Spelling suggestions: "subject:"defect detection."" "subject:"refect detection.""
61 |
Methodology of surface defect detection using machine vision with magnetic particle inspection on tubular material / Méthodologie de détection des défauts de surface par vision artificielle avec magnetic particle inspection sur le matériel tubulaireMahendra, Adhiguna 08 November 2012 (has links)
[...]L’inspection des surfaces considérées est basée sur la technique d’Inspection par Particules Magnétiques (Magnetic Particle Inspection (MPI)) qui révèle les défauts de surfaces après les traitements suivants : la surface est enduite d’une solution contenant les particules, puis magnétisées et soumise à un éclairage Ultra-Violet. La technique de contrôle non destructif MPI est une méthode bien connue qui permet de révéler la présence de fissures en surface d’un matériau métallique. Cependant, une fois le défaut révélé par le procédé, ladétection automatique sans intervention de l’opérateur en toujours problématique et à ce jour l'inspection basée sur le procédé MPI des matériaux tubulaires sur les sites de production deVallourec est toujours effectuée sur le jugement d’un opérateur humain. Dans cette thèse, nous proposons une approche par vision artificielle pour détecter automatiquement les défauts à partir des images de la surface de tubes après traitement MPI. Nous avons développé étape par étape une méthodologie de vision artificielle de l'acquisition d'images à la classification.[...] La première étape est la mise au point d’un prototype d'acquisition d’images de la surface des tubes. Une série d’images a tout d’abord été stockée afin de produire une base de données. La version actuelle du logiciel permet soit d’enrichir la base de donnée soit d’effectuer le traitement direct d’une nouvelle image : segmentation et saisie de la géométrie (caractéristiques de courbure) des défauts. Mis à part les caractéristiques géométriques et d’intensité, une analyse multi résolution a été réalisée sur les images pour extraire des caractéristiques texturales. Enfin la classification est effectuée selon deux classes : défauts et de non-défauts. Celle ci est réalisée avec le classificateur des forêts aléatoires (Random Forest) dont les résultats sontcomparés avec les méthodes Support Vector Machine et les arbres de décision.La principale contribution de cette thèse est l'optimisation des paramètres utilisées dans les étapes de segmentations dont ceux des filtres de morphologie mathématique, du filtrage linéaire utilisé et de la classification avec la méthode robuste des plans d’expériences (Taguchi), très utilisée dans le secteur de la fabrication. Cette étape d’optimisation a été complétée par les algorithmes génétiques. Cette méthodologie d’optimisation des paramètres des algorithmes a permis un gain de temps et d’efficacité significatif. La seconde contribution concerne la méthode d’extraction et de sélection des caractéristiques des défauts. Au cours de cette thèse, nous avons travaillé sur deux bases de données d’images correspondant à deux types de tubes : « Tool Joints » et « Tubes Coupling ». Dans chaque cas un tiers des images est utilisé pour l’apprentissage. Nous concluons que le classifieur du type« Random Forest » combiné avec les caractéristiques géométriques et les caractéristiques detexture extraites à partir d’une décomposition en ondelettes donne le meilleur taux declassification pour les défauts sur des pièces de « Tool Joints »(95,5%) (Figure 1). Dans le cas des « coupling tubes », le meilleur taux de classification a été obtenu par les SVM avec l’analyse multirésolution (89.2%) (figure.2) mais l’approche Random Forest donne un bon compromis à 82.4%. En conclusion la principale contrainte industrielle d’obtenir un taux de détection de défaut de 100% est ici approchée mais avec un taux de l’ordre de 90%. Les taux de mauvaises détections (Faux positifs ou Faux Négatifs) peuvent être améliorés, leur origine étant dans l’aspect de l’usinage du tube dans certaines parties, « Hard Bending ».De plus, la méthodologie développée peut être appliquée à l’inspection, par MPI ou non, de différentes lignes de produits métalliques / Industrial surface inspection of tubular material based on Magnetic Particle Inspection (MPI) is a challenging task. Magnetic Particle Inspection is a well known method for Non Destructive Testing with the goal to detect the presence of crack in the tubular surface. Currently Magnetic Particle Inspection for tubular material in Vallourec production site is stillbased on the human inspector judgment. It is time consuming and tedious job. In addition, itis prone to error due to human eye fatigue. In this thesis we propose a machine vision approach in order to detect the defect in the tubular surface MPI images automatically without human supervision with the best detection rate. We focused on crack like defects since they represent the major ones. In order to fulfill the objective, a methodology of machine vision techniques is developed step by step from image acquisition to defect classification. The proposed framework was developed according to industrial constraint and standard hence accuracy, computational speed and simplicity were very important. Based on Magnetic Particle Inspection principles, an acquisition system is developed and optimized, in order to acquire tubular material images for storage or processing. The characteristics of the crack-like defects with respect to its geometric model and curvature characteristics are used as priory knowledge for mathematical morphology and linear filtering. After the segmentation and binarization of the image, vast amount of defect candidates exist. Aside from geometrical and intensity features, Multi resolution Analysis wasperformed on the images to extract textural features. Finally classification is performed with Random Forest classifier due to its robustness and speed and compared with other classifiers such as with Support Vector Machine Classifier. The parameters for mathematical morphology, linear filtering and classification are analyzed and optimized with Design Of Experiments based on Taguchi approach and Genetic Algorithm. The most significant parameters obtained may be analyzed and tuned further. Experiments are performed ontubular materials and evaluated by its accuracy and robustness by comparing ground truth and processed images. This methodology can be replicated for different surface inspection application especially related with surface crack detection
|
62 |
Abordagem semi-supervisionada para detecção de módulos de software defeituososOLIVEIRA, Paulo César de 31 August 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-07-24T12:11:04Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Dissertação Mestrado Paulo César de Oliveira.pdf: 2358509 bytes, checksum: 36436ca63e0a8098c05718bbee92d36e (MD5) / Made available in DSpace on 2017-07-24T12:11:04Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Dissertação Mestrado Paulo César de Oliveira.pdf: 2358509 bytes, checksum: 36436ca63e0a8098c05718bbee92d36e (MD5)
Previous issue date: 2015-08-31 / Com a competitividade cada vez maior do mercado, aplicações de alto nível de
qualidade são exigidas para a automação de um serviço. Para garantir qualidade de
um software, testá-lo visando encontrar falhas antecipadamente é essencial no ciclo
de vida de desenvolvimento. O objetivo do teste de software é encontrar falhas que
poderão ser corrigidas e consequentemente, aumentar a qualidade do software em
desenvolvimento. À medida que o software cresce, uma quantidade maior de testes
é necessária para prevenir ou encontrar defeitos, visando o aumento da qualidade.
Porém, quanto mais testes são criados e executados, mais recursos humanos e de
infraestrutura são necessários. Além disso, o tempo para realizar as atividades de
teste geralmente não é suficiente, fazendo com que os defeitos possam escapar.
Cada vez mais as empresas buscam maneiras mais baratas e efetivas para detectar
defeitos em software. Muitos pesquisadores têm buscado nos últimos anos,
mecanismos para prever automaticamente defeitos em software. Técnicas de
aprendizagem de máquina vêm sendo alvo das pesquisas, como uma forma de
encontrar defeitos em módulos de software. Tem-se utilizado muitas abordagens
supervisionadas para este fim, porém, rotular módulos de software como defeituosos
ou não para fins de treinamento de um classificador é uma atividade muito custosa e
que pode inviabilizar a utilização de aprendizagem de máquina. Neste contexto, este
trabalho propõe analisar e comparar abordagens não supervisionadas e semisupervisionadas
para detectar módulos de software defeituosos. Para isto, foram
utilizados métodos não supervisionados (de detecção de anomalias) e também
métodos semi-supervisionados, tendo como base os classificadores AutoMLP e
Naive Bayes. Para avaliar e comparar tais métodos, foram utilizadas bases de dados
da NASA disponíveis no PROMISE Software Engineering Repository. / Because the increase of market competition then high level of quality applications
are required to provide automate services. In order to achieve software quality testing
is essential in the development lifecycle with the purpose of finding defect as earlier
as possible. The testing purpose is not only to find failures that can be fixed, but
improve software correctness and quality. Once software gets more complex, a
greater number of tests will be necessary to prevent or find defects. Therefore, the
more tests are designed and exercised, the more human and infrastructure
resources are needed. However, time to run the testing activities are not enough,
thus, as a result, it causes escape defects. Companies are constantly trying to find
cheaper and effective ways to software defect detection in earlier stages. In the past
years, many researchers are trying to finding mechanisms to automatically predict
these software defects. Machine learning techniques are being a research target, as
a way of finding software modules detection. Many supervised approaches are being
used with this purpose, but labeling software modules as defective or not defective to
be used in training phase is very expensive and it can make difficult machine learning
use. Considering that this work aims to analyze and compare unsupervised and
semi-supervised approaches to software module defect detection. To do so,
unsupervised methods (of anomaly detection) and semi-supervised methods using
AutoMLP and Naive Bayes algorithms were used. To evaluate and compare these
approaches, NASA datasets were used at PROMISE Software Engineering
Repository.
|
63 |
Spolehlivé systémy zpracování obrazu / Reliable visual systemsHonec, Peter January 2009 (has links)
The Doctoral thesis demonstrates the design of reliable industrial visual systems. The special emphasis is dedicated to the detection of defects on webs in industrial applications based on line-scan cameras. This system makes possible detection and classification of defects originating during the real production conditions. This work covers a theoretical study of a visual system for the defect detection on endless bands as well as of appropriate lighting and the scene arrangement. Further to that have been selected, adjusted and designed key components of hardware. Following the design and optimization of algorithms a system prototype had been installed on non-woven textiles production line. Eight visual systems implemented into real-life industrial conditions based on this prototype
|
64 |
Machine-vision-based Detection of Paper Roll Core Eccentricity : Fast and Robust On-Line Measurement Using Circular Hough TransformSehlstedt, Erik January 2022 (has links)
The field of computer vision offers tools that allow machines to derive meaningful infor-mation from video and images and consequently make decisions based on visual inputs. In the paper industry, implementation of machine vision (MV) can be used to automate and speed up processes that require visual inspection, particularly certain segments of quality control – one such application being detection and measurement of paper roll core eccentricity. Core eccentricity is a roll build error in which the roll core is offset from the geometric roll center, potentially causing runnability issues. This particular project aims to improve the detection of paper roll core eccentricity at the Mondi Dynäs integrated pulp and paper mill through creation, calibration and evaluation of a machine-vision-based tool for on-line core eccentricity measurement. The tool utilizes the Hough Transform (HT), since HT is a simple yet fast and robust algorithm when it comes to identification of basic shapes such as lines and circles. The proposed solution was evaluated in two ways; firstly by determining at what level of accuracy the measurements could be provided, accounting for how well the solution deals with correction of systematic error caused by environmental factors, and secondly by analyzing how well characteristic roll features could be accurately identified in large sets of data, necessary to consistently perform measurements. The evaluation of the proposed solution showed a 99.9% detection rate for characteristic paper roll features, and a 98.1% detection rate of laser lines used for correction of position and orientation induced error. Assessment of the measurement accuracy following successful detection was on par with the current optical measurement method, and the proposed solution was able to classify distinctive features with a 96.8% accuracy. Lastly, several improvement actions to address faulty detection were identified, and factors to be considered for future installment were highlighted.
|
65 |
Detecting Defective Rail Joints on the Swiss Railways with Inception ResNet V2 : Simplifying Predictive Maintenance of Railway Infrastructure / Detektering av Defekta Järnvägsskarvar med Inception ResNet V2 : Förenkla Proaktivt Underhåll av JärnvägsinfrastrukturLu, Anton January 2022 (has links)
Manual investigation of railway infrastructure is a labor-intensive and time-consuming task, and automating it has become a high priority for railway operators to reduce unexpected infrastructure expenditure. In this thesis, we propose a new image classification approach for classifying defect and non-defective rail joints in image data, based on previous fault detection algorithms using object detection. The rail joints model is to our knowledge a world first, with the vast majority of research into applying computer vision for rail defect detection focusing mainly on the rail tracks and sleepers. Our new image classification models are based on the widely popular Inception ResNet V2, which we fine-tune and compare against a counterpart trained using self-supervision. Additional comparisons are performed against the Faster R-CNN object detector that has had successes with rail tracks and sleepers at the Swiss Federal Railways, as well as against the novel transformer-based DETR architecture. The research has used an in-house object detection annotated dataset from the Swiss railways, recorded in the context of predictive rail maintanance, with rail joints labeled as either defective, or non-defective. Our proposed image classification approach, using either a pre-trained and then fine-tuned, or self-supervised CNN, uses the bounding boxes in a dataset originally intended for object detection, to perform an expanded crop of the images around the rail joint before feeding it to the neural network. Our new image classification approach significantly outperforms object detection neural networks for the task of classifying defective and non-defective rail joints, albeit with the requirement that the rail joint has to be identified prior to classification. Furthermore, our results suggest that the trained models classify defective joints in the test set more consistently than human rail inspectors. The results show that our proposed method can achieve practical performance on unseen data, and can practically be applied to real-life defect detection with high precision and recall, notably on the railways operated by Swiss Federal Railways, SBB CFF FFS. / Manuell inspektion av järnvägsinfrastruktur är en tids- och arbetskrävande uppgift, och automatisering av inspektionerna har på senare tid blivit mer prioriterat av järnvägsoperatörer i syfte att minska oväntade utgifter som uppkommer till följd av undermålig infrastruktur. I det här examensarbetet presenterar vi en ny bildklassificeringsmetod för att klassificera defekta och icke-defekta järnvägsskarvar i bilder tagna från diagnostiska tåg. Modelleringen av järnvägsskarvar som vi har utfört är till vår kännedom något som aldrig gjorts förut för järnvägsinfrastruktur, då majoriteten av forskning inom datorseende för inspektion av järnvägsinfrastruktur historiskt mest har fokuserat på räls och sliprar. Den nya bildklassificeringsmodellen som vi har utvecklat använder den populära arkitekturen Inception ResNet V2, som vi finjusterar och jämför med ett dito som har tränats med självövervakad inlärning. Vidare jämförelser görs mot objektigenkänningsmetoden Faster R-CNN som fungerat väl för sliprar på den schweiziska järnvägen, samt mot den nya transformer-baserade arkitekturen DETR. Forskningen har använt ett dataset annoterat för objektigenkänning från den schweiziska järnvägen, med järnvägsskarvar märkta som defekta, eller icke-defekta. Vår föreslagna bildklassificeringsmetod, med antingen en förtränad och sedan finjusterad CNN, eller en CNN tränad med sjävövervakad inlärning, använder de annoterade boxarna från datasetet för att beskära bilderna runt skarvarna, och sedan klassificera dem. Vår nya metod baserad på bildklassificering presterar väsentligt bättre än neurala nätverk för objektigenkänning, dock med kravet att järnvägsskarven måste ha identifierats i bilden före klassificering. Vidare visar våra resultat att de tränade bildklassificeringsmodellerna klassificerar defekta skarvar i test-setet mer konsekvent än mänskliga järnvägsinspektörer. Resultaten visar att vår nya metod kan användas praktiskt för att upptäcka defekter i verkligheten, med hög precision och recall i data som inte setts under träningen. Specifikt visar vi att de nya modellerna är praktiskt användbara för järnvägen som drivs av Schweiziska Federala Järnvägarna, SBB CFF FFS.
|
66 |
AI-based Quality Inspection forShort-Series Production : Using synthetic dataset to perform instance segmentation forquality inspection / AI-baserad kvalitetsinspektion för kortserieproduktion : Användning av syntetiska dataset för att utföra instans segmentering förkvalitetsinspektionRussom, Simon Tsehaie January 2022 (has links)
Quality inspection is an essential part of almost any industrial production line. However, designing customized solutions for defect detection for every product can be costlyfor the production line. This is especially the case for short-series production, where theproduction time is limited. That is because collecting and manually annotating the training data takes time. Therefore, a possible method for defect detection using only synthetictraining data focused on geometrical defects is proposed in this thesis work. The methodis partially inspired by previous related work. The proposed method makes use of aninstance segmentation model and pose-estimator. However, this thesis work focuses onthe instance segmentation part while using a pre-trained pose-estimator for demonstrationpurposes. The synthetic data was automatically generated using different data augmentation techniques from a 3D model of a given object. Moreover, Mask R-CNN was primarilyused as the instance segmentation model and was compared with a rival model, HTC. Thetrials show promising results in developing a trainable general-purpose defect detectionpipeline using only synthetic data
|
67 |
Micromoulding: extreme process monitoring and in-line product assessment.Whiteside, Benjamin R., Howell, Ken B., Martyn, Michael T., Spares, Robert 08 June 2009 (has links)
No / Advances in micromoulding technology are now allowing mass production of complex, three-dimensional functional products having sub-milligram masses and carefully tailored surface finishes. In order to create a viable manufacturing process for these components, accurate process monitoring and product evaluation are essential in order to highlight process problems and production of substandard parts. The present study describes work implementing a suite of sensors on a commercial micromoulding machine for detailed process interrogation. Evaluation of demoulded products is performed with a single camera based system combined with custom software to allow for three-dimensional characterisation of products during the process.
|
68 |
Detecting Structural Defects Using Novel Smart Sensory and Sensor-less ApproachesBaghalian, Amin 17 October 2017 (has links)
Monitoring the mechanical integrity of critical structures is extremely important, as mechanical defects can potentially have adverse impacts on their safe operability throughout their service life. Structural defects can be detected by using active structural health monitoring (SHM) approaches, in which a given structure is excited with harmonic mechanical waves generated by actuators. The response of the structure is then collected using sensor(s) and is analyzed for possible defects, with various active SHM approaches available for analyzing the response of a structure to single- or multi-frequency harmonic excitations. In order to identify the appropriate excitation frequency, however, the majority of such methods require a priori knowledge of the characteristics of the defects under consideration. This makes the whole enterprise of detecting structural defects logically circular, as there is usually limited a priori information about the characteristics and the locations of defects that are yet to be detected. Furthermore, the majority of SHM techniques rely on sensors for response collection, with the very same sensors also prone to structural damage. The Surface Response to Excitation (SuRE) method is a broadband frequency method that has high sensitivity to different types of defects, but it requires a baseline. In this study, initially, theoretical justification was provided for the validity of the SuRE method and it was implemented for detection of internal and external defects in pipes. Then, the Comprehensive Heterodyne Effect Based Inspection (CHEBI) method was developed based on the SuRE method to eliminate the need for any baseline. Unlike traditional approaches, the CHEBI method requires no a priori knowledge of defect characteristics for the selection of the excitation frequency. In addition, the proposed heterodyne effect-based approach constitutes the very first sensor-less smart monitoring technique, in which the emergence of mechanical defect(s) triggers an audible alarm in the structure with the defect. Finally, a novel compact phased array (CPA) method was developed for locating defects using only three transducers. The CPA approach provides an image of most probable defected areas in the structure in three steps. The techniques developed in this study were used to detect and/or locate different types of mechanical damages in structures with various geometries.
|
69 |
Effektivisering av Tillverkningsprocesser med Artificiell Intelligens : Minskad Materialförbrukning och Förbättrad KvalitetskontrollAl-Saaid, Kasim, Holm, Daniel January 2024 (has links)
This report explores the implementation of AI techniques in the manufacturing process at Ovako, focusing on process optimization, individual traceability, and quality control. By integrating advanced AI models and techniques at various levels within the production process, Ovako can improve efficiency, reduce material consumption, and prevent production stops. For example, predictive maintenance can be applied to anticipate and prevent machine problems, while image recognition algorithms and optical character recognition enable individual traceability of each rod throughout the process. Furthermore, AI-based quality control can detect defects and deviations with high precision and speed, leading to reduced risk of faulty products and increased product quality. By carefully considering the role of the workforce, safety and ethical issues, and the benefits and challenges of AI implementation, Ovako can maximize the benefits of these techniques and enhance its competitiveness in the market. / Denna rapport utforskar implementeringen av AI-tekniker i tillverkningsprocessen hos Ovako, med fokus på processoptimering, individuell spårbarhet och kvalitetskontroll. Genom att integrera avancerade AI-modeller och tekniker på olika nivåer inom produktionsprocessen kan Ovako förbättra effektiviteten, minska materialförbrukningen och förhindra produktionsstopp. Exempelvis kan prediktivt underhåll tillämpas för att förutse och förebygga maskinproblem, medan bildigenkänningsalgoritmer och optisk teckenigenkänning möjliggör individuell spårbarhet av varje stång genom processen. Dessutom kan AI-baserad kvalitetskontroll detektera defekter och avvikelser med hög precision och hastighet, vilket leder till minskad risk för felaktiga produkter och ökad produktkvalitet. Genom att noggrant överväga arbetskraftens roll, säkerhets- och etikfrågor samt fördelarna och utmaningarna med AI-implementeringen kan Ovako maximera nyttan av dessa tekniker och förbättra sin konkurrenskraft på marknaden.
|
Page generated in 0.0865 seconds