• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 12
  • 9
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Turn all the lights off: Bright- and dark-field second-harmonic microscopy to select contrast mechanisms for ferroelectric domain walls

Hegarty, Peter A., Beccard, Henrik, Eng, Lukas M., Rüsing, Michael 16 May 2024 (has links)
Recent analyses by polarization resolved second-harmonic (SH) microscopy have demonstrated that ferroelectric (FE) domain walls (DWs) can possess non-Ising wall characteristics and topological nature. These analyses rely on locally analyzing the properties, directionality, and magnitude of the second-order nonlinear tensor. However, when inspecting FE DWs with SH microscopy, a manifold of different effects may contribute to the observed signal difference between domains and DWs, i.e., far-field interference, Čerenkov-type phase-matching (CSHG), and changes in the aforementioned local nonlinear optical properties. They all might be present at the same time and, therefore, require careful interpretation and separation. In this work, we demonstrate how the particularly strong Čerenkov-type contrast can selectively be blocked using dark- and bright-field SH microscopy. Based on this approach, we show that other contrast mechanisms emerge that were previously overlayed by CSHG but can now be readily selected through the appropriate experimental geometry. Using the methods presented, we show that the strength of the CSHG contrast compared to the other mechanisms is approximately 22 times higher. This work lays the foundation for the in-depth analysis of FE DW topologies by SH microscopy.
22

Développement des procédés de mesure de déphasage optique : applications aux non linéarités induites par effet Kerr dans certaines molécules organiques / Development of optical phase shift measurement methods : applications to non-linearities induced by the Kerr effect in certain organic molecules

Cassagne, Christophe 19 April 2018 (has links)
Notre étude concerne la mesure du déphasage optique non linéaire (NL) d’ordre trois. Deux catégories de procédés seront abordées : i) la technique interférométrique à décalage de phase qui permet la caractérisation de la phase avec une bonne résolution spatiale, ce qui est crucial pour un faisceau focalisé dans le milieu non linéaire. Cette technique utilise le critère des moindres carrés associé à plusieurs interférogrammes. Mise en œuvre à l'aide d'un modulateur spatial de lumière, elle fournit un calibrage pratique pour chaque déphasage considéré. La fiabilité de la méthode proposée est vérifiée par comparaison directe avec la méthode de transformation de Fourier ; ii) les méthodes innovantes de type Z-scan combinées avec un montage imageur. Elles seront ici appliquées aux mesures des coefficients NL d’ordre trois et d’ordres supérieurs. Nous montrerons que la flexibilité d’emploi d'une caméra CCD permet un meilleur pointage et suivi en temps réel du faisceau. Enfin nous nous intéresserons au montage Dark-field Z-scan bénéficiant des avantages de la microscopie à champ sombre à fort contraste. Ces améliorations ouvrent potentiellement un nouveau champ d’exploration microscopique pour l’investigation et la cartographie des effets non linéaires. / Our study concerns the measurement of the nonlinear (NL) optical phase shift of order three. Two categories of methods will be addressed: i) the phaseshift interferometric technique that allows phase characterization with good spatial resolution, which is crucial for a focused beam in the non-linear medium. This technique uses the least squares criterion associated with several interferograms. Implemented using a spatial light modulator, it provides a practical calibration for each phase shift considered. The reliability of the proposed method is verified by direct comparison with the Fourier transformation method; ii) innovative Z-scan methods combined with an imager assembly. They will be applied here to measurements of the NL coefficients of order three and higher. We will show that the flexibility of using a CCD camera allows for better pointing and real-time tracking of the beam. Finally, we will focus on the Dark-field Z-scan setup, which benefits from the advantages of high contrast dark field microscopy. These improvements potentially open up a new field of microscopic exploration for the investigation and mapping of non-linear effects.
23

Quantitative analysis of core-shell nanoparticle catalysts by scanning transmission electron microscopy

Haibo, E. January 2013 (has links)
This thesis concerns the application of aberration corrected scanning transmission electron microscopy (STEM) to the quantitative analysis of industrial Pd-Pt core-shell catalyst nanoparticles. High angle annular dark field imaging (HAADF), an incoherent imaging mode, is used to determine particle size distribution and particle morphology of various particle designs with differing amounts of Pt coverage. The limitations to imaging, discrete tomography and spectral analysis imposed by the sample’s sensitivity to the beam are also explored. Since scattered intensity in HAADF is strongly dependent on both thickness and composition, determining the three dimensional structure of a particle and its bimetallic composition in each atomic column requires further analysis. A quantitative method was developed to interpret single images, obtained from commercially available microscopes, by analysis of the cross sections of HAADF scattering from individual atomic columns. This technique uses thorough detector calibrations and full dynamical simulations in order to allow comparison between experimentally measured cross section to simulated ones and is shown to be robust to many experimental parameters. Potential difficulties in its applications are discussed. The cross section approach is tested on model materials before applying it to the identification of column compositions of core-shell nanoparticles. Energy dispersive X-ray analysis is then used to provide compositional sensitivity. The potential sources of error are discussed and steps towards optimisation of experimental parameters presented. Finally, a combination of HAADF cross section analysis and EDX spectrum imaging is used to investigate the core-shell nanoparticles and the results are correlated to findings regarding structure and catalyst activity from other techniques. The results show that analysis by cross section combined with EDX spectrum mapping shows great promise in elucidating the atom-by-atom composition of individual columns in a core-shell nanoparticle. However, there is a clear need for further investigation to solve the thickness / composition dualism.
24

Transmission Electron Microscopy of Graphene and Hydrated Biomaterial Nanostructures : Novel Techniques and Analysis

Akhtar, Sultan January 2012 (has links)
Transmission Electron Microscopy (TEM) on light element materials and soft matters is problematic due to electron irradiation damage and low contrast. In this doctoral thesis techniques were developed to address some of those issues and successfully characterize these materials at high resolution. These techniques were demonstrated on graphene flakes, DNA/magnetic beads and a number of water containing biomaterials. The details of these studies are given below. A TEM based method was presented for thickness characterization of graphene flakes. For the thickness characterization, the dynamical theory of electron diffraction is used to obtain an analytical expression for the intensity of the transmitted electron beam as a function of thickness. From JEMS simulations (experiments) the absorption constant λ in a low symmetry orientation was found to be ~ 208 nm (225 ± 9 nm). When compared to standard techniques for thickness determination of graphene/graphite, the method has the advantage of being relatively simple, fast and requiring only the acquisition of bright-field (BF) images. Using the proposed method, it is possible to measure the thickness change due to one monolayer of graphene if the flake has uniform thickness over a larger area. A real-space TEM study on magnetic bead-DNA coil interaction was conducted and a statistical analysis of the number of beads attached to the DNA-coils was performed. The average number of beads per DNA coil was calculated around 6 and slightly above 2 for samples with 40 nm and 130 nm beads, respectively. These results are in good agreement with magnetic measurements. In addition, the TEM analysis supported an earlier hypothesis that 40 nm beads are preferably attached interior of the DNA-coils while 130 nm beads closer to the exterior of the coils. A focused ion-beam in-situ lift-out technique for hydrated biological specimens was developed for cryo-TEM. The technique was demonstrated on frozen Aspergillus niger spores which were frozen with liquid nitrogen to preserve their cellular structures. A thin lamella was prepared, lifted out and welded to a TEM grid. Once the lamella was thinned to electron transparency, the grid was cryogenically transferred to the TEM using a cryo-transfer bath. The structure of the cells was revealed by BF imaging. Also, a series of energy filtered images was acquired and C, N and Mn elemental maps were produced. Furthermore, 3 Å lattice fringes of the underlying Al support were successfully resolved by high resolution imaging, confirming that the technique has the potential to extract structural information down to the atomic scale. The experimental protocol is ready now to be employed on a large variety of samples e.g. soft/hard matter interfaces.
25

Ortsaufgelöste Messung der Gitterverspannungen in Halbleitern mittels Dunkelfeld off-axis Elektronenholographie

Sickmann, Jan 18 February 2015 (has links) (PDF)
Die Dunkelfeld off-axis Elektronenholographie (DFH) im Transmissionselektronenmikroskop ist eine nanoskalige Interferometriemethode, die es erlaubt, eine ausgewählte Beugungswelle eines Kristalls aufzuzeichnen und anschließend als zweidimensionale Amplituden- und Phasenverteilung zu rekonstruieren. Da sich aus dem Gradientenfeld der Phasenverteilung geometrische Verzerrungen des Kristallgitters bestimmen lassen, ermöglicht die DFH, Deformationsfelder in Kristallen zu vermessen. Damit eröffnen sich der Halbleiterindustrie vielversprechende Analysemöglichkeiten von lokalen mechanischen Verspannungen in Halbleiterkristallen insbesondere im Kanalbereich von Transistoren. Dabei verspricht die DFH eine höhere Ortsauflösung als rasternde, auf Elektronenbeugung mit möglichst fein fokussierten Elektronensonden basierende Methoden wie Nanobeugung. Jedoch steht die DFH als Analysemethode für mechanische Verspannungen bisher noch nicht standardmäßig zur Verfügung. Forschungs- und Entwicklungsbedarf besteht insbesondere hinsichtlich der Anpassung der Methodik auf kompliziertere Halbleiterstrukturen. Am Beispiel des Elementargitters wird demonstriert, wie einerseits die Gitterverzerrung die Phase der Beugungswelle moduliert, und wie andererseits aus dem Gradient der Phase diese Deformation wieder rekonstruiert werden kann. Zusätzlich wird die Modulation der Beugungswelle mit Hilfe eines erst kürzlich veröffentlichten analytischen Modells für den Zweistrahlfall erläutert. Spezielle Anpassungen der DFH im TEM erlauben, die geometrische Phase entweder mit 3...5 nm Lateralauflösung bei 200 nm breitem Gesichtsfeld oder mit 8...10 nm Lateralauflösung bei 800 nm breitem Gesichtsfeld aufzuzeichnen. Da die Deformationskarte durch numerische Ableitung der geometrischen Phase bestimmt wird, hängt die Signalauflösung der Deformationsmessung direkt von der Signalqualität in der rekonstruierten geometrischen Phase ab. Da die Ableitung das Rauschen verstärkt, werden verschiedene Strategien zur Rauschminderung und Signalverbesserung untersucht, u.a. werden Methoden zur Rauschfilterung eines DF-Hologramms oder zur Glättung der Deformationskarte vorgestellt. Durch Rekonstruktion einer gemittelten geometrischen Phase aus einer Dunkelfeldhologrammserie lassen sich Deformationen E mit einer Messabweichung von lediglich Delta_E=+/-0,05% bestimmen. Bei Aufzeichnung und Rekonstruktion der geometrischen Phase treten eine Reihe von Artefakten auf, die durch Fresnelsche Beugungssäume, defekte Detektorpixel sowie Verzeichnungen durch Projektivlinsen und Detektoroptik hervorgerufen werden. Da sie die Bestimmung der Deformationskarte erschweren, werden geeignete Methoden zur Vermeidung oder Korrektur vorgestellt. Die Präparation von TEM-Lamellen mit fokussiertem Ionenstrahl (FIB) verursacht Schädigungen der Probenoberfläche. Durch Vergleiche von DFH-Messungen mit Finite-Elemente-Simulationen wird gezeigt, dass die auf Oberflächenrelaxation zurückzuführenden Abweichungen vom simulierten Deformationszustand bei 120...160 nm Lamellendicke bis zu 10% betragen können. Präparationsbedingte lokale Dickenvariationen (Curtaining) können zu ähnlich großen Abweichungen führen. Anwendbarkeit und Funktionalität der DFH werden an modernen Halbleiterstrukturen untersucht. Die Vermessung einer verspannten SiGe-Schicht auf Si-Substrat zeigt eine sehr gute Übereinstimmung mit einem analytischen Modell. Die Abweichung beträgt ca. 10% und kann durch Oberflächenrelaxation an der SiGe/Si-Grenzfläche erklärt werden. Mittels SiGe an Source und Drain verspannte Transistoren dienen als Testobjekte für einen Vergleich von DFH und Nanobeugung. Beide Methoden liefern identische Ergebnisse. Der Vorteil der DFH besteht jedoch darin, das Deformationsfeld vollständig in Form einer zweidimensionalen Karte abzubilden, anstatt wie die Nanobeugung lediglich einzelne Profilschnitte zu messen. Die Deformationsmessung an SOI-Strukturen wird durch die leicht unterschiedliche Kristallorientierung (Miscut) zwischen SOI und Si-Substrat, das als Referenzbereich dient, erschwert. Die Deformationswerte im SOI zeigen ein Offset von 0,2% Dehnung gegenüber dem Si-Substrat. Der Miscut zwischen SOI und Si-Substrat kann zu 0,3°bestimmt werden. Für Transistoren mit tensiler Deckschicht gelingt es, Dehnungen von +0,3% in perfekter Übereinstimmung mit FE-Simulationen zu messen. Bei Transistoren, bei denen gleichzeitig eine kompressive Deckschicht und SiGe an Source und Drain eingesetzt werden, gelingt es mittels DFH, Stauchungen von -(0,1+/-0,05)% im Transistorkanal 5 nm unterhalb des Gateoxids nachzuweisen. / Dark-field off-axis electron holography (DFH) in a transmission electron microscope is based on the interference of a diffracted wave emanating from adjacent strained and unstrained sample areas to form a dark-field hologram, from which the phase of the diffracted wave can be reconstructed. Since the gradient of the phase parallel to the diffraction vector yields the lattice strain in this direction, a two-dimensional strain map can be derived. Therefore, DFH is considered to be a promising technique for strain metrology by semiconductor industry, especially for local strain measurements in the transistor channel. In particular, DFH offers better lateral resolution than scanning TEM-techniques based on electron diffraction with small focused electron probe like nano-beam diffraction. However, DFH is not yet available as a standard technique for strain metrology. Research is still needed to apply the method to complex devices. Using the example of a strained cosine lattice the phase modulation due to lattice distortions is discussed. In addition, modulation of the diffracted wave is approximated in two-beam diffraction condition. Adjustments of DFH in the TEM provide strain measurements with 3...5 nm lateral resolution at 200 nm field of view or 8...10 nm lateral resolution at 800 nm field of view. During recording and reconstruction of dark-field holograms several artifacts appear, for instance Fresnel diffraction, defective detector pixels, distortions of projective lenses or detector optics. Since they limit strain evaluation, suitable methods to either avoid or correct these artifacts are discussed. Sample preparation with focused ion beam (FIB) causes surface damage. Comparing DFH results with finite-element simulations reveals a deviation of 10% between simulation and experiment at 120...160 nm sample thickness due to surface relaxation. FIB-induced thickness variations (curtaining) lead to comparable deviations. Applicability of DFH for strain metrology is analyzed on several modern device structures. Strain measurements of SiGe-layers on Si-substrate correspond quite well with an analytic model. A residual deviation of 10% can be explained by surface relaxation close to the SiGe/Si-interface. Transistors strained by SiGe-source/drain serve as test objects for a comparison of DFH with nano-beam diffraction. Though both techniques reveal identical results, DFH is able to map the complete two-dimensional strain field, whereas nano-beam diffraction can only provide single line-scans. Strain mapping in silicon-on-insulator (SOI) is limited by the different crystal orientation (miscut) between the SOI layer and the Si-substrate, which serves as reference. Strain values in the SOI show an off-set of 0.2% in comparison to the unstrained Si-substrate. The miscut between SOI and Si-substrate is estimated to 0.3°. In transistor devices with tensile stress overlayers DFH is able to measure +0.3% tensile strain in excellent agreement with finite-element simulations. In devices with compressive overlayers and SiGe-source/drain a strain value of only -(0.1+/-0.05)% can be determined in the transistor channel 5nm beneath the gate oxide.
26

Electrical and chemical mapping of silicon pn junctions using energy-filtered X-ray PhotoElectron Mission Microscopy / Electrical and chemical mapping of silicon pn junctions using energy-filtered X-ray photoelectron emission microscopy

Lavayssière, Maylis 02 March 2011 (has links)
Ce mémoire de thèse traite de l'étude de jonctions pn silicium planaires, réalisées par épitaxie localisée, avec un nouveau type de microscopie à émission de photoélectrons (XPEEM) filtré en énergie. L'objectif est d'améliorer notre compréhension des facteurs influençant l'imagerie XPEEM de jonctions modèles avec une perspective à plus long terme d'application de cette technique aux cas réels.Sur les trois types de jonction réalisées présentant des champs électriques variables (P+/P, N+/P, P+/N), nous avons d'abord mis en œuvre un procédé de passivation en trois étapes afin de se rapprocher de conditions en bandes plates en surface. Ce procédé nous a permis d'étudier la position des niveaux électroniques de part et d'autre des jonctions grâce à une imagerie en XPEEM spectroscopique avec électrons secondaires (travail de sortie local), électrons de cœur Si 2p et bande de valence, avec à la fois avec des sources X de laboratoire et le rayonnement synchrotron. Un mécanisme de contraste des images en électrons de cœur dû à la toute première couche atomique de surface a été montré. Ensuite, nous avons mis en évidence le rôle du champ électrique au niveau de la zone de déplétion des jonctions qui décale la position apparente de cette dernière dans l'image XPEEM. Nous avons comparé les résultats expérimentaux avec des simulations (logiciel SIMION) afin d'estimer son influence sur les conditions d'imagerie. Enfin, nous avons étudié l'impact de la technique d'imagerie en champ sombre sur la localisation de la jonction réelle au niveau de la surface de l'échantillon. / This thesis addresses the problem of imaging of model systems planar silicon pn junctions, fabricated by localized epitaxy, using the novel energy-filtered X-ray PhotoElectron Emission Microscope (XPEEM). The objective is to improve the understanding of the phenomena influencing the XPEEM images of the junctions, with as long-term perspective, a possible application of this method in a complementary way to existing techniques of 2D dopant mapping.The studies were carried out over three types of junction realized to this purpose and presenting variable electrical field (P+/P, N+/P, P+/N). We firstly developed and optimized a passivation protocol in three-steps which yielded a surface close to flat band conditions. This process allowed us to deduce band alignments as a function of doping level and type on both side of the junction thanks to spectroscopic XPEEM imaging of secondary electrons (to determine local work function), Si 2p core-level and valence band with both laboratory photon sources and synchrotron radiation. Contrast in core-level imaging due to the first atomic layer of the surface was also shown.Then, we highlighted the role of the lateral electric field across the depletion zone of a pn junction which shifts the apparent position of the latter in PEEM imaging. We compared experimental results and simulations performed with SIMION software to estimate the influence of pn junctions on PEEM imaging. Dark field imaging of the junction was also simulated. Comparison with the experimental results showed that it can be used to localize the real junction.
27

Design et fabrication de meta-atomes plasmoniques à partir de nanoparticules à patchs / Design and synthesis of plasmonic meta-atoms from patchy particles

Chomette, Cyril 13 November 2015 (has links)
Les méta-matériaux sont une nouvelle classe de matériaux composites artificiels quiprésentent des propriétés inédites. Ils sont typiquement sous divisés en unité appelées méta-atomes.Un design approprié de ces méta-atomes, architecturés à l’échelle nanométrique, permet d’induire despropriétés aussi extraordinaires qu’un indice de réfraction négatif. Dans ce contexte, nous avonsdéveloppé des particules à patchs, capable de développer des interactions selon des directionsprédéterminées. Des clusters multipodiques fait de ces particules (diélectrique) entourées d’un nombrecontrôlé de satellites plasmoniques (or) ont été développés. Nous nous sommes focalisés sur desclusters isotropes, dérivant de géométries tétraédriques, octaédriques et icosaédriques (trois des cinqsolides de Platon). Pour cela, nous avons utilisé des clusters silice/polystyrène, obtenus parpolymérisation ensemencée en émulsion, qui ont servi de préformes. Ils ont ainsi permis d’obtenir desparticules dont les patchs sont en fait des fossettes au fond desquelles subsiste un résidu de chaînespolystyrène greffées. En modifiant chimiquement ces chaînes, nous avons permis soit l’accrochage aufond de ces fossettes de colloïdes d’or puis leur croissance, soit l’accostage de satellites de silice surlesquels nous avons ensuite fait croître une coquille d’or. La seconde voie à offert un meilleur contrôlede la morphologie des clusters et notamment de la distance entre les satellites d’or (quelquesnanomètres) qui est primordiale pour assurer un couplage plasmonique optimal. Les propriétés desclusters obtenus ont été modélisées et mesurées. / Metamaterials are a novel class of artificial composite materials, typically made of subunit called meta-atoms and exhibiting unusual properties. Such meta-atoms, have to be architecturedat the nanometric level, to induce as extraordinary properties as a negative refractive index. In thiscontext, we developed patchy particles, capable to create interactions along predetermined directions.Multipodic clusters made of those (dielectric) particles surrounded by a controlled number ofplasmonic satellites (gold) were developed. We focused on isotropic clusters deriving fromtetrahedral, octahedral and icosahedral geometry (three of the fifth Platonic solids). For that purpose,we used silica/polystyrene clusters, obtained from seeded emulsion polymerization, as template. Byderiving those clusters, patchy particles bearing dimples containing grafted residual polystyrene chainswere obtained. By chemically deriving those chains, we explored two synthetic pathways, thedecoration of the dimples with gold colloids subsequently grown or the anchoring of silica satellitesonto which gold shells were subsequently grown. The second one was prove to offer a better controlover the cluster morphology as well as the inter-satellites gap (few nanometer) which is pivotal toensure an optimal plasmonic coupling. Then, the optical properties of the as obtained clusters weresimulated and measured.
28

Programovatelná osvětlovací soustava pro optický mikroskop / Programmable illuminating system for an optical microscope

Lošťák, Martin January 2008 (has links)
A programmable illuminating system (PIS) uses a commercial multimedia projector together with a suitable optical relay system in order to illuminate specimens under microscope with transmitted light. The theoretical part of the diploma thesis describes some methods used in the optical transmission microscopy. All of these methods employ physical masks placed in the condenser front focal plane. In the case of the traditional methods the masks are used to enhance contrast (e.g. dark-field illumination) and resolution (oblique illumination). One of the methods (a condenser with rotating aperture) provides the information about the three-dimensionality of the specimen. The next part of the thesis contains the theory and the basic classification of the illuminating systems used in the optical transmission microscopy. An optical and mechanical design of the optical relay system used for PIS is introduced. The experimental part shows the results made with two different PIS arrangements. It was shown on two different specimens that the PIS provides the same illumination as the classical methods. It was also proved that the PIS can simulate the rotating aperture in the condenser front focal plane and thus to give the information about the three-dimensionality of the specimen. Some new static and dynamic illuminating methods were introduced.
29

Ortsaufgelöste Messung der Gitterverspannungen in Halbleitern mittels Dunkelfeld off-axis Elektronenholographie

Sickmann, Jan 18 December 2014 (has links)
Die Dunkelfeld off-axis Elektronenholographie (DFH) im Transmissionselektronenmikroskop ist eine nanoskalige Interferometriemethode, die es erlaubt, eine ausgewählte Beugungswelle eines Kristalls aufzuzeichnen und anschließend als zweidimensionale Amplituden- und Phasenverteilung zu rekonstruieren. Da sich aus dem Gradientenfeld der Phasenverteilung geometrische Verzerrungen des Kristallgitters bestimmen lassen, ermöglicht die DFH, Deformationsfelder in Kristallen zu vermessen. Damit eröffnen sich der Halbleiterindustrie vielversprechende Analysemöglichkeiten von lokalen mechanischen Verspannungen in Halbleiterkristallen insbesondere im Kanalbereich von Transistoren. Dabei verspricht die DFH eine höhere Ortsauflösung als rasternde, auf Elektronenbeugung mit möglichst fein fokussierten Elektronensonden basierende Methoden wie Nanobeugung. Jedoch steht die DFH als Analysemethode für mechanische Verspannungen bisher noch nicht standardmäßig zur Verfügung. Forschungs- und Entwicklungsbedarf besteht insbesondere hinsichtlich der Anpassung der Methodik auf kompliziertere Halbleiterstrukturen. Am Beispiel des Elementargitters wird demonstriert, wie einerseits die Gitterverzerrung die Phase der Beugungswelle moduliert, und wie andererseits aus dem Gradient der Phase diese Deformation wieder rekonstruiert werden kann. Zusätzlich wird die Modulation der Beugungswelle mit Hilfe eines erst kürzlich veröffentlichten analytischen Modells für den Zweistrahlfall erläutert. Spezielle Anpassungen der DFH im TEM erlauben, die geometrische Phase entweder mit 3...5 nm Lateralauflösung bei 200 nm breitem Gesichtsfeld oder mit 8...10 nm Lateralauflösung bei 800 nm breitem Gesichtsfeld aufzuzeichnen. Da die Deformationskarte durch numerische Ableitung der geometrischen Phase bestimmt wird, hängt die Signalauflösung der Deformationsmessung direkt von der Signalqualität in der rekonstruierten geometrischen Phase ab. Da die Ableitung das Rauschen verstärkt, werden verschiedene Strategien zur Rauschminderung und Signalverbesserung untersucht, u.a. werden Methoden zur Rauschfilterung eines DF-Hologramms oder zur Glättung der Deformationskarte vorgestellt. Durch Rekonstruktion einer gemittelten geometrischen Phase aus einer Dunkelfeldhologrammserie lassen sich Deformationen E mit einer Messabweichung von lediglich Delta_E=+/-0,05% bestimmen. Bei Aufzeichnung und Rekonstruktion der geometrischen Phase treten eine Reihe von Artefakten auf, die durch Fresnelsche Beugungssäume, defekte Detektorpixel sowie Verzeichnungen durch Projektivlinsen und Detektoroptik hervorgerufen werden. Da sie die Bestimmung der Deformationskarte erschweren, werden geeignete Methoden zur Vermeidung oder Korrektur vorgestellt. Die Präparation von TEM-Lamellen mit fokussiertem Ionenstrahl (FIB) verursacht Schädigungen der Probenoberfläche. Durch Vergleiche von DFH-Messungen mit Finite-Elemente-Simulationen wird gezeigt, dass die auf Oberflächenrelaxation zurückzuführenden Abweichungen vom simulierten Deformationszustand bei 120...160 nm Lamellendicke bis zu 10% betragen können. Präparationsbedingte lokale Dickenvariationen (Curtaining) können zu ähnlich großen Abweichungen führen. Anwendbarkeit und Funktionalität der DFH werden an modernen Halbleiterstrukturen untersucht. Die Vermessung einer verspannten SiGe-Schicht auf Si-Substrat zeigt eine sehr gute Übereinstimmung mit einem analytischen Modell. Die Abweichung beträgt ca. 10% und kann durch Oberflächenrelaxation an der SiGe/Si-Grenzfläche erklärt werden. Mittels SiGe an Source und Drain verspannte Transistoren dienen als Testobjekte für einen Vergleich von DFH und Nanobeugung. Beide Methoden liefern identische Ergebnisse. Der Vorteil der DFH besteht jedoch darin, das Deformationsfeld vollständig in Form einer zweidimensionalen Karte abzubilden, anstatt wie die Nanobeugung lediglich einzelne Profilschnitte zu messen. Die Deformationsmessung an SOI-Strukturen wird durch die leicht unterschiedliche Kristallorientierung (Miscut) zwischen SOI und Si-Substrat, das als Referenzbereich dient, erschwert. Die Deformationswerte im SOI zeigen ein Offset von 0,2% Dehnung gegenüber dem Si-Substrat. Der Miscut zwischen SOI und Si-Substrat kann zu 0,3°bestimmt werden. Für Transistoren mit tensiler Deckschicht gelingt es, Dehnungen von +0,3% in perfekter Übereinstimmung mit FE-Simulationen zu messen. Bei Transistoren, bei denen gleichzeitig eine kompressive Deckschicht und SiGe an Source und Drain eingesetzt werden, gelingt es mittels DFH, Stauchungen von -(0,1+/-0,05)% im Transistorkanal 5 nm unterhalb des Gateoxids nachzuweisen.:1 Einleitung 2 Grundlagen der Elastizitätstheorie 2.1 Der Verzerrungstensor 2.2 Der Spannungstensor 2.3 Das Hooke’sche Gesetz 2.4 Zusammenfassung 3 Mechanisch verspannte Transistoren 3.1 Der MOSFET 3.2 Techniken zur Spannungserzeugung 3.2.1 SiGe- und Si:C-Source/Drain-Gebiete 3.2.2 Verspannte Deckschichten 3.3 Mechanische Verspannung und Ladungsträgerbeweglichkeit 3.4 Zusammenfassung 4 Beugungswelle und geometrische Phase 4.1 Transmissionselektronenmikroskopie 4.1.1 Aufbau eines Transmissionselektronenmikroskops 4.1.2 Hellfeld- und Dunkelfeldabbildung 4.2 Beugung am Kristallgitter 4.2.1 Bragg- und Laue-Beugungsbedingung 4.2.2 Ewaldkugel 4.2.3 Beugungswelle 4.3 Geometrische Phase 4.3.1 Geometrische Phase in kinematischer Näherung 4.3.2 Veranschaulichung der geometrischen Phase am Elementargitter 4.3.3 Grenzen der geometrische Phase 4.3.4 Geometrische Phase bei dynamischer Streuung 4.3.4.1 Streuung im deformierten Kristall 4.3.4.2 Zweistrahlfall im deformierten Kristall 4.3.4.3 Analytische Lösung für z-unabhängige Verschiebung 4.3.4.4 Näherungslösung für z-abhängige Verschiebung 4.3.4.5 Konsequenzen für die Deformationsmessung 4.4 Zusammenfassung 5 Spezialverfahren der Dunkelfeld off-axis Elektronenholographie 5.1 Aufnahme von Dunkelfeldhologrammen 5.1.1 Voraussetzungen 5.1.2 Versuchsaufbau 5.1.3 Rekonstruktion der Beugungswelle 5.2 Bestimmung der Gitterdeformation 5.2.1 Gitterdeformation in g_ref-Richtung 5.2.2 Gitterdeformation in (x,y)-Ebene 5.3 Optimierung des Tecnai F20 Mikroskops für die Dunkelfeldholographie 5.3.1 Anforderungen 5.3.2 Limitierungen durch experimentellen Aufbau 5.3.3 Zusätzliche Freiheitsgrade mit Cs-Korrektor und Pseudo-Lorentz Linse 5.3.4 Verbleibende Limitierungen 5.3.4.1 Begrenzte Beleuchtungskippung 5.3.4.2 Defokussierte Blende in der hinteren Brennebene 5.4 Aufbereitung und Rekonstruktion von Dunkelfeldhologrammen 5.4.1 Beseitigen fehlerhafter Pixel 5.4.2 Entfernen der Fresnelschen Beugungssäume 5.4.3 Wahl der Rekonstruktionsmaske 5.4.4 Filterung der Hologrammintensität mit Wiener-Filter 5.5 Einfluss und Korrektur von Verzeichnungen 5.5.1 Verzeichnungskorrektur mittels Leerwelle 5.5.2 Verzeichnungskorrektur mittels Verzeichnungskarte 5.5.3 Vergleich der Korrekturmethoden 5.6 Vorzeichen der Beugungswelle 5.7 Numerische Ableitung der Phase und Rauschen 5.8 Kalibrierung von Phasen- und Deformationskarte 5.9 Glättung der Dehnungskarte 5.10 Aufzeichnung und Rekonstruktion einer Dunkelfeldhologrammserie 5.11 Maximierung der Intensität in der Beugungswelle 5.11.1 Zweistrahlfall und gekippte Dunkelfeldbeleuchtung 5.11.2 Optimale Probendicke 5.12 Einfluss der Objektkippung an Grenzflächen 5.13 Präparationseinflüsse 5.13.1 Curtaining 5.13.2 Relaxation in FIB-Lamellen 5.13.3 Amorphe Oberflächen 5.13.4 Verbiegung von FIB-Lamellen 5.14 Zusammenfassung 6 Verspannungsmessungen an aktuellen Halbleiterstrukturen 6.1 Gitterdeformation in SiGe-Schicht auf Si-Substrat 6.2 Mit SiGe verspannte Transistoren auf Bulk-Silizium 6.2.1 Transistorstrukturen mit SiGe-S-Source/Drain-Gebieten 6.2.2 Vergleich von Dunkelfeldholographie und Nanobeugung 6.3 Mit SiGe verspannte Transistoren auf Silicon-on-Insulator (SOI) 6.4 Transistorstrukturen mit verspannten Deckschichten 6.4.1 Erste Experimente 6.4.2 Mittels Wolframschicht verspannte Teststruktur 6.4.3 Mittels TPEN-Schicht verspannter n-MOSFET 6.4.4 Mittels CPEN-Schicht und SiGe verspannter p-MOSFET 6.5 Zusammenfassung 7 Zusammenfassung / Dark-field off-axis electron holography (DFH) in a transmission electron microscope is based on the interference of a diffracted wave emanating from adjacent strained and unstrained sample areas to form a dark-field hologram, from which the phase of the diffracted wave can be reconstructed. Since the gradient of the phase parallel to the diffraction vector yields the lattice strain in this direction, a two-dimensional strain map can be derived. Therefore, DFH is considered to be a promising technique for strain metrology by semiconductor industry, especially for local strain measurements in the transistor channel. In particular, DFH offers better lateral resolution than scanning TEM-techniques based on electron diffraction with small focused electron probe like nano-beam diffraction. However, DFH is not yet available as a standard technique for strain metrology. Research is still needed to apply the method to complex devices. Using the example of a strained cosine lattice the phase modulation due to lattice distortions is discussed. In addition, modulation of the diffracted wave is approximated in two-beam diffraction condition. Adjustments of DFH in the TEM provide strain measurements with 3...5 nm lateral resolution at 200 nm field of view or 8...10 nm lateral resolution at 800 nm field of view. During recording and reconstruction of dark-field holograms several artifacts appear, for instance Fresnel diffraction, defective detector pixels, distortions of projective lenses or detector optics. Since they limit strain evaluation, suitable methods to either avoid or correct these artifacts are discussed. Sample preparation with focused ion beam (FIB) causes surface damage. Comparing DFH results with finite-element simulations reveals a deviation of 10% between simulation and experiment at 120...160 nm sample thickness due to surface relaxation. FIB-induced thickness variations (curtaining) lead to comparable deviations. Applicability of DFH for strain metrology is analyzed on several modern device structures. Strain measurements of SiGe-layers on Si-substrate correspond quite well with an analytic model. A residual deviation of 10% can be explained by surface relaxation close to the SiGe/Si-interface. Transistors strained by SiGe-source/drain serve as test objects for a comparison of DFH with nano-beam diffraction. Though both techniques reveal identical results, DFH is able to map the complete two-dimensional strain field, whereas nano-beam diffraction can only provide single line-scans. Strain mapping in silicon-on-insulator (SOI) is limited by the different crystal orientation (miscut) between the SOI layer and the Si-substrate, which serves as reference. Strain values in the SOI show an off-set of 0.2% in comparison to the unstrained Si-substrate. The miscut between SOI and Si-substrate is estimated to 0.3°. In transistor devices with tensile stress overlayers DFH is able to measure +0.3% tensile strain in excellent agreement with finite-element simulations. In devices with compressive overlayers and SiGe-source/drain a strain value of only -(0.1+/-0.05)% can be determined in the transistor channel 5nm beneath the gate oxide.:1 Einleitung 2 Grundlagen der Elastizitätstheorie 2.1 Der Verzerrungstensor 2.2 Der Spannungstensor 2.3 Das Hooke’sche Gesetz 2.4 Zusammenfassung 3 Mechanisch verspannte Transistoren 3.1 Der MOSFET 3.2 Techniken zur Spannungserzeugung 3.2.1 SiGe- und Si:C-Source/Drain-Gebiete 3.2.2 Verspannte Deckschichten 3.3 Mechanische Verspannung und Ladungsträgerbeweglichkeit 3.4 Zusammenfassung 4 Beugungswelle und geometrische Phase 4.1 Transmissionselektronenmikroskopie 4.1.1 Aufbau eines Transmissionselektronenmikroskops 4.1.2 Hellfeld- und Dunkelfeldabbildung 4.2 Beugung am Kristallgitter 4.2.1 Bragg- und Laue-Beugungsbedingung 4.2.2 Ewaldkugel 4.2.3 Beugungswelle 4.3 Geometrische Phase 4.3.1 Geometrische Phase in kinematischer Näherung 4.3.2 Veranschaulichung der geometrischen Phase am Elementargitter 4.3.3 Grenzen der geometrische Phase 4.3.4 Geometrische Phase bei dynamischer Streuung 4.3.4.1 Streuung im deformierten Kristall 4.3.4.2 Zweistrahlfall im deformierten Kristall 4.3.4.3 Analytische Lösung für z-unabhängige Verschiebung 4.3.4.4 Näherungslösung für z-abhängige Verschiebung 4.3.4.5 Konsequenzen für die Deformationsmessung 4.4 Zusammenfassung 5 Spezialverfahren der Dunkelfeld off-axis Elektronenholographie 5.1 Aufnahme von Dunkelfeldhologrammen 5.1.1 Voraussetzungen 5.1.2 Versuchsaufbau 5.1.3 Rekonstruktion der Beugungswelle 5.2 Bestimmung der Gitterdeformation 5.2.1 Gitterdeformation in g_ref-Richtung 5.2.2 Gitterdeformation in (x,y)-Ebene 5.3 Optimierung des Tecnai F20 Mikroskops für die Dunkelfeldholographie 5.3.1 Anforderungen 5.3.2 Limitierungen durch experimentellen Aufbau 5.3.3 Zusätzliche Freiheitsgrade mit Cs-Korrektor und Pseudo-Lorentz Linse 5.3.4 Verbleibende Limitierungen 5.3.4.1 Begrenzte Beleuchtungskippung 5.3.4.2 Defokussierte Blende in der hinteren Brennebene 5.4 Aufbereitung und Rekonstruktion von Dunkelfeldhologrammen 5.4.1 Beseitigen fehlerhafter Pixel 5.4.2 Entfernen der Fresnelschen Beugungssäume 5.4.3 Wahl der Rekonstruktionsmaske 5.4.4 Filterung der Hologrammintensität mit Wiener-Filter 5.5 Einfluss und Korrektur von Verzeichnungen 5.5.1 Verzeichnungskorrektur mittels Leerwelle 5.5.2 Verzeichnungskorrektur mittels Verzeichnungskarte 5.5.3 Vergleich der Korrekturmethoden 5.6 Vorzeichen der Beugungswelle 5.7 Numerische Ableitung der Phase und Rauschen 5.8 Kalibrierung von Phasen- und Deformationskarte 5.9 Glättung der Dehnungskarte 5.10 Aufzeichnung und Rekonstruktion einer Dunkelfeldhologrammserie 5.11 Maximierung der Intensität in der Beugungswelle 5.11.1 Zweistrahlfall und gekippte Dunkelfeldbeleuchtung 5.11.2 Optimale Probendicke 5.12 Einfluss der Objektkippung an Grenzflächen 5.13 Präparationseinflüsse 5.13.1 Curtaining 5.13.2 Relaxation in FIB-Lamellen 5.13.3 Amorphe Oberflächen 5.13.4 Verbiegung von FIB-Lamellen 5.14 Zusammenfassung 6 Verspannungsmessungen an aktuellen Halbleiterstrukturen 6.1 Gitterdeformation in SiGe-Schicht auf Si-Substrat 6.2 Mit SiGe verspannte Transistoren auf Bulk-Silizium 6.2.1 Transistorstrukturen mit SiGe-S-Source/Drain-Gebieten 6.2.2 Vergleich von Dunkelfeldholographie und Nanobeugung 6.3 Mit SiGe verspannte Transistoren auf Silicon-on-Insulator (SOI) 6.4 Transistorstrukturen mit verspannten Deckschichten 6.4.1 Erste Experimente 6.4.2 Mittels Wolframschicht verspannte Teststruktur 6.4.3 Mittels TPEN-Schicht verspannter n-MOSFET 6.4.4 Mittels CPEN-Schicht und SiGe verspannter p-MOSFET 6.5 Zusammenfassung 7 Zusammenfassung
30

Untangling the Mechanisms of Lattice Distortions in Biogenic Crystals across Scales

Schoeppler, Vanessa, Cook, Phil K., Detlefs, Carsten, Demichelis, Raffaella, Zlotnikov, Igor 04 June 2024 (has links)
Biomineralized structures are complex functional hierarchical assemblies composed of biomineral building blocks joined together by an organic phase. The formation of individual mineral units is governed by the cellular tissue component that orchestrates the process of biomineral nucleation, growth, and morphogenesis. These processes are imprinted in the structural, compositional, and crystallographic properties of the emerging biominerals on all scales. Measurement of these properties can provide crucial information on the mechanisms that are employed by the organism to form these complex 3D architectures and to unravel principles of their functionality. Nevertheless, so far, this has only been possible at the macroscopic scale, by averaging the properties of the entire composite assembly, or at the mesoscale, by looking at extremely small parts of the entire picture. In this study, the newly developed synchrotron-based dark-field X-ray microscopy method is employed to study the link between 3D crystallographic properties of relatively large calcitic prisms in the shell of the mollusc Pinna nobilis and their local lattice properties with extremely high angular resolution down to 0.001°. Mechanistic links between variations in local lattice parameters and spacing, crystal orientation, chemical composition, and the deposition process of the entire mineral unit are unraveled.

Page generated in 0.0521 seconds