• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 229
  • 29
  • 23
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 394
  • 394
  • 93
  • 77
  • 59
  • 57
  • 54
  • 54
  • 47
  • 44
  • 44
  • 41
  • 38
  • 31
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Regulation of replication dependent nucleosome assembly

Gopinathan Nair, Amogh 04 1900 (has links)
Chez les cellules humaines, environ 2 mètres d'ADN est compacté dans le noyau cellulaire par la formation d'une structure nucléoprotéique appelée chromatine. La chromatine est composée d'ADN enroulé à la surface d'un octamère de core histones pour former une structure appelée nucléosome. La structure de la chromatine doit être altérée afin d'accéder à l'information génétique pour sa réplication, sa réparation et sa transcription. La duplication de la chromatine lors de la phase S est cruciale pour la prolifération et la survie des cellules. Cette duplication de la chromatine requière une ségrégation des histones parentales, mais aussi une déposition d'histones néo-synthétisées sur l'ADN. Ces deux réactions résultent en formation de chromatine dès qu'une quantité suffisante d'ADNest générée par la machinerie de réplication. De plus, en raison de conditions intrinsèques et extrinsèques, la machinerie de réplication est souvent confrontée à de nombreux obstacles, sous la forme de lésions à l'ADN qui interfèrent avec la réplication de l'ADN. Sous ces conditions, l'assemblage de nucléosomes et la synthèse d'histones sont étroitement régulées afin d'éviter la production d'un excès d'histones et leurs nombreuses conséquences nuisibles à la cellule. "Chromatin Assembly Factor 1" (CAF-1) est responsable de la déposition initiale des molécules d'H3 et H4 derrière les fourches de réplication. Pour permettre sa fonction d'assemblage de chromatine, CAF-1 est localisée aux fourches de réplication en vertue de sa liaison à une protéine appelée Proliferating Cell Nuclear Antigen (PCNA). Cependant, le mécanisme moléculaire par lequel CAF-1 exerce sa function demeure mal compris. Dans le deuxième chapitre de ma thèse, j'ai exploré comment CAF-1 se lie à PCNA d'une manière distincte des nombreux autres partenaires de PCNA. Grâce à nos collaborateurs, des études de crystallographie ont démontré que CAF-1 se lie à PCNA grâce à une interaction non-canonique entre le "PCNA Interaction Peptide" (PIP) de CAF-1 et une interaction de type cation-pi (π). Nous avons aussi montré qu'une substitution d'un seul acide aminé, unique au PIP de CAF-1, abolit son interaction avec PCNA et sa capacité d'assemblage de nuclésomes. Nous avons aussi montré que le PIP de CAF-1 est situé à l'extrémité C-terminale d'une très longue hélice alpha qui est conservée à travers l'évolution parmi de nombreux homologues de CAF-1. Nos études biophysiques ontmontré que cette longue hélice alpha forme des structures oligomériques de type "coiled-coil", ce qui suggère certains mécanismes pour dédier un anneau de PCNA à l'assemblage de chromatine et ce, en dépit des nombreux intéracteurs de PCNA présents aux fourches de réplication. Dans le troisième chapitre de ma thèse, nos collaborateurs et moi-même avons étudié les mécanismes moléculaires par lesquels les cellules parviennent à maintenir un équilibre délicat entre la synthèse d'ADN et la synthèse d'histones et ce, même en présence de lésions à l'ADN qui interfèrent avec la réplication. Chez Saccharomyces cerevisiae, nous avons montré que les kinases de réponse au dommage à l'ADN, Mec1/Tel1 et Rad53, inhibent la transcription des gènes d'histones en réponse aux liaisons à l'ADN qui interfèrent avec la réplication. Nous avons montré que la répression des gènes d'histones induite par le dommage à l'ADN est médiée par une phosphorylation extensive de Hpc2, l'une des sous-unités du complexe "Histone Gene Repressor" (HIR). Hpc2 contient un domaine qui se lie à l'histone H3. À partir de la structure d'Hpc2, nous avons généré des mutants qui, d'après la structure, sont incapables de se lier à l'histone H3. Nos résultats montrent que l'accumulation d'histones en excès provoquée par le dommage à l'ADN entraîne la phosphorylation d'Hpc2 and la liaison de l'excès d'histone H3 à Hpc2. Ces résultats suggèrent que la répression transcriptionnelle des gènes d'histones induite par le dommage à l'ADN est médiée, du moins en partie, par une simple rétroaction négative impliquant la liaison des histones en excès à la sous-unité Hpc2 du complexe HIR. / In human cells, roughly 2 meters of DNA is compacted into the cell nucleus by the formation of a nucleoprotein complex called chromatin. Chromatin is composed of DNA wrapped around an octamer of core histones to form so-called nucleosomes. Chromatin structure needs to be altered to access genetic information for processes like replication, repair and transcription. Duplication of chromatin during S phase is vital for cell proliferation and viability. Chromatin duplication requires segregation of parental histones, but also deposition of newly synthesized histones onto DNA. This process results in packaging all of the synthesized DNA with histones to form nucleosomes as soon as enough nascent DNA has emerged from the replication machinery. Moreover, as a result of intrinsic and extrinsic conditions, the replication machinery often encounters DNA lesions that impede the continuous synthesis of DNA. Under these conditions, nucleosome assembly and histone synthesis are tightly regulated to prevent the production of an excess of histone proteins and their deleterious consequences. Chromatin Assembly Factor-1 (CAF-1) performs the initial step in chromatin assembly by depositing newly synthesized histone H3-H4 molecules behind replication forks. In order to perform its chromatin assembly function, CAF-1 localizes to DNA replication forks by binding directly to a protein known as the Proliferating Cell Nuclear Antigen (PCNA). However, the exact molecular mechanism by which this is achieved remains poorly understood. Through the second chapter of my thesis, I have explored how CAF-1 binds PCNA in a manner that is distinct from the numerous other binding partners of PCNA. With the help of our collaborators, crystallographic studies demonstrated that CAF-1 binds to PCNA by virtue of a non-canonical PCNA interaction peptide (PIP) and a cation-pi (π) interaction. We have also shown that a single amino acid substitution, unique to the PIP of CAF-1, disrupts its binding to PCNA and chromatin assembly activity. We found that the CAF-1 p150 PIP resides at the extreme C-terminus of a long alpha helix that is evolutionarily conserved among numerous homologues of CAF-1. Our biophysical studies showed that this long alpha-helix is capable of forming higher-order coiled coils, which suggests mechanisms to dedicate one PCNA ring for chromatin assembly despite the presence of multiple PCNA interactors at replication forks. In the third chapter of this thesis, our collaborators and I have addressed the crucial molecular mechanisms by which cells maintain a delicate balance between DNA and histone synthesis despite the presence of DNA lesions that interfere with replication. In Saccharomyces cerevisiae, we showed that the DNA damage response kinases Mec1/Tel1 and Rad53 inhibit histone gene transcription when DNA lesions block DNA replication. We also showed that this repression is mediated by phosphorylation of the Hpc2 subunit of the Histone Gene Repressor complex (HIR). Hpc2 contains a domain that directly binds to histone H3. Interestingly, structure-based mutants of Hpc2 predicted to be incapable of binding H3 are defective in DNA damage-induced transcriptional repression of histone genes in response to DNA damage during replication. Our results indicate that the accumulation of excess histones caused by DNA damage during S phase triggers extensive phosphorylation of Hpc2 and binding of excess H3 to Hpc2. This suggests that DNA damage-induced repression of histone genes is mediated, at least in part, by a simple negative feedback triggered by binding of excess histones to the Hpc2 subunit of the HIR complex.
392

The dual-acting chemotherapeutic agent Alchemix induces cell death independently of ATM and p53

Thomas, A., Perry, T., Berhane, S., Oldreive, C., Zlatanou, A., Williams, L.R., Weston, V.J., Stankovic, T., Kearns, P., Pors, Klaus, Grand, R.J., Stewart, G.S. 06 January 2015 (has links)
Yes / Topoisomerase inhibitors are in common use as chemotherapeutic agents although they can display reduced efficacy in chemotherapy-resistant tumours, which have inactivated DNA damage response (DDR) genes, such as ATM and TP53. Here, we characterise the cellular response to the dual-acting agent, Alchemix (ALX), which is a modified anthraquinone that functions as a topoisomerase inhibitor as well as an alkylating agent. We show that ALX induces a robust DDR at nano-molar concentrations and this is mediated primarily through ATR- and DNA-PK- but not ATM-dependent pathways, despite DNA double strand breaks being generated after prolonged exposure to the drug. Interestingly, exposure of epithelial tumour cell lines to ALX in vitro resulted in potent activation of the G2/M checkpoint, which after a prolonged arrest, was bypassed allowing cells to progress into mitosis where they ultimately died by mitotic catastrophe. We also observed effective killing of lymphoid tumour cell lines in vitro following exposure to ALX, although, in contrast, this tended to occur via activation of a p53-independent apoptotic pathway. Lastly, we validate the effectiveness of ALX as a chemotherapeutic agent in vivo by demonstrating its ability to cause a significant reduction in tumour cell growth, irrespective of TP53 status, using a mouse leukaemia xenograft model. Taken together, these data demonstrate that ALX, through its dual action as an alkylating agent and topoisomerase inhibitor, represents a novel anti-cancer agent that could be potentially used clinically to treat refractory or relapsed tumours, particularly those harbouring mutations in DDR genes.
393

Regulation des Zellzyklus durch das Maus- und Ratten-Zytomegalievirus

Neuwirth, Anke 29 November 2005 (has links)
Das humane Zytomegalievirus, ist ein ubiquitäres Pathogen, welches akute und persistierende Infektionen verursacht. Bei immunsupprimierten Patienten kann das Virus zu schweren Erkrankungen, wie Hepatitis, Pneumonie und bei kongenitaler Infektion außerdem zu Schädigungen des ZNS führen. HCMV blockiert die Zellproliferation durch einen Arrest am G1/S-Übergang des Zellzyklus, andererseits wird aber gleichzeitig die Expression S-Phase spezifischer Gene aktiviert. Teilweise lässt sich dies durch eine Virus vermittelte spezifische Inhibition der zellulären DNA-Repliaktion sowie durch eine massive Deregulation Zyklin-assozzierter Kinasen erklären. Zellkulturexperimente deuten darauf hin, dass die Zellzyklusalterationen wichtige Voraussetzungen für eine erfolgreiche Virusreplikation darstellen. Es ist hingegen nicht bekannt, welche Relevanz sie für die Virusvermehrung in vivo und das pathologische Erscheinungsbild im erkrankten Organismus besitzen. Diese Frage kann nur in einem Tiermodell sinnvoll angegangen werden. Aufgrund der Wirtsspezifität der Zytomegalieviren, ist man dabei auf die Verwendung der jeweiligen artspezifischen CMV angewiesen. Murines CMV (MCMV) und Ratten-CMV (RCMV) sind dabei die bislang bestuntersuchtesten Systeme. Das Anliegen dieser Arbeit war es zu prüfen, inwieweit die für HCMV beschriebenen Zellzyklusregulationen in MCMV und RCMV auf Zellkulturbasis konserviert sind. Es konnte gezeigt werden, dass sowohl RCMV als auch MCMV einen antiproliferativen Effekt auf infizierte Zellen besitzen und ebenso wie HCMV zu einem Zellzyklusarrest führen. Nager-Zytomegalieviren können Zellen auch in der G2-Phase arretieren und in dieser Zellzyklusphase auch effizient replizieren können. Die Infektion mit Nager-CMV führt außerdem auf breiter Basis zur Veränderung Zyklin-assoziierter Kinaseaktivitäten. Allen Zytomegalieviren ist die Hemmung der zellulären DNA-Synthese am G1/S-Übergang durch die Inhibition des replication licensing, dem Beginn der DNA-Synthese gemein. Durch diese vergleichende Studie wird einerseits deutlich, dass wesentliche funktionelle Schritte der Zellzyklusregulation zwischen den Zytomegalieviren konserviert sind, aber andererseits die zu Grunde liegenden molekularen Mechanismen zum Teil deutlich variieren. / Human Cytomegalovirus (HCMV) is an ubiquitous, species-specific beta-herpesvirus that, like other herpesviruses, can establish lifelong latency following primary infection. HCMV infection becomes virulent only in immunocompromised patients such as premature infants, transplant recipients and AIDS patients where the virus causes severe disease like hepatitis, pneumonitis and retinitis. Congenital infection produces birth defects, most commonly hearing loss. To develop rational-based strategies for prevention and treatment of HCMV infection, it is crucial to understand the interactions between the virus and its host cell that support the establishment and progression of the virus replicative cycle. In general, herpesviruses are known to replicate most efficiently in the absence of cellular DNA synthesis. What is more, they have evolved mechanisms to avoid the cell´s DNA replication phase by blocking cell cycle progression outside S phase. HCMV has been shown to specifically inhibit the onset of cellular DNA synthesis resulting in cells arrested with a G1 DNA content. Towards a better understanding of CMV-mediated cell cycle alterations in vivo, we tested murine and rat CMV (MCMV/RCMV), being common animal models for CMV infection, for their influence on the host cell cycle. It was found that both MCMV and RCMV exhibit a strong anti-proliferative capacity on immortalised and primary embryonic fibroblasts after lytic infection. This results from specific cell cycle blocks in G1 and G2 as demonstrated by flow cytometry analysis. The G1 arrest is at least in part caused by a specific inhibition of cellular DNA synthesis and involves both the formation and activation of the cells’ DNA replication machinery. Interestingly, and in contrast to HCMV, the replicative cycle of rodent CMVs started from G2 as efficiently as from G1. Whilst the cell cycle arrest is accompanied by a broad induction of cyclin-cdk2 and cyclin-cdk1 activity, cyclin D1-cdk4/6 activity is selectively suppressed in MCMV and RCMV infected cells. Thus, given that both rodent and human CMVs are anti-proliferative and arrest cell cycle progression we found a surprising divergence of some of the underlying mechanisms. Therefore, any question put forward to a rodent CMV model involving cell cycle regulation has to be well defined in order to extrapolate meaningful information for the human system.
394

Cascades of genetic instability resulting from compromised break-induced replication

Vasan, Soumini January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Break-induced replication (BIR) is a mechanism to repair double-strand breaks (DSBs) that possess only a single end that can find homology in the genome. This situation can result from the collapse of replication forks or telomere erosion. BIR frequently produces various genetic instabilities including mutations, loss of heterozygosity, deletions, duplications, and template switching that can result in copy-number variations (CNVs). An important type of genomic rearrangement specifically linked to BIR is half crossovers (HCs), which result from fusions between parts of recombining chromosomes. Because HC formation produces a fused molecule as well as a broken chromosome fragment, these events could be highly destabilizing. Here I demonstrate that HC formation results from the interruption of BIR caused by a defective replisome or premature onset of mitosis. Additionally, I document the existence of half crossover instability cascades (HCC) that resemble cycles of non-reciprocal translocations (NRTs) previously described in human tumors. I postulate that HCs represent a potent source of genetic destabilization with significant consequences that mimic those observed in human diseases, including cancer.

Page generated in 0.1196 seconds