11 |
ELUCIDATION OF MECHANISMS GENERATING 5-HYDROXYMETHYLCYTOSINE (5hmC) IN MAMMALIAN MITOCHONDRIAThakkar, Prashant 01 January 2013 (has links)
DNA methylation plays a pivotal role in governing cellular processes including genomic imprinting, gene expression, and development. Recently, the Tet family of methylcytosine dioxygenases(Tet1, Tet2 and Tet3) was found to catalyze the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), an intermediate in the pathway of DNA demethylation. Tet enzymes catalyze this hydroxylation in a 2-oxoglutarate and Fe2+ dependent manner. We have recently reported significant levels of 5mC and 5hmC modification in immunoprecipitates of mammalian mitochondrial DNA(mtDNA). We provide the first evidence that a DNA Methyltransferase-1 isoform (mtDNMT1) translocates to the mitochondria using an N-terminal mitochondrial targeting sequence. mtDNMT1 expression is upregulated by NRF1 and PGC1α, master regulators of mitochondrial biogenesis and function, as well as by loss of p53. Altered mtDNMT1 expression asymmetrically affects mtDNA transcription. We are now pursuing the role of Tet proteins in generating 5hmC in mtDNA. Using an in vitro enzyme assay, we have successfully detected Tet activity in crude and percoll purified mitochondrial fractions of HCT116 cells. Mitoprot analysis on Tet family predicts that Tet1 may be translocated to the mitochondria. Immunoblot analysis indicates that a band of expected size(235kDa) is present on immunoblots of mitochondrial fraction from mouse embryonic stem cells with an antibody directed against Tet1. This band, however, is not protected from trypsin treatment of mitochondria indicating that Tet1 may not be transported to the mitochondrial matrix. The putative Tet1 mitochondrial targeting sequence (MTS) fails to carry heterologous protein to the mitochondria. Knock out of Tet1 in mouse ES cells also does not alter 5hmC signal in hydroxyMeDIP assay. We now seek to determine if Tet2/Tet3 may be involved in 5hmC generation. In the nucleus, 5hmC serves as an intermediate in the process of DNA demethylation through the combined action of cytidine deaminases and the base excision repair pathway. We plan to investigate if 5hmC holds the same functional significance in the mitochondria as it does in the nucleus. Our overall goal is to understand epigenetic regulation of normal mitochondrial function and changes that occur in diseases involving mitochondrial dysfunction such as ischemic heart disease, neurodegenerative diseases like Parkinsons disease, and cancer.
|
12 |
Functional Significance of mtDNA Cytosine Modification Tested by Genome EditingRobinson, Jason M 01 January 2016 (has links)
The field of epigenetics is gaining popularity and speed, due in part to its capability to answer lingering questions about the root cause of certain diseases. Epigenetics plays a crucial role in regulation of the cell and cell survival, particularly by cytosine methylation. It remains controversial if DNMT’s which facilitate methylation are present in mammalian mitochondria and what the functional significance they may have on modification of mitochondrial DNA. CRISPR-Cas9 technology enabled genome editing to remove the MTS (mitochondrial targeting sequence) from DNMT1 of HCT116 cells, purposefully minimizing effects on nuclear cytosine methylation, while exclusively impacting mitochondrial modification. Removal of the DNMT1 MTS did not completely prevent the localization of this enzyme to the mitochondria according to immunoblot analysis. As well, deletion of the MTS in DNMT1 revealed only a small decline in transcription; not until removal of DNMT3B did we see a two-fold decrease in transcription from mitochondrial protein coding genes. No significant decline in transcription occurred when a DNMT3B knockout also lost the MTS of DNMT1; this study is evidencing that DNMT3B is possibly the more significant methyltransferase in the mitochondria. Our aim from this study and future research is to clearly characterize which enzymes in the mitochondria are controlling cytosine modifications and to understand the mechanistic complexities that accompany cause and consequence of epigenetic modifications.
|
13 |
USING A TRANSGENIC ZEBRAFISH MODEL TO IDENTIFY DOWNSTREAM THERAPEUTIC TARGETS IN HIGH-RISK, NUP98-HOXA9-INDUCED MYELOID DISEASEDeveau, Adam 25 July 2013 (has links)
Acute myeloid leukemia (AML) is a genetic disease whereby sequential genetic
aberrations alter essential white blood cell development leading to differentiation arrest
and hyperproliferation. Pertinent animal models serve as essential intermediaries between
in vitro molecular studies and the use of new agents in clinical trials. We previously
generated a transgenic zebrafish model expressing human NUP98-HOXA9 (NHA9), a
fusion oncogene found in high-risk AML. This expression yields a pre-leukemic state in
both embryos and adults. Using this model, we have identified the overexpression of
dnmt1 and the Wnt/β-catenin pathway as downstream contributors to the
myeloproliferative phenotype. Targeted dnmt1 morpholino knockdown and
pharmacological inhibition with methyltransferase inhibitors rescues NHA9 embryos.
Similarly, inhibition of β-catenin with COX inhibitors partially restores normal
hematopoiesis. Interestingly, concurrent treatment with a histone deacetylase inhibitor
and either a methyltransferase inhibitor or a COX inhibitor, synergistically inhibits the
effects of NHA9 on embryonic hematopoiesis. Thus, we have identified potential
pharmacological targets in NHA9-induced myeloid disease that may offer a highly
efficient therapy with limited toxicity – addressing a major long-term goal of AML
research.
|
14 |
Transcription factor LSF: interactions with protein partners leading to epigenetic regulation and microtubule modificationsChin, Hang Gyeong 24 December 2019 (has links)
Transcription factor LSF is an oncogene in Hepatocellular Carcinoma (HCC). HCC is the sixth most common cancer worldwide and the second highest cause of cancer-related death globally. LSF is overexpressed in human HCC cell lines, compared to normal hepatocytes, and expression levels show significant correlation with the stage and grades of the disease. Current treatments for HCC are insufficient, especially given the frequency of late stage diagnoses. Therefore, it is necessary to understand the molecular mechanism of HCC disease to aid in targeted and effective treatments.
Most investigations of the regulation of LSF activity have focused on its post-translational modifications in response to cellular proliferation and signal transduction. Chromatin modifications and epigenetic mechanisms of LSF-mediated gene regulation had not been investigated. Given that alterations of epigenetic writers or readers have been demonstrated in a large fraction of HCC patient samples, I examined the connection between LSF and epigenetic regulators. In particular, LSF is shown to interact with DNA methyltransferase 1 (DNMT1) and Ubiquitin like with PHD and Ring Finger Domains (UHRF1), with consequences for global DNA methylation and transcription patterns.
Additionally, I identified unexpected, pairwise associations between LSF, histone methyltransferase SET8, and tubulin, both in vitro and in vivo. The interactions were identified by proteomics analyses, co-localization, co-immunoprecipitation, and direct protein-protein interaction studies in vitro. Strikingly, both LSF and SET8 associate with microtubules, leading to the discovery that SET8 methylates α-tubulin at several novel, specific lysines. This suggests parallels between regulation of chromatin by the histone code and regulation of microtubule function by the tubulin code. Surprisingly, LSF enhances tubulin methylation by SET8 in vitro and FQI1, a specific LSF small molecule inhibitor, reduces tubulin methylation. Furthermore, LSF promotes, and FQI1 inhibits, tubulin polymerization in vitro. Taken together, these findings suggest that SET8 is a microtubule-associated methyltransferase that LSF recruits to microtubules to enhance tubulin modification. The results indicate that both LSF and SET8 have cellular implications beyond their roles in gene transcription and histone methylation. Finally, this discovery of the dual functions for LSF and SET8 set up the possibility for connections between epigenetic and cytoskeleton modifications in cancer. / 2021-12-24T00:00:00Z
|
15 |
Dnmt1 Expression is Required for Lens Epithelial Cell SurvivalHorowitz, Evan Richard Kopp 06 August 2015 (has links)
No description available.
|
16 |
Dérégulations épigénétiques suivant une perte temporaire de l’enzyme DNMT1Lemieux, Anthony 12 1900 (has links)
Au cours du développement précoce de l'embryon, une importante vague de reprogrammation épigénétique efface et rétablit les profils de méthylation d’ADN (metADN) à travers le génome. Cependant, des régions spécifiques telles que les gènes à empreinte doivent échapper à cette vague de reprogrammation et maintenir leurs profils de metADN précis par l’activité constante de l’enzyme DNMT1 (ADN méthyltransférase 1) pour assurer le bon développement embryonnaire. En utilisant un modèle de cellules souches embryonnaires (mES) de souris avec une répression inductible de Dnmt1 (Dnmt1tet/tet), nous avons précédemment montré que la perte temporaire de Dnmt1 déclenche la perte permanente des profils de metADN sur les régions à empreinte et régions similaires, ainsi que sur d'autres régions du génome. Nous ne comprenons toujours pas pourquoi certaines séquences génomiques sont incapables de rétablir leurs profils de metADN normaux après la ré-expression de Dnmt1, et comment d'autres marques épigénétiques (e.g. les modifications des histones) sont altérées. Notre hypothèse est qu’un réarrangement erroné des marques d’histones aux régions promotrices, suivant une perte temporaire du maintien de la méthylation d’ADN par DNMT1, empêchera l’expression normale dans les cellules souches embryonnaires de souris. Pour ce faire, nous avons collecté des cellules mES Dnmt1tet/tet avant l'inactivation de Dnmt1, après l'inactivation de Dnmt1, puis après la réactivation complète de l'expression de Dnmt1. Nous avons ensuite utilisé la technique ChIP-Seq pour les marques d'histones (H3K4me3, H3K27me3, H3K27ac, H3K9me3, H3K4me1), celle de RRBS pour la méthylation de l'ADN et la technique de RNA-Seq pour l'expression des gènes. En définissant une liste de 18 166 promoteurs uniques, nous les avons classés en quatre catégories (Actif, Bivalent, Déplété et Réprimé). Nous montrons que l'inactivation de Dnmt1 mène à une dérégulation drastique des marques d'histones à travers les types de promoteurs. Cependant, lors de la réactivation de Dnmt1, la plupart de ces défauts ont été corrigés. Pourtant, dans l’ensemble des catégories, nous observons des promoteurs avec des dysrégulations persistantes des marques d'histones ainsi qu'un nombre significatif de gènes avec une expression différentielle. Dans l'ensemble, nos résultats montrent qu'une absence temporaire de DNMT1 a un impact plus important sur la conservation des profils des marques d'histones et l'expression des gènes que sur le maintien des profils de metADN sur les régions promotrices, dans les cellules souches embryonnaires de souris. Cela suggère que l'absence temporaire de maintien de la méthylation d’ADN déclenche une série d'événements qui conduisent à des dérégulations permanentes de marques d'histones aux promoteurs, lesquelles ne sont pas directement associés aux altérations sous-jacentes de la méthylation d’ADN dans les régions promotrices. / During early embryo development, a major epigenetic reprogramming wave erases and re-establishes DNA methylation (DNAmet) profiles across the genome. However, specific regions such as imprinting loci must escape this reprogramming wave and maintain their precise DNAmet profiles by constant DNMT1 (DNA methyltransferase 1) activity to ensure the proper development. Using a mouse embryonic stem (mES) cell model with inducible Dnmt1 repression (Dnmt1tet/tet), we previously showed that the temporary loss of Dnmt1 triggers the permanent loss of DNAmet profiles on imprinted and imprinted-like regions, as well as on other regions across the genome. We still do not understand why particular genomic sequences are unable to re-establish their normal DNAmet profiles following Dnmt1 re-expression, and how other epigenetic marks (e.g., histone modifications) are altered. Our hypothesis is that an erroneous rearrangement of histone marks on promoter regions following a temporary lack of DNAmet maintenance by DNMT1 will prevent proper gene expression in mouse embryonic stem cells. To test this, we collected mESDnmt1tet/tet cells prior to Dnmt1 inactivation, after Dnmt1 inactivation, and following complete reactivation of Dnmt1 expression. We then performed ChIP-Seq for histone marks (H3K4me3, H3K27me3, H3K27ac, H3K9me3, H3K4me1), RRBS for DNA methylation and RNA-Seq for gene expression. By defining a list of 18 166 unique promoters we categorized them in four categories (Active, Bivalent, Depleted and Repressed). We show that inactivation of Dnmt1 lead to drastic dysregulation of histone marks across types of promoters. However, upon reactivation of Dnmt1, most of these defects were rescued. Still, across categories, we observe promoters with persistent histone mark dysregulations as well as a significant number of associated genes with differential expression. Overall, our results show that a temporary lack of DNMT1 has a greater impact on the conservation of histone mark profiles and gene expression than it has on the maintenance of DNAmet profiles on promoter regions in mouse embryonic stem cells. This suggests that the temporary lack of methylation maintenance triggers a series of events that leads to the permanent dysregulation of histone marks in promoter regions, which are not directly associated with underlying DNA methylation alterations in the promoter regions.
|
17 |
Molecular mechanisms of acquired gemcitabine resistance in pancreatic cancerQin, Li 11 1900 (has links)
Indiana University-Purdue University (IUPUI) / Most pancreatic cancer patients receiving gemcitabine chemotherapy eventually develop resistance to gemcitabine. To improve survival and prognosis of pancreatic cancer patients, better understanding the mechanisms of gemcitabine resistance and discovery of new therapeutic targets are required. In this study, I investigated the molecular mechanisms of acquired gemcitabine resistance using a stepwise gemcitabine-selected pancreatic cancer cell line in comparison to the parental cell line. I found that 14-3-3σ is up-regulated in the drug resistant cell line due to demethylation in its first exon, and the up-regulation of 14-3-3σ gene expression, in turn, contributes to gemcitabine resistance. Intriguingly, I found that demethylation of the 14-3-3σ gene in gemcitabine resistant cells is reversibly regulated by DNMT1 and UHRF1. Furthermore, I found that 14-3-3σ over-expression causes gemcitabine resistance by inhibiting gemcitabine-induced apoptosis and caspase-8 activation possibly via binding to YAP1. The finding of demethylation of the 14-3-3σ gene in gemcitabine resistant cells led to a hypothesis that other genes may also be changed epigenetically following gemcitabine selection. By RRBS (Reduced Representation Bisulfite Sequencing) analysis, 845 genes were found to have altered methylation. One of these genes, PDGFD, was further investigated and found to have reversible demethylation at its promoter region in the drug resistant cells and contribute to gemcitabine resistance possibly via autocrine activation of the STAT3 signaling pathway. Together, these findings not only provide evidence that 14-3-3σ and PDGFD over-expression contribute to acquired gemcitabine resistance and that reversible epigenetic changes may play an important role in acquired gemcitabine resistance, but also demonstrate that the molecular mechanisms of acquired gemcitabine resistance in pancreatic cancer cells are complex and multifaceted.
|
18 |
A complex interplay of regulatory domains controls cell cycle dependent subnuclear localization of DNMT1 and is required for the maintenance of epigenetic informationEaswaran, Hariharan P. 20 April 2004 (has links)
DNA-Methylierung spielt eine wichtige Rolle bei der Kontrolle der Chromatinorganisation und Genregulation in höheren Eukaryoten und muss zusammen mit der genetischen Information in jedem Zellzyklus dupliziert werden. Bei Mammalia wird DNA durch die DNA-Methyltransferase 1 (DNMT1) methyliert, die dabei mit nuklearen Replikationsstellen (RF) assoziiert und so die Erhaltung des Methylierungsmusters mit der Duplikation der DNA verbindet. In dieser Arbeit wurden die Funktion der regulatorischen Sequenzen in der N-terminalen Domäne von DNMT1 bei der Kontrolle ihrer subnuklearen Lokalisierung während des Zellzyklus und die evolutionäre Konservierung dieser Sequenzen, sowie die Mechanismen die eine Assoziation von Proteinen mit RF vermitteln, untersucht. Es konnte gezeigt werden, dass DNMT1 eine dynamische Verteilung im Kern aufweist, die durch regulatorische Sequenzen zellzyklusabhängig gesteuert wird. Um die subnukleare Verteilung von DNMT1 während des Zellzyklus zu untersuchen, wurden RFP-Ligase Fusionsproteine hergestellt, die als Marker für die Identifikation von Zellzyklusstadien in lebenden Zellen dienen. Verschiedene, mit GFP fusionierte DNMT1 Mutanten wurden zusammen mit RFP-Ligase exprimiert und über einen ganzen Zellzyklus hinweg mit 4-dimensionaler Lebendzellmikroskopie verfolgt. Die PBD (PCNA-Bindungsdomäne) bewirkt die Lokalisierung von DNMT1 an RF während der S-Phase, und die TS (targeting sequence) vermittelt die Retention von DNMT1 an spät replizierendem Heterochromatin von der späten S- bis zur frühen G1-Phase. Im Gegensatz dazu scheint die PBHD (Polybromohomologiedomäne) für die Freisetzung von DNMT1 von perizentrischen Regionen während der G1-Phase notwendig zu sein. Eine Überexpression der TS zu Störung dieser Assoziation, senkt die Überlebensrate der Zellen und fördert die Bildung von Mikronuklei sowie die Verschmelzung von zentromerem Heterochromatin. Diese Ergebnisse zeigen eine neue Funktion für die TS bei der Assoziation von DNMT1 mit perizentrischem Heterochromatin von der später S- über die G2-Phase bis hin zur Mitose, die eine wichtige Voraussetzung für die Erhaltung der DNA-Methylierung und Heterochromatinstruktur und -funktion ist. Datenbankanalysen zeigten, dass es sich bei der TS um eine einzigartige Domäne innerhalb der DNMT1 Proteinfamilie handelt. Innerhalb der DNMT1 Familie besitzen nur die DNMT1 Proteine der Metazoen die PBD. Das lässt vermuten, dass die Verknüpfung von Beibehaltung der DNA Methylierung mit der DNA Replikation nur in Metazoen auftritt, während in Pflanzen und Pilzen alternative Mechanismen zur Aufrechterhaltung des Methylierungsmusters, wahrscheinlich vermittelt durch die TS, zur Anwendung kommen. Die evolutionäre Konservierung von Mechanismen, zur Assoziation von Proteine mit RF in Säugerzellen, wurde durch die Analyse der Säugerproteine PCNA, DNA Ligase I und DNMT1 in Drosophila-zellen direkt getestet. Von allen untersuchten Proteinen assoziiert nur PCNA mit RF, während die anderen nur eine diffuse Verteilung innerhalb des Kerns zeigten, obwohl sie eine funktionale PBD enthalten. Überraschenderweise assoziierte auch die Drosophila DNA Ligase I in Säugerzellen nicht aber in Drosophila-zellen mit RF. Diese Ergebnisse weisen auf Unterschiede in der Dynamik und dem Aufbau der Replikationsmaschinerie in diesen entfernt verwandten Organismen hin, was mit der Vergrösserung und höheren Komplexität des Säugergenoms korreliert. / DNA methylation constitutes an essential epigenetic mark controlling chromatin organization and gene regulation in higher eucaryotes, which has to be duplicated together with the genetic information at every cell division cycle. In mammals duplication of DNA methylation is mediated by DNA methyltransferase-1 (DNMT1). It associates with sites of nuclear DNA replication, called replication foci (RF), and thereby couples maintenance of DNA methylation to DNA duplication. In this work, we have analyzed the role of regulatory sequences in the N-terminal domain of DNMT1 in controlling its subnuclear localization throughout the cell cycle, and the evolutionary conservation of these sequences and of the mechanisms that mediate association of proteins with RF. We provide evidence that DNMT1 shows dynamic subnuclear distribution that is controlled by the regulatory sequences depending on the cell cycle stage. To determine the subnuclear distribution of DNMT1 throughout the cell cycle, an RFP-Ligase fusion protein was developed as a marker that allows identification of the cell cycle stage in live cells. Various DNMT1 mutants fused to GFP were coexpressed with RFP-Ligase and imaged by 4-dimensional live cell microscopy during an entire cell cycle. The PBD (PCNA binding domain) drives the localization of DNMT1 at RF throughout S phase and the TS (targeting sequence) mediates retention of DNMT1 only at the late replicating pericentric heterochromatin from late-S phase until early-G1. In contrast, the PBHD (polybromo homology domain) seems to be required for unloading DNMT1 from the pericentric regions in G1. Overexpression of the TS to interfere with this association lowers cell viability and induces the formation of micronuclei and coalescence of centromeric heterochromatin. These results bring forth a novel function of the TS in mediating association of DNMT1 with pericentric heterochromatin from late-S phase through G2 until mitosis, which is important for maintenance of DNA methylation, and heterochromatin structure and function. Database searches indicate that the TS is a domain unique to the DNMT1 family of proteins. Amongst the DNMT1 family, only the metazoan DNMT1 proteins have the PBD. This suggests that coupling of maintenance of DNA methylation with DNA replication occurs only in metazoans, while plants and fungi have alternative mechanisms that maintain DNA methylation patterns, probably mediated by the TS. The evolutionary conservation of the mechanisms by which proteins associate with RF in mammalian cells was directly tested by analyzing the ability of mammalian replication proteins PCNA and DNA Ligase I as well as DNMT1 to associate with RF in Drosophila cells. Of all the proteins tested, only PCNA associated with RF while the others showed diffused nuclear distribution although they contain a functional PBD. Surprisingly, Drosophila DNA Ligase I associates with RF in mammalian but not in Drosophila cells. These results suggest differences in the dynamics and organization of the replication machinery in these distantly related organisms, which correlates with the increased size and complexity of mammalian genomes.
|
19 |
Perturbation des profils épigénétiques suite à une perte temporaire du maintien de la méthylation de l’ADN dans les cellules embryonnairesBertrand-Lehouillier, Virginie 08 1900 (has links)
Chez l’embryon précoce, une vague de reprogrammation majeure survient et permet de
réinitialiser les profils de méthylation d’ADN de l’ensemble du génome. Lors de cette
reprogrammation, les régions différentiellement méthylées (DMRs) (i.e., gènes
empreintes) doivent toutefois être protégées de la déméthylation par une action continue
de DNMT1 (Méthyltransférase d’ADN 1) pour assurer le développement adéquat de
l’épigénome du fœtus. Sachant que l’induction d’une perte temporaire d’expression de
Dnmt1 dans un modèle de cellules souches embryonnaires de souris entraîne la perte
permanente des patrons de méthylation d’ADN aux régions DMRs et DMR-like, mon
projet de recherche vise à comprendre pourquoi ces régions sont incapables de retrouver
leurs patrons de méthylation d’ADN initiaux. Notre hypothèse est qu’une adaptation
épigénétique (i.e. réarrangement erroné de certaines modifications d’histones) survient aux
régions régulatrices de l’expression des gènes (promoteurs et enhancers) et empêche
directement ou indirectement le retour au paysage épigénétique initial aux régions
affectées. L’objectif du projet est donc de précisément définir comment la perte temporaire
de Dnmt1 remodèle le paysage épigénétique aux régions promotrices (H3K4me3,
H3K27me3, H3K27ac, H3K4me1, H3K9me3, méthylation d’ADN) et comment les
adaptations épigénétiques sont associées avec des changements de l’expression des gènes
(ex : gènes des régions DMRs et DMRs-like). / In early embryos, a major reprogramming wave occurs and permits to reset DNA
methylation profiles genome-wide. During the reprogramming wave, differentially
methylated regions (DMRs) (imprinted genes) must be protected from demethylation by
the continuous action of DNMT1 (DNA Methyltransferase 1) to ensure the proper
development of the foetal epigenome. As the induction of a temporary loss of Dnmt1
expression in a mouse embryonic stem cell model leads to permanent losses of DNA
methylation at DMR and DMR-like regions, my project aims to understand why those
regions are unable to re-establish their initial DNA methylation patterns. Our hypothesis is
that an epigenetic adaptation (erroneous rearrangement of certain histone modifications)
occurs at regulatory regions controlling gene expression (promoters and enhancers) and
impede directly or indirectly the affected regions to return to their initial epigenetic
landscape. The goal of this project is thus to define how the temporary loss of Dnmt1
remodels the epigenetic landscape at promoter regions (H3K4me3, H3K27me3, H3K27ac,
H3K4me1, H3K9me3, DNA methylation) and how the epigenetic adaptations are
associated with changes in gene expression (ex: genes in DMR and DMR-like regions).
|
20 |
Structure-function analysis of CXXC finger protein 1Tate, Courtney Marie 26 January 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This dissertation describes structure-function studies of CXXC finger protein 1 (Cfp1), encoded by the CXXC1 gene, in order to determine the functional significance of Cfp1 protein domains and properties. Cfp1 is an important regulator of chromatin structure and is essential for mammalian development. Murine embryonic stem (ES) cells lacking Cfp1 (CXXC1-/-) are viable but demonstrate a variety of defects, including hypersensitivity to DNA damaging agents, reduced plating efficiency and growth, decreased global and gene-specific cytosine methylation, failure to achieve in vitro differentiation, aberrant histone methylation, and subnuclear mis-localization of Setd1A, the catalytic component of a histone H3K4 methyltransferase complex, and tri-methylated histone H3K4 (H3K4me3) with regions of heterochromatin. Expression of wild-type Cfp1 in CXXC1-/- ES cells rescues the observed defects, thereby providing a convenient method to assess structure-function relationships of Cfp1. Cfp1 cDNA expression constructs were stably transfected into CXXC1-/- ES cells to evaluate the ability of various Cfp1 fragments and mutations to rescue the CXXC1-/- ES cell phenotype.
These experiments revealed that expression of either the amino half of Cfp1 (amino acids 1-367) or the carboxyl half of Cfp1 (amino acids 361-656) is sufficient to rescue the hypersensitivity to DNA damaging agents, plating efficiency, cytosine and histone methylation, and differentiation defects. These results reveal that Cfp1 contains redundant functional domains for appropriate regulation of cytosine methylation, histone methylation, and in vitro differentiation. Additional studies revealed that a point mutation (C169A) that abolishes DNA-binding activity of Cfp1 ablates the rescue activity of the 1-367 fragment, and a point mutation (C375A) that abolishes the interaction of Cfp1 with the Setd1A and Setd1B histone H3K4 methyltransferase complexes ablates the rescue activity of the 361-656 Cfp1 fragment. In addition, introduction of both point mutations (C169A and C375A) ablates the rescue activity of the full-length Cfp1 protein. These results indicate that retention of either DNA-binding or Setd1 association of Cfp1 is required to rescue hypersensitivity to DNA damaging agents, plating efficiency, cytosine and histone methylation, and in vitro differentiation. In contrast, confocal immunofluorescence analysis revealed that full-length Cfp1 is required to restrict Setd1A and histone H3K4me3 to euchromatic regions.
|
Page generated in 0.0437 seconds