• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 13
  • 7
  • 6
  • 3
  • 1
  • Tagged with
  • 93
  • 93
  • 38
  • 38
  • 33
  • 28
  • 27
  • 26
  • 24
  • 21
  • 20
  • 18
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Mätfel vid fuktmätning i emissionsskadad betong / Error when performing moisture measurement in emission-damaged concrete

Orenäs Nissas, Sebastian, Rahimi, Nangyalay January 2018 (has links)
När människors hälsobesvär misstänks vara byggnadsrelaterat är det viktigt att klarlägga källan till problemet. Fukt kan vid högre nivåer ge upphov till mikrobiella eller kemiska reaktioner som orsakar emissioner från byggnadsmaterial som kan ha negativa hälsoeffekter. För att utreda om byggnaden är problemkällan görs skadeutredningar. I utredningarna är det viktigt att identifiera vilka emissioner som förekommer i inomhusmiljön för att kunna åtgärda den eventuella skadan. Med hjälp av fuktprofiler som skapas genom fuktmätningar kan det utredas om varifrån fukten kommer. En vanlig orsak i Norden till förhöjda koncentrationer av emissioner i inomhusmiljön är fuktskadade betongkonstruktioner med en pålimmad plastmatta. I en sådan konstruktion utgör plastmattan ett tätt skikt som inte låter fukten i betongen avdunsta. Betong, som är alkalisk, kan i kombination med höga fuktnivåer utlösa en kemisk process, så kallad alkalisk hydrolys, som bryter ned mjukgörare i golvlim och PVC-mattor. Detta leder till att nedbrytningsprodukterna 2-etyl-1-hexanol och n-butanol dels emitteras till inomhusluften och dels migrerar ned i betongen där de fixeras. Det är i det skedet betongen blir emissionsskadad på grund av att de kemiska ämnena som fixerats i betongen kan lagras där under en lång tid och kan om förhållandena förändras, exempelvis vid renovering, avge dessa ämnen till inomhusluften. Eftersom 2-etyl-1-hexanol och n-butanol utgör majoriteten av nedbrytningsprodukterna, används de därför som indikatorämnen vid skadeutredningar. Om indikatorämnena upptäcks i inomhusluften är det troligt att en skada i golvkonstruktionen har inträffat och detta kontrolleras då med fuktmätningar. Problemet med fuktmätningar i emissionsskadad betong är dock att det befaras av fuktskadeutredare att dessa indikatorämnen påverkar fuktmätningarna genom att man mäter till en lägre relativ fuktighet (RF) än vad det faktiskt är. Examensarbetet är utformat som ett experimentellt arbete med fuktmätningar som utförts i Polygon AK:s laboratorium. I laborationerna testades huruvida indikatorämnena, 2-etyl-1-hexanol samt n-butanol, påverkar fuktmätningar. Detta gjordes genom att prover med ren betong först RF-bestämdes för att sedan droppa i ovanstående ämnen i proverna och därefter följdes utvecklingen i RF. Vidare kontrollerades eventuell drift i mätinstrumenten genom egenkontroller både före och efter varje uppföljning. Mätresultaten från gjorda försök visade att den effekt som befarats av skadeutredare ej märkts av, det vill säga att indikatorämnena skulle ha en påverkan genom att fuktnivån mäts till något lägre jämfört med den verkliga fuktnivån. Effekten påvisades varken genom lägre uppmätta fuktnivåer eller genom mätinstrumentens drift. / When people's illness are suspected to be building-related, it is important to clarify the source of the problem. Moisture at higher levels can trigger microbial or chemical reactions which causes emissions from building materials that may have adverse health effects. In order to investigate whether the building is the source of the problem or not, indoor environment investigations are conducted to investigate the matter. In the investigations it is important to identify what kind of emissions that occurs in the indoor environment in order to fix the possible damage or damages. Using moisture profiles created with moisture measurements, it is possible to determine where the moisture comes from. A common cause in the Nordic countries for increased concentrations of emissions in the indoor environment is moisture-damaged concrete structures with a glued plastic mat. In such constructions, the plastic mat is a compact layer that does not allow the moisture in concrete to evaporate. Concrete, which is alkaline, can in combination with high moisture levels trigger a chemical process, called alkaline hydrolysis, which degrades plasticizers in floor adhesives and plastic mats. This results in the degradation products 2-ethyl-1-hexanol and n-butanol, which are being emitted to the indoor air and partly migrating down into the concrete where they are fixed. At that moment the concrete gets emission-damaged because of the degradation products that has been fixed into the concrete where they can be stored for a long time and can with changed conditions, for instance during renovation, emit these degradation products to the indoor air. Since 2-ethyl-1-hexanol and n-butanol constitutes the majority of degradation products, they are therefore used as indicators during damage investigations. If the indicators are detected in the indoor air, it is likely that a damage has occured in the floor construction and this is later checked with moisture measurements. However, the problem with moisture measurements in emission-damaged concrete is that some investigators fears that these indicators affects the moisture measurements by measuring a lower relative humidity (RH) than it actually is. The thesis is structured as an experimental work with moisture measurements performed in Polygon AK's laboratory. In the laboratory it was tested whether the indicators, 2-ethyl-1-hexanol and n-butanol, affects moisture measurements. This was done with specimens of pure concrete by first determining the RH followed by dropping the indicators into the samples and then the development in RH was followed. Furthermore, eventual drifting in the measuring instruments was checked before and after each follow-up. The measurement results from the experiments showed no effect of what the damage investigators feared of, that the indicators would have an impact by measuring the moisture level lower than the actual moisture level. The effect was not detected either by lower measured humidity levels or by drifting of the measuring instruments.
92

Systematic identification of thermal degradation products of HPMCP during hot melt extrusion process

Karandikar, Hrushikesh M., Ambardekar, Rohan, Kelly, Adrian L., Gough, Tim, Paradkar, Anant R January 2015 (has links)
No / A systematic identification of the degradation products of hydroxypropyl methylcellulose phthalate (HPMCP) during hot melt extrusion (HME) has been performed. A reverse phase HPLC method was developed for the extrudates of both hydroxypropyl methylcellulose acetate succinate (HPMCAS) and HPMCP polymers to quantify their thermal hydrolytic products: acetic acid (AA), succinic acid (SA) for HPMCAS and phthalic acid (PA) for HPMCP, without hydrolysing the polymers in strong alkaline solutions. The polymers were extruded in the temperature range of 160-190 degrees C at different screw rotation speeds and hydrolytic impurities were analysed. Investigation of extruded HPMCP showed an additional thermal degradation product, who is structural elucidation revealed to be phthalic anhydride (PAH). Moreover, two environmental analytical impurities, dimethyl phthalate and methyl benzoate formed in situ were recorded on GC-MS and their origin was found to be associated with PAH derivatization. Using the experimental data gathered during this study, a degradation mechanism for HPMCP is proposed.
93

<b>Molecular investigation of the multi-phase photochemistry of environmental aquatic systems</b>

Maria V Misovich (17553087) 08 December 2023 (has links)
<p dir="ltr">The chemical constituents of terrestrial and atmospheric waters originate from biomass burning, fertilizer runoff, and anthropogenic activity, among other sources, and their multi-phase chemistry is complex. Sunlight plays an essential role in aquatic chemistry. Photosensitizers in terrestrial and atmospheric waters absorb light to form highly reactive species such as triplet excited carbon (<sup>3</sup>C*), hydroxyl radical (•OH), and singlet oxygen (<sup>1</sup>O<sub>2</sub>), driving the photochemical transformations of dissolved organic matter (DOM) in the aqueous phase. Of note, these reactive species transform DOM compounds that do not undergo direct photolysis. DOM frequently undergoes a change in optical properties following photochemical processing, with implications for air quality, water quality, and human and animal health. The presence of inorganic minerals, such as the fertilizer compound struvite, in terrestrial or atmospheric waters introduces further complexity and impacts the photochemical processes that occur. Simplified proxy systems are created in the laboratory to simulate aquatic photochemical processes and evaluate the formation and/or photodegradation of photoproducts. These mixtures typically consist of a representative organic carbon (OC) compound and a photosensitizer, along with struvite or another inorganic mineral.</p>

Page generated in 0.0752 seconds