251 |
A High Power Density Three-level Parallel Resonant Converter for Capacitor ChargingSheng, Honggang 28 May 2009 (has links)
This dissertation proposes a high-power, high-frequency and high-density three-level parallel resonant converter for capacitor charging. DC-DC pulsed power converters are widely used in military and medical systems, where the power density requirement is often stringent. The primary means for reducing the power converter size has been to reduce loss for reduced cooling systems and to increase the frequency for reduced passive components. Three-level resonant converters, which combine the merits of the three-level structure and resonant converters, are an attractive topology for these applications. The three-level configuration allows for the use of lower-voltage-rating and faster devices, while the resonant converter reduces switching loss and enhances switching capability.
This dissertation begins with an analysis of the influence of variations in the structure of the resonant tank on the transformer volume, with the aim of achieving a high power density three-level DC-DC converter. As one of the most bulky and expensive components in the power converter, the different positions of the transformer within the resonant tank cause significant differences in the transformer's volume and the voltage and current stress on the resonant elements. While it does not change the resonant converter design or performance, the improper selection of the resonant tank structure in regard to the transformer will offset the benefits gained by increasing the switching frequency, sometimes even making the power density even worse than the power density when using a low switching frequency. A methodology based on different structural variations is proposed for a high-density design, as well as an optimized charging profile for transformer volume reduction.
The optimal charging profile cannot be perfectly achieved by a traditional output-voltage based variable switching frequency control, which either needs excess margin to guarantee ZVS, or delivers maximum power with the danger of losing ZVS. Moreover, it cannot work for widely varied input voltages. The PLL is introduced to overcome these issues. With PLL charging control, the power can be improved by 10% with a narrow frequency range.
The three-level structure in particular suffers unbalanced voltage stress in some abnormal conditions, and a fault could easily destroy the system due to minimized margin. Based on thoroughly analysis on the three-level behaviors for unbalanced voltage stress phenomena and fault conditions, a novel protection scheme based on monitoring the flying capacitor voltage is proposed for the three-level structure, as well as solutions to some abnormal conditions for unbalanced voltage stresses. A protection circuit is designed to achieve the protection scheme.
A final prototype, built with a custom-packed MOSFET module, a SiC Schottky diode, a nanocrystalline core transformer with an integrated resonant inductor, and a custom-designed oil-cooled mica capacitor, achieves a breakthrough power density of 140W/in3 far beyond the highest-end power density reported (<100 W/in3) in power converter applications. / Ph. D.
|
252 |
Design, Modeling and Control of Bidirectional Resonant Converter for Vehicle-to-Grid (V2G) ApplicationsZahid, Zaka Ullah 24 November 2015 (has links)
Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are gaining popularity because they are more environmentally friendly, less noisy and more efficient. These vehicles have batteries can be charged by on-board battery chargers that can be conductive or inductive. In conductive chargers, the charger is physically connected to the grid by a connector. With the inductive chargers, energy can be transferred wirelessly over a large air-gap through inductive coupling, eliminating the physical connection between the charger and the grid. A typical on-board battery charger consists of a boost power factor correction (PFC) converter followed by a dc-dc converter. This dissertation focuses on the design, modeling and control of a bidirectional dc-dc converter for conductive battery charging application.
In this dissertation, a detailed design procedure is presented for a bidirectional CLLLC-type resonant converter for a battery charging application. This converter is similar to an LLC-type resonant converter with an extra inductor and capacitor in the secondary side. Soft-switching can be ensured in all switches without additional snubber or clamp circuitry. Because of soft-switching in all switches, very high-frequency operation is possible, thus the size of the magnetics and the filter capacitors can be made small. To further reduce the size and cost of the converter, a CLLC-type resonant network with fewer magnetics is derived from the original CLLLC-type resonant network. First, an equivalent model for the bidirectional converter is derived for the steady-state analysis. Then, the design methodology is presented for the CLLLC-type resonant converter. Design of this converter includes determining the transformer turns ratio, design of the magnetizing inductance based on ZVS condition, design of the resonant inductances and capacitances. Then, the CLLC-type resonant network is derived from the CLLLC-type resonant network. To validate the proposed design procedure, a 3.5 kW converter was designed following the guidelines in the proposed methodology. A prototype was built and tested in the lab. Experimental results verified the design procedure presented.
The dynamics analysis of any converter is necessary to design the control loop. The bandwidth, phase margin and gain margin of the control loops should be properly designed to guarantee a robust system. The dynamic analysis of the resonant converters have not been extensively studied, with the previous work mainly concentrated on the steady-state models. In this dissertation, the continuous-time large-signal model, the steady-state operating point, and the small-signal model are derived in an analytical closed-form. This model includes both the frequency and the phase-shift control. Simulation and experimental verification of the derived models are presented to validate the presented analysis.
A detailed controller design methodology is proposed in this dissertation for the bidirectional CLLLC-type resonant converter for battery charging application. The dynamic characteristics of this converter change significantly as the battery charges or discharges. And, at some operating points, there is a high-Q resonant peaking in the open-loop bode-plot for any transfer functions in this converter. So, if the controller is not properly designed, the closed-loop system might become unstable at some operating points. In this paper, a controller design methodology is proposed that will guarantee a stable operation during the entire operating frequency range in both battery charging mode (BCM) and regeneration mode (RM). To validate the proposed controller design methodology, the output current and voltage loop controllers are designed for a 3.5 kW converter. The step response showed a stable system with good transient performance thus validating the proposed controller design methodology. / Ph. D.
|
253 |
Low-power Power Management Circuit Design for Small Scale Energy Harvesting Using Piezoelectric CantileversKong, Na 26 May 2011 (has links)
The batteries used to power wireless sensor nodes have become a major roadblock for the wide deployment. Harvesting energy from mechanical vibrations using piezoelectric cantilevers provides possible means to recharge the batteries or eliminate them. Raw power harvested from ambient sources should be conditioned and regulated to a desired voltage level before its application to electronic devices. The efficiency and self-powered operation of a power conditioning and management circuit is a key design issue.
In this research, we investigate the characteristics of piezoelectric cantilevers and requirements of power conditioning and management circuits. A two-stage conditioning circuit with a rectifier and a DC-DC converter is proposed to match the source impedance dynamically. Several low-power design methods are proposed to reduce power consumption of the circuit including: (i) use of a discontinuous conduction mode (DCM) flyback converter, (ii) constant on-time modulation, and (iii) control of the clock frequency of a microcontroller unit (MCU). The DCM flyback converter behaves as a lossless resistor to match the source impedance for maximum power point tracking (MPPT). The constant on-time modulation lowers the clock frequency of the MCU by more than an order of magnitude, which reduces dynamic power dissipation of the MCU. MPPT is executed by the MCU at intermittent time interval to save power. Experimental results indicate that the proposed system harvests up to 8.4 mW of power under 0.5-g base acceleration using four parallel piezoelectric cantilevers and achieves 72 percent power efficiency. Sources of power losses in the system are analyzed. The diode and the controller (specifically the MCU) are the two major sources for the power loss.
In order to further improve the power efficiency, the power conditioning circuit is implemented in a monolithic IC using 0.18-μm CMOS process. Synchronous rectifiers instead of diodes are used to reduce the conduction loss. A mixed-signal control circuit is adopted to replace the MCU to realize the MPPT function. Simulation and experimental results verify the DCM operation of the power stage and function of the MPPT circuit. The power consumption of the mixed-signal control circuit is reduced to 16 percent of that of the MCU. / Ph. D.
|
254 |
A High-efficiency Isolated Hybrid Series Resonant Microconverter for Photovoltaic ApplicationsZhao, Xiaonan 12 January 2016 (has links)
Solar energy as one type of the renewable energy becomes more and more popular which has led to increase the photovoltaic (PV) installations recently. One of the PV installations is the power conditioning system which is to convert the maximum available power output of the PV modules to the utility grid. Single-phase microinverters are commonly used to integrate the power to utility grid in modular power conditioning system. In the two-stage microinverter, each PV module is connected with a power converter which can transfer higher output power due to the tracking maximum power point (MPP) capability. However, it also has the disadvantages of lower power conversion efficiency due to the increased number of power electronics converters. The primary objective of this thesis is to develop a high-efficiency microconverter to increase the output power capability of the modular power conditioning systems.
A topology with hybrid modes of operation are proposed to achieve wide-input regulation while achieving high efficiency. Two operating modes are introduced in details. Under high-input conditions, the converter acts like a buck converter, whereas the converter behaves as a boost converter under low-input conditions. The converter operates as the series resonant converter with normal-input voltage to achieve the highest efficiency. With this topology, the converter can achieve zero-voltage switching (ZVS) and/or zero-current switching (ZCS) of the primary side MOSFETs, ZCS and/or ZVS of the secondary side MOSFETs and ZCS of output diodes under all operational conditions. The experimental results based on a 300 W prototype are given with 98.1% of peak power stage efficiency and 97.6% of weighted California Energy Commission (CEC) efficiency including all auxiliary and control power under the normal-input voltage condition. / Master of Science
|
255 |
Modeling and Design of a SiC Zero Common-Mode Voltage Three-Level DC/DC ConverterRankin, Paul Edward 16 August 2019 (has links)
As wide-bandgap devices continue to experience deeper penetration in commercial applications, there are still a number of factors which make the adoption of such technologies difficult. One of the most notable issues with the application of wide-bandgap technologies is meeting existing noise requirements and regulations. Due to the faster dv/dt and di/dt of SiC devices, more noise is generated in comparison to Si IGBTs. Therefore, in order to fully experience the benefits offered by this new technology, the noise must either be filtered or mitigated by other means.
A survey of various DC/DC topologies was conducted in order to find a candidate for a battery interface in a UPS system. A three-level NPC topology was explored for its potential benefit in terms of noise, efficiency, and additional features. This converter topology was modeled, simulated, and a hardware prototype constructed for evaluation within a UPS system, although its uses are not limited to such applications. A UPS system is a good example of an application with strict noise requirements which must be fulfilled according to IEC standards.
Based on a newly devised mode of operation, this converter was verified to produce no common-mode voltage under ideal conditions, and was able to provide a 6 dB reduction in common-mode voltage emissions in the UPS prototype. This was done while achieving a peak efficiency in excess of 99% with the ability to provide bidirectional power flow between the UPS and battery backup. The converter was verified to operate at the rated UPS conditions of 20 kW while converting between a total DC bus voltage of 800 V and a nominal battery voltage of 540 V. / Master of Science / As material advancements allow for the creation of devices with superior electrical characteristics compared to their predecessors, there are still a number of factors which cause these devices to see limited usage in commercial applications. These devices, typically referred to as wide-bandgap devices, include silicon carbide (SiC) transistors. These SiC devices allow for much faster switching speeds, greater efficiencies, and lower system volume compared to their silicon counterparts. However, due to the faster switching of these devices, there is more electromagnetic noise generated. In many applications, this noise must be filtered or otherwise mitigated in order to meet international standards for commercial use. Consequently, new converter topologies and configurations are necessary to provide the most benefit of the new wide-bandgap devices while still meeting the strict noise requirements. A survey of topologies was conducted and the modeling, design, and testing of one topology was performed for use in an uninterruptible power supply (UPS). This converter was able to provide a noticeable reduction in noise compared to standard topologies while still achieving very high efficiency at rated conditions. This converter was also verified to provide power bidirectionally—both when the UPS is charging the battery backup, and when the battery is supplying power to the load.
|
256 |
Isolated Bi-directional DC-DC Converter with Smooth Start-up TransitionMao, Shiwei 19 June 2015 (has links)
The bi-directional dc/dc converter is a very popular and effective tool for alternative energy applications. One way it can be utilized is to charge and discharge batteries used in residential solar energy systems. In the day, excess power from the PV panels is used to charge the batteries. During the night, the charged batteries will power the dc bus for loads in the house such as home appliances. The dual active bridge (DAB) converter is very useful because of its high power capability and efficiency. Its symmetry is effective in transferring power in both directions. However, the DAB converter has drawbacks in the start-up stage. These drawbacks in boost mode include high in-rush current during start-up, and the fact that the high side voltage cannot be lower than the low side voltage. A popular existing method to alleviate this problem is the use of an active clamp and a flyback transformer in the circuit topology to charge the high side before the converter is switched into normal boost operation. The active clamp not only helps eliminate the transient spike caused by the transformer leakage, but also continues to be used during steady state. However, this method introduces a new current spike occurring when the converter transitions from start-up mode to boost mode. To alleviate this new setback, an additional transitional stage is proposed to significantly reduce the current spike without the use of any additional components. The converter is current-fed on the low side, and voltage-fed on the high side. A simple phase shift control is used in buck mode and PWM control is used during the boost mode for both the start-up mode and the normal boost operation. This thesis discusses the performance results of a 48-400 V dc/dc converter with 1000 W power output. / Master of Science
|
257 |
Load-Independent Class-E Power ConversionZhang, Lujie 13 April 2020 (has links)
The Class-E topology was presented as a single-switch power amplifier with high efficiency at the optimum condition, where the switch enjoys zero-voltage switching (ZVS) and zero-voltage-derivative switching (ZDS). It is also used in MHz dc-dc converters, and in inverters for wireless power transfer, induction heating, and plasma pulsing. The load current in these applications usually varies over a range. Efficiency of a conventional Class-E design degrades dramatically due to the hard switching beyond the optimum conditions. Keeping ZVS with load change in a Class-E topology is preferred within the load range.
Soft switching with load variation is realized by duty cycle modulation with additional transformer, matching network, or resistance compression network. Since two ZVS requirements need to be satisfied in a conventional Class-E design, at least two parameters are tuned under load variation. Thus, changing switching frequency, duty cycle, and component values were used. Impressively, a load-independent Class-E inverter design was presented in 1990 for maintaining ZVS and output voltage under a given load change without tuning any parameters, and it was validated with experimental results recently. The operating principle of this special design (inconsistent with the conventional design) is not elucidated in the published literatures.
Load-independency illucidation by a Thevenin Model – A Thevenin model is then established (although Class-E is a nonliear circuit) to explain the load-independency with fixed switching frequency and duty cycle. The input block of a Class-E inverter (Vin, Lin, Cin, and S) behaves as a fixed voltage source vth1 and a fixed capacitive impedance Xth1 in series at switching frequency. When the output block (Lo and Co) is designed to compensate Xth1, the output current phase is always equal to the phase of vth1 with resistive load (satisfies the ZVS requirement of a load-independent design). Thus, soft switching is maintained within load variation. Output voltage is equal to vth1 since Xth1 is canceled, so that the output voltage is constant regardless of output resistance. Load-independency is achieved without adding any components or tuning any parameters.
Sequential design and tuning of a load-independent ZVS Class-E inverter with constant voltage based on Thevenin Model - Based on the model, it's found that each circuit parameter is linked to only one of the targeted performance (ZVS, fixed voltage gain, and load range). Thus, the sequential design equations and steps are derived and presented. In each step, the desired performance (e.g. ZVS) now could be used to check and tune component values so that ZVS and fixed voltage gain in the desired load range is guaranteed in the final Class-E inverter, even when component values vary from the expectations. The Thevenin model and the load-independent design is then extended to any duty cycles. A prototype switched at 6.78 MHz with 10-V input, 11.3-V output, and 22.5-W maximum output power was fabricated and tested to validate the theory. Soft switching is maintained with 3% output voltage variation while the output power is reduced tenfold.
A load-independent ZVS Class-E inverter with constant current by combining constant voltage design and a trans-susceptance network - A load-independent ZVS Class-E inverter with constant current under load variation is then presented, by combining the presented design (generating a constant voltage) and a trans-susceptance network (transferring the voltage to current). The impact of different types and the positions of the networks are discussed, and LCL network is selected so that both constant current and soft switching are maintained within the load variation. The operation principle, design, and tuning procedures are illustrated. The trade-off between input current ripple, output current amplitude, and the working load range is discussed. The expectations were validated by a design switched at 6.78 MHz with 10-V input, 1.4-A output, and 12.6-W maximum output power. Soft switching is maintained with 16% output current varying over a 10:1 output power range.
A "ZVS" Class-E dc-dc converter by adding a diode rectifier bridge and compensate the induced varying capacitance at full-load condition - The load-independent Class-E design is extended to dc-dc converter by adding a diode rectifier bridge followed by the Class-E inverter. The equivalent impedance seen by the inverter consists of a varying capacitance and a varying resistance when the output changes. As illustrated before, ZVS and constant output can only be maintained with resistive load. Since the varying capacitance cannot be compensated for the whole load range, performance with using different compensation is discussed. With the selected full-load compensation, ZVS is achieved at full load condition and slight non-ZVS occurs for the other load conditions. The expectation was validated by a dc-dc converter switched at 6.78 MHz with 11 V input, 12 V output, and 22 W maximum output power. ZVS (including slight non-ZVS) is maintained with 16% output voltage variation over 20:1 output power range.
Design of variable Capacitor by connecting two voltage-sensitive capacitors in series and controlling the bias voltage of them - The equivalent varying capacitance in the Class-E dc-dc converter can be compensated in the whole load range only with variable component. The sensitivity of a Class-E power conversion can also be improved by using variable capacitors. Thus, a Voltage Controlled Capacitor (VCC) is presented, based on the intrinsic property of Class II dielectric materials that permittivity changing much with electric field. Its equivalent circuit consists of two identical Class II capacitors in series. By changing the voltage of the common point of the two capacitors (named as control voltage), the two capacitance and the total capacitance are both changed. Its operation principle, measured characteristic, and the SPICE model are illustrated. The capacitance changes from 1 μF to 0.2 μF with a control voltage from 0 V to 25 V, resulting a 440% capacitance range. Since the voltage across the two capacitors (named as output voltage) also affects one of the capacitance when control voltage is applied, the capacitance range drops to only 40% with higher bias in the output voltage. Thus, a Linear Variable Capacitor (LVC) is presented. The equivalent circuit is the same as VCC, while one of the capacitance is designed much higher to mitigate the effect of output voltage. The structure, operational principle, required specifications, design procedures, and component selection were validated by a design example, with 380% maximum capacitance range and less than 20% drop in the designed capacitor voltage range.
This work contributes to
• Analytical analysis and Thevenin Model in load-independent Class-E power conversion
• Variable capacitance with wide range / Doctor of Philosophy / The Class-E topology was presented as a single-switch power amplifier with high efficiency at the optimum condition. Efficiency of a conventional Class-E design degrades with load variation dramatically due to the hard switching beyond the optimum conditions.
Since two requirements need to be satisfied for soft switching in a conventional Class-E design, at least two parameters are tuned under load variation. Impressively, a load-independent Class-E inverter design was presented for maintaining Zero-Voltage-Switching (ZVS) and output voltage under a given load change without tuning any parameters, and it was validated with experimental results recently.
A Thevenin model is established in this work to explain the realization of load-independency with fixed switching frequency and duty cycle. Based on that, a sequential design and tuning process is presented. A prototype switched at 6.78 MHz with 10-V input, 11.3-V output, and 22.5-W maximum output power was fabricated and tested to validate the theory. Soft switching is maintained with 3% output voltage variation while the output power is reduced tenfold.
A load-independent ZVS Class-E inverter with constant current under load variation is then presented, by combining the presented design and a trans-susceptance network. The expectations were validated by a design switched at 6.78 MHz with 10-V input, 1.4-A output, and 12.6-W maximum output power. Soft switching is maintained with 16% output current varying over a 10:1 output power range.
The load-independent Class-E design is extended to dc-dc converter by adding a diode rectifier bridge, inducing a varying capacitance. With the selected full-load compensation, ZVS is achieved at full load condition and slight non-ZVS occurs for the other load conditions. The expectation was validated by a dc-dc converter switched at 6.78 MHz with 11 V input, 12 V output, and 22 W maximum output power. ZVS (including slight non-ZVS) is maintained with 16% output voltage variation over 20:1 output power range.
The varying capacitance in the Class-E dc-dc converter needs variable component to compensate. Thus, a Voltage Controlled Capacitor (VCC) is presented. The capacitance changes from 1 μF to 0.2 μF with a control voltage from 0 V to 25 V, resulting a 440% capacitance range. The capacitance range drops to only 40% with higher bias in the output voltage. Thus, a Linear Variable Capacitor (LVC) is presented, with 380% maximum capacitance range and less than 20% drop in the designed capacitor voltage range.
|
258 |
High Efficiency Optimization of LLC Resonant Converter for Wide Load RangeLiu, Ya 13 February 2008 (has links)
As information technology advances, so does the demand for power management of telecom and computing equipment. High efficiency and high power density are still the key technology drivers for power management for these applications. In order to save energy, in 2005, the U.S. Environmental Protection Agency (EPA) announced the first draft of its proposed revision to its ENERGY STAR specification for computers. The draft specification separately addresses efficiency requirements for laptop, desktop, workstation and server computers. The draft specification also proposes a minimum power supply efficiency of 80% for PCs and 75% to 83% for desktop derived servers, depending on loading condition and server type. Furthermore, recently some industry companies came out with a much higher efficiency target for the whole AC/DC front-end converter over a wide load range.
Distributed power systems are widely adopted in the telecom and computing applications for the reason of high performance and high reliability. As one of the key building blocks in distributed power systems, DC/DC converters in the front-end converter are also under the pressure of increasing efficiency and power density. Due to the hold-up time requirement, PWM DC/DC converters cannot achieve high efficiency for well known reasons when they are designed for wide input voltage range.
As a promising topology for this application, LLC resonant converters can achieve both high efficiency and wide input voltage range capability because of its voltage gain characteristics and small switching loss. However, the efficiency of LLC resonant converter with diode rectifier still cannot meet the recent efficiency target from industry. In order to further improve efficiency of LLC resonant converters, synchronous rectification must be used. The complete solution of synchronous rectification of LLC resonant converters is discussed in this thesis. The driving of the synchronous rectifier can be realized by sensing the voltage Vds of the SR. The turn-on of the SR can be triggered by the body-diode conduction of the SR. With the Vds compensation network, the precise voltage drop on Rds_on can be achieved, thus the SR can be turned off at the right time. Moreover, efficiency optimization at normal operation over wide load range is discussed. It is revealed that power loss at normal operation is solely determined by the magnetizing inductance while the magnetizing inductor is designed according to dead-time td selection. The mathematic equations for the relationship between power loss and dead-time are developed. For the first time, the relationship between power loss and dead-time is used as a tool for efficiency optimization. With this tool, the efficiency optimization of the LLC resonant converter can be made according to efficiency requirement over a wide load range. With the expectation to achieve high efficiency at ultra-light load, the green mode operation of LLC resonant converters is addressed. The rationale of the issue with the conventional control algorithm is revealed and a preliminary solution is proposed. / Master of Science
|
259 |
Current Sharing Method for DC-DC TransformersPrasantanakorn, Chanwit 25 February 2011 (has links)
An ever present trend in the power conversion industry is to get higher performance at a lower cost. In a computer server system, the front-end converter, supplying the load subsystems, is typically a multiple output power supply. The power supply unit is custom designed and its output voltages are fully regulated, so it is not very efficient or cost effective. Most of the load systems in this application are supplied by point-of-load converters (POLs). By leaving the output voltage regulation aspect to POLs, the front-end converter does not need to be a fully regulated, multiple output converter. It can be replaced by a dc-dc transformer (DCX), which is a semi-regulated or unregulated, single output dc-dc converter. A DCX can be made using a modular design to simplify expansion of the system capacity. To realize this concept, the DCX block must have a current sharing feature.
The current sharing method for a resonant DCX is discussed in this work. To simplify the system architecture, the current sharing method is based on the droop method, which requires no communication between paralleled units. With this method, the current sharing error is inversely proportional to the droop voltage. In traditional DCX implementations, the droop voltage depends on the resistive voltage drops in the power stage, which is not sufficient to achieve the desired current sharing error. The resonant converter has the inherent characteristic that its conversion gain depends on the load current, so the virtual droop resistance can realized by the resonant tank and the droop voltage can be obtained without incurring conduction loss. An LLC resonant converter is investigated for its droop characteristic. The study shows the required droop voltage is achievable at very high switching frequency. To lower the switching frequency, a notch filter is introduced into the LLC resonant tank to increase the sensitivity of the conversion gain versus the operating frequency. The design of the multi-element resonant tank is discussed. Depending soly on the resonant tank, the droop characteristic is largely varied with the component tolerance in the resonant tank. The current sharing error becomes unacceptable. The active droop control is imposed to make the output regulation characteristic insensitive to the component tolerance. The proposed resonant DCX has simpler circuit structure than the fully regulated resonant converter. Finally simulation and experimental results are presented to verify this concept. / Master of Science
|
260 |
Design and control methods to enhance the efficiency of two-port and three-port DC-DC resonant converters in electric vehicle applicationsAbeysinghe Mudiyanselage, Guvanthi January 2024 (has links)
DC-DC resonant converters benefit from soft switching and reduced peak currents over other topologies. However, the design and control of resonant converters are challenging due to non-linearities in the resonant tanks. This research focuses on design and control methods for two-port and three-port resonant converters in EV applications.
The two-port LLC resonant converter is attractive for on-board charger applications. However, if not appropriately designed, the frequency-modulated LLC converters will have a wide range of switching frequencies and lose efficiency in wide voltage range OBC applications. Hence, practicing proper converter design and control methods is essential to maximize efficiency. This work proposes a design framework for a wide-voltage range LLC converter to enhance efficiency. Topology morphing is used to reduce the effective voltage gain, and an online topology morphing method, along with a cascaded closed-loop control system, is also proposed.
Three-port DC-DC converters can facilitate power transfer among three sources/ sinks. With the emerging trend of dual auxiliary voltages in EVs, the three-port resonant converter topology is an ideal candidate to interface the high voltage battery with low to medium voltages. This work proposes an optimal control method for a TPRC based on duty-ratio and phase-shift control to maximize its efficiency. The control method is optimized using a novel harmonic approximation-based model.
A 300 – 700 V input, 250 – 450 V output, 3.3 kW LLC converter is designed and tested to validate the proposed design and control methods of the LLC converter. The time-weighted averaged efficiency above 96.7% is observed over the entire input voltage range. A 400 – 800 V/ 46 – 50 V/ 10 – 14 V, 6kW rated power TPRC is also designed and tested to validate the proposed optimal control method. Peak efficiency of 96.34% is observed, with a maximum efficiency improvement of 12.4% compared to the conventional phase-shift control. / Dissertation / Doctor of Science (PhD) / DC-DC converters are used in numerous electrical applications to transfer power between an energy source and a load while stepping up or down the voltage levels to match their specifications. During the power transfer, losses occur within the DCDC converter from the switching devices and the other converter elements. For high energy efficiency, these converters must have minimal losses.
Among the different DC-DC converters, resonant converters are attractive due to their reduced power losses. As the automotive industry rapidly moves towards electrification, DC-DC resonant converters can provide efficient power transfer in electric vehicle (EV) applications. However, the design and control of resonant converters are challenging compared to other DC-DC converters. Therefore, practicing proper design and control methods in DC-DC resonant converters is essential. This thesis proposes optimal design and control methods for DC-DC converters in EV applications to enhance efficiency. The proposed methods are validated using hardware prototypes.
|
Page generated in 0.0349 seconds