chromatin remodelling genes.
57

Mécanismes d'ubiquitylation dans la réponse aux dommages de l'ADN / Mechanism of ubiquitylation in DNA damage response

Kumbhar, Ramhari 16 September 2016 (has links)
L’ubiquitylation est une modification post-transcriptionelle qui est nécessaire pour la dégradation des protéines mais aussi pour la régulation et la localisation de nombreux facteurs. Un grand nombre de protéines impliquées dans la réplication de l’ADN et dans la réponse aux lésions de l’ADN sont ubiquitylées. L’ubiquitylation durant la réponse aux dommages de l’ADN dépend de l’enzyme d’activation de l’ubiquitine UBA1 qui est située au sommet de la cascade d’ubiquitination. Durant ma thèse, j’ai mis à jour le mécanisme de recrutement d’UBA1 au niveau de l’ADN endommagé ainsi qu’un rôle majeur de l’ubiquitylation dans la voie de signalisation ATR.A l’aide d’une approche in vitro qui mime la voie de signalisation ATR, j’ai montré qu’UBA1 est recrutée au niveau de molécules d’ADN linéaire et qu’elle est nécessaire à l’ubiquitylation des protéines recrutées sur ce substrat. J’ai également découvert que l’ubiquitylation et le recrutement d’UBA1 in vitro sont dépendants de la kinase DNA-PKcs et de la poly(ADP-ribose) polymérase PARP1, deux senseurs majeurs des lésions de l’ADN. Il apparait que PARP1 régule le recrutement d’UBA1 via la formation de chaines de poly(ADP)-ribose (PAR). De plus, j’ai montré qu’UBA1 est capable de se lier aux chaines PAR. J’ai identifié la région d’UBA1 capable d’interagir avec les chaines PAR : il apparait que cette région est désorganisée et riche en acide aminés hydrophobes. La comparaison de la protéine UBA1 de levure et la protéine UBA6 humaine qui ne lient pas PAR nous a permis d’identifier les acides aminées hydrophobes nécessaires pour la lésion à PAR.J’ai aussi démontré qu’UBA1 est nécessaire pour la réponse aux lésions de l’ADN. En effet, l’inhibition ou la déplétion d’UBA1 conduit à une perte de la phosphorylation de Chk1 dans notre système in vitro. De même, le traitement avec des molécules induisant des lésions de l’ADN telles que le CPT, le MMS et la bléocine conduit à une phosphorylation moindre de Chk1 lorsqu’UBA1 est inhibée. Afin de démontrer que la liaison d’UBA1 aux chaines PAR est cruciale pour la réponse aux dommages, j’ai mis en place un système in vivo permettant d’exprimer des mutants d’UBA1 incapable de lier les chaines PAR.Globalement mes résultats indiquent qu’UBA1 est recrutée au niveau de l’ADN endommagé à l’aide de PARP1 et DNA-PKcs. Plus précisément, il apparait que la liaison avec les chaines PAR et l’ubiquitylation de protéines spécifiques est nécessaire pour la mise en place de la voie de signalisation ATR. L’importance d’UBA1 dans le processus est soulignée par le fait que son inhibition ou son inactivation conduit à une phosphorylation moindre de Chk1. Il est raisonnable de penser que des inhibiteurs d’UBA1 puissent être utilisés pour cibler la voie ATR dans les cellules cancéreuses. Finalement, cette étude devrait permettre de mieux comprendre comment les interactions entre les processus d’ubiquitylation et de PARylation permettent de réguler la réponse aux dommages. / Ubiquitylation is an important posttranslational modification that is necessary for protein degradation as well as for the regulation and the localization of many cellular factors. A number of proteins implicated in DNA replication and DNA damage response are ubiquitylated. Ubiquitylation during the DNA damage response is selectively dependent on the ubiquitin-activating enzyme UBA1, which functions at the apex of the ubiquitylation cascade. In this thesis, I describe the mechanism of UBA1 recruited at damaged sites and uncover the role of ubiquitylation in ATR signaling.Using a cell free system developed in the lab that recapitulates ATR kinase-signaling pathway, I present evidence that, UBA1 is recruited to linear DNA substrates and mediate ubiquitylation of DNA-bound proteins. I found that protein ubiquitylation and the recruitment of UBA1 to DNA in cell-free extracts was dependent on the kinase DNA-PKcs and on the poly ADP-ribose polymerase PARP1, two sensors of DNA lesions. PARP1 regulates UBA1 recruitment in large part through poly (ADP)-ribose (PAR) chain formation. UBA1 exhibited affinity for PARP1 and for PAR chains. Furthermore, we have identified minimal region on UBA1 which is prominently hydrophobic and disordered region of UBA1 which are required for its PAR binding activity. Through comparison with yeast UBA1 and human UBA6 which failed to bind with PAR chains, we identified hydrophobic amino acid residues which are critical for PAR binding.I also show evidence that UBA1 is required for efficient DNA damage signaling. In a cell free system, chemical inhibition or siRNA depletion of UBA1 led to the loss of ChK1 phosphorylation, suggesting that UBA1 activity is required for efficient DNA damage response. Consistent with these observations, when cells were treated with DNA lesion inducing drugs like CPT, MMS and Bleocin, we observed less efficient Chk1 phosphorylation. I have developed UBA1 replacement system to demonstrate functional significance of mutation in PAR binding residues of UBA in DNA damage response.Collectively, these results indicate that UBA1 is recruited to DNA damaged sites in a DNA-PKcs and PARP1 dependent-manner, in a larger part through its interaction with PAR chains and that protein ubiquitylation on DNA damages is necessary for the assembly of a productive ATR signaling complex. The importance of role of UBA1 in DNA damage response is underscored by the finding that UBA1 inhibition leads to inefficient Chk1 phosphorylation which is required for efficient DNA damage response. Thus, UBA1 inhibitors could be used to target ATR signaling in cancer cells. This study should eventually lead us to provide more insights on how cell maintains genome integrity through crosstalk between posttranslational modifications including ubiquitylation and PARylation.
58

Development of new approaches to study the role of chromatin in dna damage response

Shoaib, Muhammad 06 November 2011 (has links) (PDF)
In eukaryotic cells, the genome is packed into chromatin, a hierarchically organized complex composed of DNA and histone and nonhistone proteins. In this thesis we have addressed the role of chromatin in cellular response to DNA damage (DDR) using various methodologies encompassing functional genomics and proteomics. First, we analyzed histone post-translational modifications (PTM) in the context of specific kind of DNA lesions (ICL-Interstrand Crosslinks) in Fanconi anemia using quantitative proteomics methodology, SILAC (Stable Isotope Labeling of Amino acids during Cell Culture). Using mass spectrometry (MS), we have successfully identified and quantified a number of histone PTM marks in histone H3 and H4, mainly acetylations and methylations,which have shown dependence upon functional FA-pathway. As a next step, we applied a functional genomics approach to study DDR in FA cells. In this analysis we first monitored the expression profile of histone modifying enzymes related to histone acetylations and methylations. Our results suggest some correlations between histone PTMs and gene expression of histone modifying enzymes, although conclusive evidence warrants further investigations. Next, we analyzed the total transcriptome after DNA damage induction in FA mutant and wild type cells. We also included in this analysis IR irradiation, in an attempt to dissociate more generic DDR from more specific changes that are associated with the role of FA pathway to the DNA ICLs. By performing a factorial interaction analysis, we were able to isolate the part of transcriptional response to DNA damage that was requiring functional FA pathway, as well as the genes that were sensitized to DNA damage by the inactivation of FA pathway. In the final part of the thesis, we attempted to solve one of the limitations that we encountered in the histone PTM analysis. The current approaches used to study histone PTMs from particular loci involves classical chromatin immunoprecipitation, which due to involvement of formaldehyde crosslinking render the protein part mostly unavailable for MS-based proteomics. We have proposed a novel methodology, which is based upon the biotin tagging of histones proximal to a protein of interest and subsequent purification of nucleosomes carrying the tagged histone. This methodology does not involve any crosslinking, enabling us to purify histones from specific loci, and subject them to large scale MS-based histone PTM analysis. A time dimension can also be added to our approach, as we can follow the modification status of particular fraction of histones once they get biotinylated. Another advantage is the use of alternate variant histones, which allows us to study the PTM profile of different functional states of chromatin. This methodology certainly has an edge on current techniques to study histone PTMs pattern associated with a particular protein of interest or with particular chromatin state.
59

Cell cycle checkpoints in Caenorhabditis elegans: the 14-3-3 gene par-5 is required for germline development and DNA damage response / Checkpoints del ciclo celular en Caenorhabditis elegans: el gen 14-3-3, par-5, es necesario para el desarrollo y respuesta al daño genómico de la línea germinal

Aristizábal Corrales, David 13 June 2012 (has links)
14-3-3 proteins have been extensively studied from yeast to mammals, and are associated with multiple roles ranging from fundamental processes such as cell cycle, apoptosis and stress response to diseases such as neurodegeneration and cancer. Indeed, 14-3-3 proteins have been suggested as possible therapeutic targets in cancer treatment. There are seven 14-3-3 genes in mammals, whereas there are only two in Caenorhabditis elegans, ftt-2 and par-5. The ftt-2 gene is expressed only in somatic lineages, whereas par-5 expression is detected in both soma and germline. Although it is known that par-5 inactivation results in sterility, the role of this gene in germline development is poorly characterized. In the present study, we use a par-5 mutation and RNA interference to characterize par-5 functions in the germline. The lack of par-5 in germ cells causes cell cycle deregulation, the accumulation of endogenous DNA damage and genomic instability. Moreover, par-5 is required for checkpoint-induced cell cycle arrest in response to DNA-damaging agents. We propose a model whereby PAR-5 regulates CDK-1 phosphorylation to prevent premature mitotic entry. Even though mammalian 14-3-3 homologs have diverged into seven genes, we verified that the basic functions of 14-3-3 in cell cycle control have been conserved in C. elegans. Therefore, this study opens a new path to investigate molecular mechanisms of 14-3-3 proteins and establishes C. elegans as a suitable system to screen for genes (RNAi libraries or mutagenesis), and drugs which can modify 14-3-3 functions. / Las proteínas 14-3-3 han sido ampliamente estudiadas desde levadura hasta mamíferos y han sido asociadas con múltiples roles en procesos como ciclo celular, apoptosis y la respuesta al estrés. Así mismo estas proteínas se han visto involucradas en enfermedades neurodegenerativas y cáncer. De hecho, las proteínas 14-3-3 han sido propuestas como posibles agentes terapéuticos en el tratamiento contra el cáncer. En mamíferos existen 7 genes que codifican para proteínas 14-3-3, mientras en Caenorhabditis elegans solo hay dos, ftt-2 and par-5. El gen ftt-2 sólo es expresado en células somáticas, mientras par-5 se expresa tanto en células somáticas como en la línea germinal. Aunque se sabe que la inactivación de par-5 puede producir esterilidad, el rol de este gen en el desarrollo de la línea germinal no ha sido caracterizado. En este estudio, se usó una mutación de par-5 y RNA interferente para caracterizar la función de par-5 en la línea germinal. La falta de par-5 en la línea germinal causa una desregulación del ciclo celular, acumulación de daño genómico e inestabilidad genómica. Además, par-5 es requerido para el arresto celular inducido por el checkpoint en respuesta a los agentes que dañan el genoma. A partir de los resultados obtenidos, se propone un modelo según el cual PAR-5 regula la fosforilación de CDK-1 para prevenir la entrada prematura en mitosis. Aunque los homólogos de 14-3-3 en humanos han divergido en 7 genes, este estudio permitió verificar que las funciones básicas de las proteínas 14-3-3 en el control ciclo celular están conservadas en C. elegans. Por lo tanto, este estudio abre un nuevo camino para estudiar las funciones moleculares de las proteínas 14-3-3 y establece C. elegans como un modelo adecuado para la búsqueda de genes y/o drogas que modifiquen la función de las proteínas 14-3-3.
60

The Role of BRCA1 Domains and Motifs in Tumor Suppression

Velkova, Aneliya 01 January 2011 (has links)
ABSTRACT Individuals that carry deleterious mutations in the breast and ovarian cancer susceptibility gene 1 (BRCA1) have much more elevated risk to develop breast and/or ovarian cancer than the individuals from the general population. The BRCA1 gene product has been implicated in several aspects of the DNA damage response, but its biochemical function in these processes has remained elusive. In order to probe BRCA1 functions we conducted a yeast two-hybrid screening to identify interacting partners to a conserved motif (Motif 6) in the central region of BRCA1. In this dissertation, we report the identification of the actin-binding protein Filamin A (FLNA) as a BRCA1 partner and demonstrate that FLNA is required for the efficient regulation of DNA repair process at its early stages. Cells lacking FLNA display a diminished ionizing radiation (IR)-induced BRCA1 focus formation and a slow kinetics of Rad51 focus formation. In addition, our data demonstrate that FLNA is required to stabilize the interaction between DNA-PK holoenzyme components such as DNA-PKcs and Ku86 in a BRCA1-independent manner. Our data are consistent with a model in which the absence of FLNA compromises homologous recombination and non-homologous end joining. Our findings have implications for our understanding of the response to irradiation-induced DNA damage.

Page generated in 0.0616 seconds