• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 229
  • 29
  • 23
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 394
  • 394
  • 93
  • 77
  • 59
  • 57
  • 54
  • 54
  • 47
  • 44
  • 44
  • 41
  • 38
  • 31
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Exploring mechanisms of size control and genomic duplication in Saccharomyces cerevisiae

Spiesser, Thomas Wolfgang 19 January 2012 (has links)
Ein der Biologie zugrunde liegender Prozess ist die Fortpflanzung. Einzeller wachsen dazu heran und teilen sich. Grundlage hierfür sind ausreichend Nahrung und Ressourcen, um die eigene Masse und alle Zellbestandteile, insbesondere die DNS, zu verdoppeln. Fehler bei der Wachstumsregulation oder der DNS-Verdopplung können schwerwiegende Folgen haben und stehen beim Menschen im Zusammenhang z.B. mit Krebs. In dieser Arbeit werden mathematische Modelle für die Mechanismen zur Wachstumsregulierung und DNS-Verdopplung in der Bäckerhefe, Saccharomyces cerevisiae, vorgestellt. Modellierung kann entscheident zum Verstehen von komplexen, dynamischen Systemen beitragen. Wir haben ein Modell für Einzellerwachstum entwickelt und leiten das Wachstumsverhalten von Zellkulturen von diesem Modell, mittels einer hierfür programmierten Software, ab. Außerdem haben wir ein Model für die Verdopplung der DNS entwickelt, um Auswirkungen verschiedener Aktivierungsmuster auf die Replikation zu testen. Zusätzlich wurde die Verlängerung entstehender DNS Stränge, Elongation, mit einem detaillierten, stochastischen Modell untersucht. Wir haben unsere Ergebnisse zur DNS-Verdopplung mit einer abschließenden Untersuchung ergänzt, die funktionelle Beziehungen von Genen aufzeigt, welche sich in der Nähe von Aktivierungsstellen der Verdopplung befinden. Folgende Einsichten in die komplexe Koordination von Wachstum und Teilung wurden gewonnen: (i) Wachstumskontrolle ist eine inhärente Eigenschaft von Hefezellpopulationen, welche weder Signale noch Messmechanismen benötigt, (ii) DNS Verdopplung ist robuster in kleinen Chromosomen mit hoher Dichte an Aktivierungsstellen, (iii) Elongation ist weitgehend uniform, weicht aber an genau definierten Stellen signifikant ab und (iv) katabole Gene häufen sich nahe der frühen Aktivierungsstellen und anabole Gene nahe der späten. Unsere Ergebnisse tragen zum Verständniss von zellulären Mechanismen zur Wachstumskontrolle und DNS-Verdopplung bei. / One of the most fundamental processes in biology is reproduction. To achieve this, single cellular organisms grow, proliferate and divide. The prerequisite for this is acquiring sufficient resources to double size and cellular components, most importantly the DNA. Defects in either sufficient gain in size or chromosomal doubling can be severe for the organism and have been related to diseases in humans, such as cancer. Therefore, the cell has developed sophisticated regulatory mechanisms to control the orderly fashion of growth and duplication. We have developed mathematical models to study systemic properties of size control and DNA replication in the premier eukaryotic model organism Saccharomyces cerevisiae. Modeling can help understanding the complex nature of dynamic systems. We provide a single cell model to explore size control. We deduced population behavior from the single cell model through multi-cell simulations using a tailor-made software. Also, we implemented an algorithm that simulates the DNA replication process to test the impact of different replication activation patterns. Additionally, elongation dynamics were assessed with a fine-grained stochastic model for the replication machinery motion. We complemented our analysis of DNA replication by studying the functional association of genes and replication origins. Our systems-level analysis reveals novel insights into the coordination of growth and division, namely that (i) size regulation is an intrinsic property of yeast cell populations and not due to signaling or size sensing, (ii) DNA replication is more robust in small chromosomes with high origin density, (iii) the elongation process is strongly biased at distinct locations in the genome and (iv) catabolic genes are over-represented near early origins and anabolic genes near late origins. Our results contribute to explaining mechanisms of size control and DNA replication.
362

Le rôle de la structure de la chromatine naissante dans la réponse au stress réplicatif

Simoneau, Antoine 12 1900 (has links)
No description available.
363

Coordination entre les microtubules et le complexe Smc5-Smc6 dans le maintien de l'intégrité génomique

Laflamme, Guillaume 02 1900 (has links)
No description available.
364

Identification et caractérisation de facteurs impliqués dans la réplication et la stabilité des génomes des organelles de plantes

Parent, Jean-Sébastien 11 1900 (has links)
Comparativement au génome contenu dans le noyau de la cellule de plante, nos connaissances des génomes des deux organelles de cette cellule, soit le plastide et la mitochondrie, sont encore très limitées. En effet, un nombre très restreint de facteurs impliqués dans la réplication et la réparation de l’ADN de ces compartiments ont été identifiés à ce jour. Au cours de notre étude, nous avons démontré l’implication de la famille de protéines Whirly dans le maintien de la stabilité des génomes des organelles. Des plantes mutantes pour des gènes Whirly chez Arabidopsis thaliana et Zea mays montrent en effet une augmentation du nombre de molécules d’ADN réarrangées dans les plastides. Ces nouvelles molécules sont le résultat d’une forme de recombinaison illégitime nommée microhomology-mediated break-induced replication qui, en temps normal, se produit rarement dans le plastide. Chez un mutant d’Arabidopsis ne possédant plus de protéines Whirly dans les plastides, ces molécules d’ADN peuvent même être amplifiées jusqu’à cinquante fois par rapport au niveau de l’ADN sauvage et causer un phénotype de variégation. L’étude des mutants des gènes Whirly a mené à la mise au point d’un test de sensibilité à un antibiotique, la ciprofloxacine, qui cause des bris double brin spécifiquement au niveau de l’ADN des organelles. Le mutant d’Arabidopsis ne contenant plus de protéines Whirly dans les plastides est plus sensible à ce stress que la plante sauvage. L’agent chimique induit en effet une augmentation du nombre de réarrangements dans le génome du plastide. Bien qu’un autre mutant ne possédant plus de protéines Whirly dans les mitochondries ne soit pas plus sensible à la ciprofloxacine, on retrouve néanmoins plus de réarrangements dans son ADN mitochondrial que dans celui de la plante sauvage. Ces résultats suggèrent donc une implication pour les protéines Whirly dans la réparation des bris double brin de l’ADN des organelles de plantes. Notre étude de la stabilité des génomes des organelles a ensuite conduit à la famille des protéines homologues des polymérases de l’ADN de type I bactérienne. Plusieurs groupes ont en effet suggéré que ces enzymes étaient responsables de la synthèse de l’ADN dans les plastides et les mitochondries. Nous avons apporté la preuve génétique de ce lien grâce à des mutants des deux gènes PolI d’Arabidopsis, qui encodent des protéines hautement similaires. La mutation simultanée des deux gènes est létale et les simples mutants possèdent moins d’ADN dans les organelles des plantes en bas âge, confirmant leur implication dans la réplication de l’ADN. De plus, les mutants du gène PolIB, mais non ceux de PolIA, sont hypersensibles à la ciprofloxacine, suggérant une fonction dans la réparation des bris de l’ADN. En accord avec ce résultat, la mutation combinée du gène PolIB et des gènes des protéines Whirly du plastide produit des plantes avec un phénotype très sévère. En définitive, l’identification de deux nouveaux facteurs impliqués dans le métabolisme de l’ADN des organelles nous permet de proposer un modèle simple pour le maintien de ces deux génomes. / Compared to the nuclear genome, very little is known about the genomes of the two plant cytoplasmic organelles, the plastid and the mitochondria. Indeed, very few factors involved in either the replication or the repair of these genomes have been identified. Here we show the implication of the Whirly protein family in the maintenance of organellar DNA. Indeed, mutations in Whirly genes lead to DNA rearrangements in both Arabidopsis thaliana and Zea mays plastids. These rearrangements are the product of microhomology-mediated break-induced replication that rarely occurs in wild-type plants but increases in absence of Whirly proteins. In a mutant plant devoid of plastidial Whirly proteins, these new DNA molecules can be amplified up to fifty times the normal DNA level and cause a variegated phenotype. In the course of the study of the Whirly mutant plants, we developed a strategy, based on the use of the antibiotic ciprofloxacin, to induce DNA double-strand breaks specifically in plant organelles. The Arabidopsis mutant plants without Whirly proteins in the plastids are more sensitive to the antibiotic ciprofloxacin than wild-type plants. Accordingly, there is a much larger increase in the number of rearranged DNA molecules in the plastids of the mutant plants than in the control plants. Surprisingly, while the mutant plants devoid of Whirly proteins in the mitochondria do not show increased sensitivity to the drug, they do accumulate more rearrangements in their mitochondrial DNA compared to wild-type plants. These results suggest that the Whirly proteins are involved in the repair of DNA double-strand breaks in the plant organelle genomes. Our study of the plant organelle genome stability has lead us to a family of proteins homologous to the DNA polymerase I in bacteria. This family has been proposed to be responsible for most of the DNA-synthesis activity in the plant organelles. We bring genetic proof to support this hypothesis using mutants of the two PolI genes of Arabidopsis. The combined mutation of both genes is lethal and the single mutations cause a decrease in the relative DNA levels in the organelles, thus confirming the involvement of both genes in DNA replication. Interestingly, mutants of the PolIB but not PolIA gene shows increase sensitivity to ciprofloxacin suggesting a function in DNA repair. In line with these results, a cross between a PolIB mutant and the mutant of plastid Whirly genes resulted in plants with severe growth defects and numerous rearrangements in the plastid DNA. In conclusion, we have identified two factors involved in the metabolism of organelle DNA and proposed a simple model of how these genomes are maintained in the plant cell.
365

Identification du rôle et des modifications post-traductionnelles modulant l’export nucléaire de l’hélicase virale E1 au cours du cycle de réplication du virus du papillome humain

Fradet-Turcotte, Amélie 04 1900 (has links)
Les virus du papillome humain (VPH) sont de petits virus à ADN double brin infectant les épithéliums de la peau et des muqueuses. La réplication nécessaire au maintien de leur génome dans les cellules infectées dépend des protéines virales E1 et E2. Au cours de la réplication, E1 est recrutée à l’origine de réplication par E2 afin d’être assemblée en doubles hexamères capables de dérouler l’ADN. E1 contient un domaine C-terminal responsable de l’activité ATPase/hélicase, un domaine central de liaison à l’origine et une région N-terminale régulant la réplication in vivo. Cette région contient des signaux de localisation et d’export nucléaire qui modulent le transport intracellulaire de E1. Chez le virus du papillome bovin (VPB), il a été proposé que ce transport est régulé par la sumoylation de E1. Finalement, la région N-terminale de E1 contient un motif de liaison aux cyclines permettant son interaction avec la cycline E/A-Cdk2. La phosphorylation de E1 par cette dernière régule différemment l’export nucléaire des protéines E1 du VPB et du VPH. Dans la première partie de cette étude, nous avons démontré que bien que la protéine E1 des VPH interagit avec Ubc9, l’enzyme de conjugaison de la voie de sumoylation, cette voie n’est pas requise pour son accumulation au noyau. Dans la seconde partie, nous avons déterminé que l’accumulation nucléaire de E1 est plutôt régulée pas sa phosphorylation. En fait, nous avons démontré que l’export nucléaire de E1 est inhibé par la phosphorylation de sérines conservées de la région N-terminale de E1 par Cdk2. Puis, nous avons établi que l’export nucléaire de E1 n’est pas nécessaire à l’amplification du génome dans les kératinocytes différenciés mais qu’il est requis pour le maintien du génome dans les kératinocytes non différenciés. En particulier, nous avons découvert que l’accumulation nucléaire de E1 inhibe la prolifération cellulaire en induisant un arrêt du cycle cellulaire en phase S et que cet effet anti-prolifératif est contrecarrée par l’export de E1 au cytoplasme. Dans la troisième partie de cette étude, nous avons démontré que l’arrêt cellulaire induit par E1 dépend de sa liaison à l’ADN et à l’ATP, et qu’il est accompagné par l’activation de la voie de réponse aux dommages à l’ADN dépendante de ATM (Ataxia Telangiectasia Mutated). Ces deux événements semblent toutefois distincts puisque la formation d’un complexe E1-E2 réduit l’activation de la voie de réponse aux dommages par E1 sans toutefois prévenir l’arrêt de cycle cellulaire. Finalement, nous avons démontré que la réplication transitoire de l’ADN viral peut avoir lieu dans des cellules arrêtées en phase S, indépendamment de l’activation de la voie de réponse aux dommages à l’ADN et de la kinase ATM. Globalement, nos résultats démontrent que l’export nucléaire de E1 est régulé par sa phosphorylation et non par sa sumoylation. Ils démontrent également que l’export nucléaire de E1 est essentiel au maintien du génome dans les kératinocytes, possiblement parce qu’il prévient l’inhibition de la prolifération cellulaire et l’activation de la voie de réponse aux dommages à l’ADN en limitant l’accumulation de E1 au noyau. / Human papillomaviruses (HPV) are small double-stranded DNA viruses that infect the differentiating epithelium of the skin and the mucosa. HPV rely on two viral proteins, E1 and E2, to replicate and maintain their genome in the nucleus of infected cells. During replication, the E1 helicase is recruited to the origin of replication by E2 and is assembled into a double-hexamer that unwinds DNA ahead of the replication fork. E1 is comprised of a C-terminal enzymatic domain with ATPase/helicase activity, a central origin-binding domain and a N-terminal regulatory region that is required for viral DNA replication in vivo. The latter region of E1 contains a nuclear localization signal and a nuclear export signal that regulate its shuttling between the nucleus and cytoplasm. For bovine papillomavirus (BPV) E1, this shuttling was suggested to be controlled by the sumoylation of E1. In addition to the NES and NLS, the N-terminal region of E1 contains a conserved cyclin-binding motif that is required for the interaction of E1 with cyclin E/A-Cdk2. Cdk2 phosphorylation of E1 has been reported to control the nuclear export of E1 from BPV and HPV, albeit differently. In the first part of this study, we showed that although HPV E1 interacts with Ubc9, the conjugating enzyme of the sumoylation pathway, this pathway is not required for its accumulation in the nucleus. In the second part, we found that the nuclear accumulation of E1 is, instead, regulated by phosphorylation. Specifically, we found that Cdk2-dependent phosphorylation of conserved serines in the E1 N-terminal region inhibits the nuclear export of HPV E1. Furthermore, we reported that nuclear export is not essential to amplify the viral genome in differentiating keratinocytes but that it is required for its long-term maintenance in undifferentiated keratinocytes. Importantly, we found that the nuclear accumulation of E1 induces a S-phase arrest that is detrimental to cellular proliferation and that this anti-proliferative effect can be counteracted by the export of E1 from the nucleus to the cytoplasm. In the last part of this study, we showed that this arrest is dependent on the DNA- and ATP-binding activities of E1. Furthermore, we found that the cell cycle arrest induced by E1 is accompanied by the activation of a DNA damage response (DDR) dependent on the ATM (Ataxia Telangiectasia Mutated) pathway. However, these two events seem to be distinct since complex formation with E2 reduces the ability of E1 to induce a DDR but does not prevent cell cycle arrest. Importantly, we demonstrated that transient viral DNA replication still occurs in S-phase arrested cells, independently of the induction of a DDR and of the ATM kinase. Collectively, these data indicate that nuclear export of E1 is regulated by phosphorylation and not by sumoylation. They also revealed that nuclear export of E1 is essential for maintenance of the viral episome in keratinocytes, at least in part to limit its nuclear accumulation and prevent its detrimental effect on cellular proliferation and induction of a DDR.
366

The Role of Saccharomyces Cerevisiae MRX Complex and Sae2 in Maintenance of Genome Stability

Ghodke, Indrajeet Laxman January 2015 (has links) (PDF)
In eukaryotes, the repair of DSBs is accomplished through two broadly defined processes: Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR). The central step of HR is pairing and exchange of strands between two homologous DNA molecules, which is catalyzed by the conserved Rad51/RecA family of proteins. Prior to this step, an essential step in all HR pathways i.e. 5'→3' resection of broken DNA ends to generate 3' single stranded DNA tails. At the molecular level, initiation of DNA end resection is accomplished through the concerted action of MRX complex (Mre11, Rad50 and Xrs2) and Sae2 protein. To elucidate the molecular basis underlying DSB end resection in S. cerevisiae mre11 nuclease deficient mutants, we have performed a comprehensive analysis of the role of S. cerevisiae Mre11 (henceforth called as ScMre11) in the processing of DSB ends using a variety of DNA substrates. We observed that S. cerevisiae Mre11(ScMre11) exhibits higher binding affinity for single- over double-stranded DNA and intermediates of recombination and repair and catalyzes robust unwinding of substrates possessing a3' single-stranded DNA overhang but not of 5' overhangs or blunt-ended DNA fragments. Furthermore, reconstitution of DSB end resection network in-vitro revealed that Rad50, Xrs2, and Sae2 potentiated the DNA unwinding activity of Mre11. Since the exonuclease activity of Mre11 is of the opposite polarity to that expected for resection of DSBs, unwinding activity of Mre11 in conjunction with Rad50, Xrs2, and Sae2 might provide an alternate mechanism for the generation of ssDNA intermediates for DSB end repair and HR. Additionally, ScMre11 displays strong homotypic as well as heterotypic interaction with Sae2. In summary, our results revealed important insights into the mechanism of DSB end processing and support a model in which Sae2, Rad50, and Xrs2 positively regulate the ScMre11-mediated DNA unwinding activity via their direct interactions or through allosteric effects on the DNA or cofactors. Prompted by the closer association of MRX and Sae2 during DSB end processing, we asked whether Sae2 and its endonuclease activity is required for cellular response to replication stress caused by DNA damage. Toward this end, we examined the sensitivity of S. cerevisiae wild type, sae2Δ and various SAE2 mutant strains defective in phosphorylation and nuclease activity in the presence of different genotoxic agents, which directly or indirectly generate DSBs during replication. We found that S. cerevisiae lacking SAE2 show decreased cell viability, altered cell cycle dynamics after DNA damage, and more specifically, that Sae2 endonuclease activity is essential for these biological functions. To corroborate the genetic evidences for role of SAE2 during replicative stress, we investigated SAE2 functions in-vitro. For this, we purified native Sae2 protein and nuclease dead mutant of Sae2 i.e. sae2G270D. Our studies revealed dimeric forms of both the wild type and mutant forms of Sae2. Furthermore, Sae2 displays higher binding affinity and catalytic activity with branched DNA structures, such as Holliday junction and replication forks. By using nuclease dead Sae2 protein i.e. sae2G270D, we confirmed that the endonuclease activity is not fortuitous and is intrinsic to Sae2 polypeptide. Furthermore, nuclease-defective Mre11 stimulates Sae2endonuclease activity. Mapping of the cleavage sites of Sae2 revealed a distinct preference for cleavage on the 5' end of the Holliday junction, suggesting the importance of Sae2 nuclease during recombination mediated restart of the reversed replication fork. In summary, our data clearly demonstrate a previously uncharacterized role for Sae2 nuclease activity in resection of DSB ends, processing of intermediates of DNA replication/repair and attenuation of DNA replication stress-related defects in S. cerevisiae.
367

Strukturně-funkční organizace buněčného jádra.Mikroskopická analýza jaderných subkompartmentů. / Structure-function organization of the cell nucleus.Microscopical analysis of nuclear subcompartments.

Jůda, Pavel January 2015 (has links)
Pavel Jůda - Abstract The cell nucleus is a complex cellular organelle. The nucleus and nuclear processes are organized into functionally and morphologically separated nuclear subcompartments. This thesis is particularly concerned with the three following nuclear subcompartments: sites of DNA replication, Polycomb bodies and nuclear inclusions constituted of inosine monophosphate dehydrogenase 2 (IMPDH2). First, we examined the relationship between MCM proteins and DNA replication. Using immunofluorescent labeling of cells extracted prior fixation and applying cross-correlation function analysis, we showed that MCM proteins are present at the sites of active DNA synthesis. Our results contributed to the solving of the first part of so-called MCM paradox. Second, we studied the structural basis of the Polycomb bodies. Based on fluorescence microscopy studies, Polycomb bodies have been considered to be the nuclear subcompartments formed by the accumulation of Polycomb proteins in the interchromatin compartment. In our work, using correlative light electron microscopy and experimental changes in macromolecular crowding, we clearly showed that a Polycomb body is a chromosomal domain formed by an accumulation of heterochromatin structures, rather than a typical nucleoplasmic body. Third, we were interested in...
368

<em>PALB2</em> and <em>RAP80</em> genes in hereditary breast cancer predisposition

Nikkilä, J. (Jenni) 29 January 2013 (has links)
Abstract Around 5–10% of all breast cancers stem from a strong hereditary predisposition to the disease. Mutations in currently known breast cancer predisposing genes, however, account for only 25–30% of all hereditary breast cancer cases, BRCA1 and BRCA2 being the two major ones. Since BRCA1 and BRCA2 participate in the DNA damage response, mutations in other genes, such as PALB2 and RAP80, which are involved in these pathways, may also predispose to breast tumours. Therefore, the aim of this study was to evaluate variations of the human PALB2 and RAP80 genes as novel potential candidates for breast cancer susceptibility and to further characterize the role of PALB2-deficiency in cancer development. A mutation, c.1592delT, was identified in PALB2 at an elevated frequency among breast cancer patients (0.9%) compared to controls (0.2%) (P&#160;= &#160;0.003, OR 3.94, 95% CI 1.5–12.1). Among familial cases the frequency was even higher (2.7%). This mutation represents a genuine loss-of-function mutation since its protein product showed significantly decreased BRCA2-binding affinity and could neither support homologous recombination nor restore crosslink repair in PALB2-deficient cells. Heterozygous PALB2 c.1592delT carriers displayed haploinsufficiency of PALB2 marked by aberrant DNA replication and DNA damage response that led to a significant increase in genomic instability. As the tumours were negative for loss of heterozygosity at this chromosomal locus, these findings provide a mechanism for the early stages of breast cancer development in PALB2 c.1592delT carriers. Palb2 was also found to play a critical role in early mouse development. As in Brca1/2-deficient embryos, homozygous inactivation of Palb2 resulted in embryonic lethality due to mesoderm differentiation and cell proliferation defects. The phenotypic similarity of Palb2 and Brca1/2-deficient mice further supports the close functional relationship shown in vitro for these proteins. A novel mutation, delE81, was identified in RAP80 in one out of 112 breast cancer families, and in one patient diagnosed with bilateral breast cancer out of 503 unselected breast cancers. The resultant delE81 protein displayed significantly reduced ubiquitin binding and double-strand break (DSB) localization. Furthermore, it impaired the recruitment of the whole BRCA1-A complex to the site of DSBs, thus compromising BRCA1-mediated DNA damage response signalling. Although the mutation is quite rare, the current results indicate that the RAP80 delE81 defect is biologically relevant and is likely associated with a hereditary predisposition to breast cancer. / Tiivistelmä Arviolta 5–10 % rintasyöpätapauksista aiheutuuu merkittävästä perinnöllisestä alttiudesta sairauteen. Mutaatiot tähän mennessä tunnistetuissa rintasyövän alttiusgeeneissä, joista BRCA1 ja BRCA2 ovat tärkeimmät, selittävät kuitenkin vain 25–30 % kaikista perinnöllisistä rintasyöpätapauksista. Tämän tutkimuksen tarkoituksena on arvioida PALB2- ja RAP80-geenien mahdolliset vaikutukset rintasyöpäalttiuteen, sekä määrittää tarkemmin PALB2:n vaikutus syövän kehitykseen. PALB2:sta löydettiin mutaatio, c.1592delT, jota esiintyi merkittävästi enemmän rintasyöpäpotilailla (0,9&#160;%) kuin kontrollihenkilöillä (0,2&#160;%) [P&#160;= &#160;0.003, OR 3.94, 95&#160;% CI 1.5–12.1]. Kaikista yleisimmin geenimuutos esiintyi perinnöllisten ritasyöpätapausten joukossa (2,7&#160;%). Mutaatio aiheuttaa toiminnallisesti viallisen proteiinin, joka sitoutuu BRCA2:n kanssa normaalia heikommin, eikä se pysty kunnolla toimimaan homologisessa rekombinaatiossa tai ristikkäiden DNA-virheiden korjauksessa. Heterotsygoottisen PALB2 c.1592delT-mutaation aiheuttaa PALB2-geenin haploinsuffisienssi joka ilmentyy kantajien soluissa epänormaalina DNA:n kahdentumisena ja DNA-vauriovasteena, jotka johtavat merkittävästi kohonneeseen genomin epävakaisuuteen. Jo kyseiset toiminnalliset puutteet näyttävät tarjoavan pätevän selityksen PALB2 c.1592delT kantajien merkittävästi suurentuneelle rintasyöpäriskille ja lienee myös syy siihen, ettei potilaiden kasvaimissa havaittu normaalin vastinaleelin menetystä. Palb2:lla on keskeinen rooli hiiren alkiokehityksessä. Kuten Brca1/2-puutteellisissa alkioissa, myös homotsygoottinen Palb2-inaktivaatio aiheuttaa alkioiden enneaikaisen kuoleman, joka aiheutuu puutteista mesodermin erilaistumisessa ja hidastuneesta solujen kasvussa. Palb2- ja Brca1/2-puuttellisten hiirien samankaltaisuus vahvistaa ennestään näiden proteiinien toiminnallista yhteyttä, joka on osoitettu jo aikaisemmin laboratorio-oloissa. RAP80-geenistä löydettiin uusi mutaatio, delE81, yhdestä 112 tutkitusta rintasyöpäperheestä. Kyseinen muutos nähtiin myös yhdessä molemminpuoliseen rintasyöpään sairastaneessa potilaassa valikoimattomassa 503 tapauksen kattavasta aineistosta. Mutatoitunut proteiinituote vähensi huomattavasti DNA-vauriovastekompleksin kykyä sitoutua ubikitiiniin ja paikallistua DNA-kaksoisjuostekatkoksille. Ennen kaikkea mutaatio heikensi BRCA1-A kompleksin kuljetuksen DNA-vauriopaikalle, vaarantaen BRCA1-välitteisen DNA-vauriovasteen. Harvinaisuudesta huolimatta nämä tutkimustulokset osoittavat RAP80 delE81 vaikutuksen olevan biologisesti merkittävä. Kyseinen synnynnäinen RAP80-geenimuutos altistaa mitä todennäköisimmin kantajansa rintasyövälle.
369

Genome-wide CRISPR screens for the interrogation of genome integrity maintenance networks

Benslimane, Yahya 08 1900 (has links)
Le matériel génétique (l’ADN) d’un organisme contient l’information nécessaire à sa survie, sa croissance et sa reproduction. La perte de cette information affecte grandement la santé de l’organisme et cette altération est l’un des facteurs les plus courants dans le vieillissement ou le cancer. Quasiment toutes les cellules d’un organisme contiennent une copie de ce matériel génétique, communément appelé le génome, et font usage de plusieurs mécanismes pour en réparer les sections endommagées ainsi que pour le copier avec précision lors de la division cellulaire. Nous avons cherché à étudier les processus cellulaires qui maintiennent la stabilité génomique en inactivant systématiquement chacun des gènes avec la technique de criblage par CRISPR afin d’en étudier les rôles. Nous avons effectué ces criblages à l’échelle du génome dans des lignées cellulaires humaines en combinaison avec des perturbations chimiques dans le but d’identifier l’effet du traitement chimique ou le rôle de gènes qui exacerbent ou atténuent la perturbation. Nous nous sommes d’abord concentrés sur le resvératrol, une molécule initialement extraite de plantes qui a démontré des propriétés antivieillissement dans certains organismes modèles ainsi que la capacité d’inhiber la prolifération cellulaire. Notre criblage génétique a révélé que le resvératrol inhibait la réplication de l’ADN. En comparant les effets cellulaires du resvératrol à l’hydroxyurée, un agent connu pour causer du stress réplicatif, nous avons montré que ces deux traitements menaient à une diminution similaire de la progression de la fourche de réplication ainsi qu’à une activation de la signalisation en réponse au stress réplicatif. Nous avons également démontré que l’inhibition de la réplication de l’ADN dans les cellules humaines par le resvératrol est l’un des effets principaux de la molécule sur la prolifération cellulaire et ne requiert pas la présence de la déacétylase d’histone Sirtuin-1, protéine qui a été suggérée comme étant la cible principale du resvératrol pour son effet antivieillissement. Nous avons également étudié la perturbation d’un second processus cellulaire, soit le maintien des télomères. Ces séquences spéciales aux extrémités des chromosomes sont indispensables à la protection du génome et leur érosion graduelle est contrebalancée par l’activité enzymatique de la télomérase. Nous avons effectué un crible génétique par CRISPR à l’échelle du génome dans une lignée cellulaire dont nous avons inhibé la télomérase en utilisant BIBR1532, un inhibiteur spécifique de la télomérase. Nous avons découvert une forte interaction génétique entre la télomérase et C16orf72, un gène non-annoté que nous avons nommé TAPR1. Nous avons montré que les cellules déficientes en TAPR1 possèdent des niveaux élevés de la protéine p53, un facteur de transcription central à la réponse cellulaire aux dommages télomériques et aux dommages à l’ADN. Nous suggérons que TAPR1 agit comme un inhibiteur de la stabilité protéique de p53. En somme, ces travaux mettent en évidence la capacité des cribles génétiques CRISPR à approfondir nos connaissances sur le fonctionnement des processus de maintien de la stabilité génomique chez l’humain. / The genetic material (DNA) of an organism contains the necessary information for survival, growth and reproduction. Loss of this information strongly impacts the health of the organism and is the leading factor in aging and cancer. Almost all cells in an organism contain a copy of said genetic material (genome) and employ several mechanisms to repair any damaged section of the genome and to accurately copy it during cell division. We sought to understand the cellular processes by which cells maintain genome stability by systematically inactivating individual genes to uncover their role using pooled CRISPR-Cas9 screening. We employed genome-wide CRISPR screening in human cell lines in combination with specific chemical perturbations to identify gene deletions that enhance or suppress the phenotype of the chemical treatment, thereby shedding light on the effect of the treatment or the role of said enhancer/suppressor genes. We first focused on resveratrol; a small molecule first discovered in plants that has been suggested to extend lifespan in model organisms while also inhibiting cell proliferation ex vivo. Chemical-genetic screening pinpointed a role of resveratrol in inhibition of DNA replication. When we compared the cellular effects of resveratrol to hydroxyurea, a known inducer of replicative stress, we found that both treatments led to slower replication fork progression and activation of signaling in response to replicative stress. Importantly, we showed that the inhibition of DNA replication by resveratrol in human cells is a primary effect on cell proliferation and independent of the histone deacetylase Sirtuin-1, which has been implicated as the primary target in lifespan extension by resveratrol. We then studied the perturbation of a second cellular process, namely telomere maintenance. These specialized sequences at the termini of chromosomes are critical for the protection of chromosome ends and their erosion is counteracted by the enzymatic activity of telomerase. We performed a genome-wide CRISPR screen in cells that were concomitantly treated with a specific telomerase inhibitor, BIBR1532. We uncovered a strong genetic interaction between telomerase and a previously unannotated gene, C16orf72, which we named TAPR1. We found that TAPR1-depleted cells led to elevated p53 levels, a transcription factor central for the cellular response to telomeric and global DNA damage. We propose that TAPR1 is a negative regulator of p53 protein levels by promoting its turnover. Altogether, these studies highlight the power of CRISPR-Cas9 in genetic screening to uncover novel insight into the human genome stability maintenance network.
370

Strukturně-funkční organizace buněčného jádra.Mikroskopická analýza jaderných subkompartmentů. / Structure-function organization of the cell nucleus.Microscopical analysis of nuclear subcompartments.

Jůda, Pavel January 2015 (has links)
Pavel Jůda - Abstract The cell nucleus is a complex cellular organelle. The nucleus and nuclear processes are organized into functionally and morphologically separated nuclear subcompartments. This thesis is particularly concerned with the three following nuclear subcompartments: sites of DNA replication, Polycomb bodies and nuclear inclusions constituted of inosine monophosphate dehydrogenase 2 (IMPDH2). First, we examined the relationship between MCM proteins and DNA replication. Using immunofluorescent labeling of cells extracted prior fixation and applying cross-correlation function analysis, we showed that MCM proteins are present at the sites of active DNA synthesis. Our results contributed to the solving of the first part of so-called MCM paradox. Second, we studied the structural basis of the Polycomb bodies. Based on fluorescence microscopy studies, Polycomb bodies have been considered to be the nuclear subcompartments formed by the accumulation of Polycomb proteins in the interchromatin compartment. In our work, using correlative light electron microscopy and experimental changes in macromolecular crowding, we clearly showed that a Polycomb body is a chromosomal domain formed by an accumulation of heterochromatin structures, rather than a typical nucleoplasmic body. Third, we were interested in...

Page generated in 0.0972 seconds