Spelling suggestions: "subject:"density biunctional 1heory - DFT"" "subject:"density biunctional btheory - DFT""
21 |
Density Functional Theory Investigation Of Noble Metal Reduction Agents On Gamma-al2o3 In Nox Storage/reduction CatalysisArtuc, Zuleyha 01 October 2011 (has links) (PDF)
Pollution from automobile exhaust is one of the most major environmental problems because of increasing usage of engine technologies. Diesel and lean burn gasoline engines operate
under oxygen rich (lean) conditions and they emit harmfull gases to the atmosphere (CO,CO2, NO, NO2). The control of NOx emission from exhaust has become a challenging issue
in engine industry because of the worldwide environmental regulations. Therefore lean-burn NOx emission control technologies have been developed to reduce emission of harmfull gases from exhausts, and the NOx storage/reduction (NSR) catalysts is one of the most promising candidates to reduce the pollution caused by lean-burn engines. In NSR systems, NO from the emission is first oxidized to NO2 over noble metal sites (Pt, Rh, Pd) during lean-burn engine operation. After that NO2 is stored as nitrites and nitrates in alkali earth oxides (BaO,MgO, CaO) particles or monolayer which is well dispersed on a substrate (Gamma-Al2O3, TiO2,
SiO2). Finally, stored NOx compound are broken into N2 and O2 on noble metal sites. The Pt/BaO/Gamma-Al2O3 system is one of the most popular subjects in literature both experimentally and theoretically since this system is known to be catalytically more active and ecient in interactions between NOx and Pt-BaO components are still not clearly explained. For this reason, in this thesis, the interaction between catalytic redox components, Pt and Rh, and the support material
Gamma-Al2O3 and the eects of Pt and Rh in atomic and diatomic clusters forms on the adsorption of the NO2 molecule on the Gamma-Al2O3(100) surface have been investigated
by using density functional theory (DFT).
|
22 |
DFT Study of the Covalent Functionalization of Double Nitrogen Doped GrapheneAlhabradi, Thuraya Faleh 21 May 2018 (has links)
Covalent functionalization significantly enhances the utility of carbon nanomaterials for many applications. In this study, we investigated the functionalization of double nitrogen doped graphene by the addition of different alkyl and phenyl functional groups at N atoms in syn and anti-configurations. Density functional theory calculations at the B3LYP/def-SV(P) level were employed to understand the syn versus anti preference on functionalization. The bond lengths, bond angles, relative energies, deformation energies and HOMO-LUMO energy gaps, of the syn and anti-configurations of the functionalized 2N-doped graphenes, have been compared. Functionalization with two groups leads to considerable deformation of 2N-doped graphene, which is confirmed by the change in C–N bond lengths by attachment of the functional groups. The attachment of larger functional groups deforms 2N-doped graphene to a greater extent than smaller functional groups. The HOMO-LUMO energy gap values are the least for the alkyl functionalized products, indicating that these structures are kinetically less stable than the phenyl functionalized products.
|
23 |
Adsorção de átomos alcalinos e halogênios em uma superfície de Grafeno: um estudo de primeiros princípios / Adsorption of alkaline and alogen atoms on a graphene surface: a study about the first principlesSilva, José Júnior Alves da January 2008 (has links)
SILVA, José Júnior Alves da. Adsorção de átomos alcalinos e halogênios em uma superfície de Grafeno: um estudo de primeiros princípios. 2008. 85 f. Dissertação (mestrado) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2008. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2014-05-13T22:42:26Z
No. of bitstreams: 1
2008_dis_jjasilva.pdf: 4132276 bytes, checksum: 961eed37504f3bed4fe8ed917e245554 (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2014-05-14T18:27:16Z (GMT) No. of bitstreams: 1
2008_dis_jjasilva.pdf: 4132276 bytes, checksum: 961eed37504f3bed4fe8ed917e245554 (MD5) / Made available in DSpace on 2014-05-14T18:27:16Z (GMT). No. of bitstreams: 1
2008_dis_jjasilva.pdf: 4132276 bytes, checksum: 961eed37504f3bed4fe8ed917e245554 (MD5)
Previous issue date: 2008 / Graphene is currently the hottest topic in condensed-matter physics and materials science and was isolated less than four years ago. Graphene layers have been proposed as alternative materials for replacing carbon nanotubes in some applications, due to its easy synthesis and low costs. In order to explore potential applications of those nanostructures in electronic devices, through first principles based on the density functional theory, we studied the interaction between graphene surface and alkaline (Li, Na and K) and halogens (Cl, I and I$_2$ ) atoms. We verified that the adsorption of these atoms on the graphene surface cause significant modifications in the graphene electronic structure. We observed a large charge transfer between the alkaline (halogens) atoms and graphene surface. These charge transfers were found to be 0,65 - 0,85 e- from the alkaline atoms to graphene and 0,37 (0,27) e- from the graphene to chlorine (iodine) atoms. The alkaline atoms presented a larger stability on the center of one of the graphene hexagons, presenting binding energy in the range -1, 47 and -1, 03 eV, where the order of intensity is given by Li > K > Na. This predisposition for a specific site was not observed for the twostudied halogens. The chlorine atom present the larger stability when adsorbed on a top atom of the graphene surface with binding energy about 0, 98 eV, however this behavior was not be seen in the iodine atom case where equivalent binding energies for all the studied sites were found to be about 0,42 eV. The I2 molecule also does not present predilection for a specific site on the graphene surface, however it showed more stable when adsorbed with its axis perpendicular to the graphene surface plane. / O grafeno é atualmente o tópico mais corrente em física da materia condensada e ciência dos materiais e foi isolado pela primeira vez a menos de quatro anos. O grafeno tem sido proposto como um material alternativo aos nanotubos de carbono em diversas aplicações, devido a sua fácil sintetização e seu baixo custo. A fim de explorar uma potencial aplicação dessas nanoestruturas em dispositivos eletrônicos, através de cálculos de primeiros princípios baseados na teoria do funcional da densidade, estudamos a interação entre uma superfície de grafeno e átomos alcalinos (Li, Na e K) e halogênios (Cl, I e I2). Verificamos que a adsorção desses átomos na superfície do grafeno provoca significativas modificações na estrutura eletrônica do grafeno. Observamos uma grande transferência de carga entre os átomos alcalinos (halogênios) e a superfície do grafeno. Essas transferências foram da ordem de 0,65-0,85 e- dos átomos alcalinos para o grafeno e 0,37 (0,27) e- do grafeno para o átomo de cloro (iodo). Os metais alcalinos apresentaram uma maior estabilidade sobre o centro de um hexágono do grafeno, tendo energias de ligação entre -1,47 e -1,03 eV, onde a ordem de intensidade é dada por Li > K > Na. Essa predisposição por um sítio específico não foi observada para os dois halogênios estudados. O átomo de cloro apresentou uma maior estabilidade quando adsorvido sobre um átomo da superfície do grafeno, com energia de ligação da ordem de 0,98 eV, no entanto, isso não foi visto no caso do átomo de iodo onde energias de ligação equivalentes para todos os sítios estudados foram encontradas da ordem de 0,42 eV. A molécula I2 também não apresentou uma predileção por uma sitio específico da superfície do grafeno, mas mostrou-se mais estável quando adsorvida com seu eixo perpendicular ao plano do grafeno.
|
24 |
Ab initio theory of ferromagnetic transition metals and alloys under high pressure / La théorie ab initio de métaux de transition ferromagnétiques et alliages sous haute pressionKvashnin, Yaroslav 02 October 2013 (has links)
Le sujet de cette thèse porte sur l'étude des propriétés magnétiques de métaux de transition et leurs alliages sous haute pression au moyen de calculs ab initio. D'abord, les résultats de mesures de dichroïsme magnétique circulaire des rayons X (XMCD) au seuil K du nickel et du cobalt sont interprétés. Je montre que les données expérimentales doivent être comparées à celle de l'aimantation d'orbite projetée sur les états ``p''. Je mets en avant que la pression affecte différemment le spin et le moment orbitalaire. Dans le cas de l'alliage FeCo, la transition structurelle s'effectue sous une pression appliquée de l'ordre de 35 GPa. Je propose que l'émergence de l'antiferromagnétisme peut expliquer la disparition du signal XMCD au seuil K du fer et du cobalt. Ensuite, la transformation de phase dans FePd3, induite sous une pression de 12 GPa, est étudiée. Je démontre que le système est décrit par un modèle de Heisenberg étendu, contenant interactions d'échange biquadratiques forts. Selon nos résultats, FePd3 subit une transition de l'etat ferromagnétique à l'état triple-Q non-colinéaire, lorsqu'il est compressé. Enfin, une mise en oeuvre du tenseur des contraintes dans le code BigDFT est présentée. Il est montré qu'un traitement explicite des électrons de coeur permet de réduire considérablement les erreurs introduites par les pseudo-potentiels. Ainsi, les estimations des propriétés structurales peuvent être améliorées. / The subject of the present thesis is the investigation of magnetic properties of transition metals and their alloys under high pressure by means of first-principles calculations. First, the results of the K-edge x-ray magnetic circular dichroism (XMCD) experiments on Ni and Co are interpreted. It is shown that the experimental pressure evolution of the data should be compared with that of the p-projected orbital magnetization. I emphasize that the spin and orbital moments have different behavior upon compression. In the case of FeCo alloy the structural transition occurs under the pressure of 35 GPa. I propose that the emergence of antiferromagnetism can explain the disappearance of the XMCD signal at the Fe and Co K-edges. Then, the phase transformation in FePd3 , induced under pressure of 12 GPa, is investigated. I demonstrate that the system is described by an extended Heisenberg model, containing strong biquadratic exchange interactions. According to the results, FePd3 undergoes a transition from the ferromagnetic to the noncollinear triple-Q state when compressed. Finally, the implementation of the stress tensor in the BigDFT software package is presented. It is shown that an explicit treatment of core electrons can considerably reduce the errors introduced by the pseudopotentials. Thus the estimates of the structural properties can be improved.
|
25 |
Low-temperature binding of NO adsorbed on MIL-100(Al)-A case study for the application of high resolution pulsed EPR methods and DFT calculationsMendt, Matthias, Barth, Benjamin, Hartmann, Martin, Pöppl, Andreas 23 May 2018 (has links)
The low-temperature binding of nitric oxide (NO) in the metal-organic framework MIL-100(Al) has been investigated by pulsed electron nuclear double resonance and hyperfine sublevel correlation spectroscopy. Three NO adsorption species have been identified. Among them, one species has been verified experimentally to bind directly to an 27Al atom and all its relevant 14N and 27Al hyperfine
interaction parameters have been determined spectroscopically. Those parameters fit well to the calculated ones of a theoretical cluster model, which was derived by density functional theory (DFT) in the present work and describes the low temperature binding of NO to the regular coordinatively unsaturated Al3+ site of the MIL-100(Al) structure. As a result, the Lewis acidity of that site has been
characterized using the NO molecule as an electron paramagnetic resonance active probe. The DFT derived wave function analysis revealed a bent end-on coordination of the NO molecule adsorbed at that site which is almost purely ionic and has a weak binding energy. The calculated flat potential energy surface of this species indicates the ability of the NO molecule to freely rotate at intermediate
temperatures while it is still binding to the Al3+ site. For the other two NO adsorption species, no structural models could be derived, but one of them is indicated to be adsorbed at the organic part of the metal-organic framework. Hyperfine interactions with protons, weakly coupled to the observed NO adsorption species, have also been measured by pulsed electron paramagnetic resonance and found to be consistent with their attribution to protons of the MIL-100(Al) benzenetricarboxylate ligand molecules.
|
26 |
Prediction of thermal conductivity and strategies for heat transport reduction in bismuth : an ab initio study . / Prédiction de la conductivité thermique et stratégie de réduction du transport de la chaleur dans le bismuth : étude ab initio.Markov, Maksim 11 March 2016 (has links)
Cette thèse de doctorat porte sur l'étude théorique de la conductivité thermique du réseau dans le bismuth semi-métallique et sur les stratégies pour réduire la conductivité thermique en vue d'applications pour réduire l'échauffement dans les circuits électroniques, et pour la thermoélectricité. J'ai utilisé des méthodes avancées de résolution de l'équation de transport de Boltzmann pour les phonons, et de calcul ab initio des éléments de matrice de l'interaction phonon-phonon. J'ai calculé la dépendance en température de la conductivité thermique du réseau dans le matériau en volume en excellent accord avec les rares expériences disponibles. J'ai obtenu une description très précise, à l'échelle microscopique, du transport de la chaleur et j'ai quantifié la contribution des porteurs de charge à la conductivité thermique totale. J'ai démontré que la nano-structuration et la photo-excitation sont des moyens très efficaces dans le bismuth de contrôler la diffusion des phonons qui portent la chaleur, respectivement par interaction avec les bords de l'échantillon, et par interaction phonon-phonon. En contrôlant l'équilibre entre ces deux derniers effets, j'ai prédit de façon exhaustive l'effet de réduction pour différentes températures et tailles de nanostructures, pour des mono et poly-cristaux, semi-conducteurs ou semi-métalliques. Enfin, j'ai étudié l'élargissement anharmonique des phonons acoustiques et optiques, et j'ai déterminé pour chacun les interactions majeures qui contribuent à l'élargissement. L'atténuation du son a été prédite dans le bismuth pour de futures expériences. L'approximation des grandes longueurs d'ondes [long-wave approximation (LWA)] a été validée pour le bismuth et ses limites ont été déterminées. / This work is devoted to the theoretical investigation of the heat conduction in bulk bismuth and the possible strategies for its reduction. Thermal properties of Bi are extremely interesting because of its low thermal conductivity that makes this material suitable for the thermal management applications. Moreover, bismuth is an excellent model substance for the study of thermoelectricity and bismuth-based compounds such as Bi2 Te3 and Bi2 Se3 which are typical thermoelectric materials used in industrial applications.In collaboration with L. Paulatto (IMPMC), G. Fugallo (Ecole Polytechnique), F. Mauri(IMPMC) and M. Lazzeri (IMPMC) I have applied the recently developed advanced methods of the solution of the Boltzmann transport equation (BTE) and of the phonon-phonon matrix elements calculation to describe thermal transport in bismuth. I have obtained the temperature dependence of the lattice thermal conductivity which is in excellent agreement with experiment. Moreover I am able to predict the lattice thermal conductivity (LTC) at temperatures at which it has not been measured. I have found that most of heat is carried by the acoustic phonons. However, the optical phonons were shown to play an important role by modulating the magnitude of the acoustic-optical phonon interaction (AOPI) and thus the value of the lattice thermal conductivity. Furthermore, I have shown that the available experimental data for the lattice thermal conductivity for polycrystalline thin-films are remarkably explained by my calculations, which enables me to predict the effect of the LTC size reduction for various temperatures and nanostructure shapes and sizes.The methods I use contain no empirical fitting parameters and give a direct insight into the microscopic mechanisms determining the transport and anharmonic properties of the materials. This allows me to analyze the anharmonic broadening that is inversely proportional to the phonon lifetime, for the various phonon modes along the high symmetry directions in the Brillouin zone and show what are the major scattering channels for coalescence/decays of phonons that govern the thermal transport in Bi.
|
27 |
Reactivation Mechanism Studies on Calcium-Based Sorbents and its Applications for Clean Fossil Energy Conversion SystemsYu, Fu-Chen 17 March 2011 (has links)
No description available.
|
28 |
Studium chirálních vlastností supramolekulárních komplexů / Studium chirálních vlastností supramolekulárních komplexůŠikorský, Tomáš January 2011 (has links)
No description available.
|
29 |
Rational design of novel halide perovskites combining computations and experimentsDeng, Zeyu January 2019 (has links)
The perovskite family of materials is extremely large and provides a template for designing materials for different purposes. Among them, hybrid organic-inorganic perovskites (HOIPs) are very interesting and have been recently identified as possible next generation light harvesting materials because they combine low manufacturing cost and relatively high power conversion efficiencies (PCEs). In addition, some other applications like light emitting devices are also highly studied. This thesis starts with an introduction to the solar cell technologies that could use HOIPs. In Chapter 2, previously published results on the structural, electronic, optical and mechanical properties of HOIPs are reviewed in order to understand the background and latest developments in this field. Chapter 3 discusses the computational and experimental methods used in the following chapters. Then Chapter 4 describes the discovery of several hybrid double perovskites, with the formula (MA)$_2$M$^I$M$^{III}$X$_6$ (MA = methylammonium, CH$_3$NH$_3$, M$^I$ = K, Ag and Tl, M$^{III}$ = Bi, Y and Gd, X = Cl and Br). Chapter 5 presents studies on the variable presure and temperature response of formamidinium lead halides FAPbBr$_3$ (FA = formamidinium, CH(NH$_2$)$_2$) as well as the mechanical properties of FAPbBr$_3$ and FAPbI$_3$, followed by a computational study connecting the mechanical properties of halide perovskites ABX$_3$ (A = K, Rb, Cs, Fr and MA, X = Cl, Br and I) to their electronic transport properties. Chapter 6 describes a study on the phase stability, transformation and electronic properties of low-dimensional hybrid perovskites containing the guanidinium cation Gua$_x$PbI$_{x+2}$ (x = 1, 2 and 3, Gua = guanidinium, C(NH$_2$)$_3$). The conclusions and possible future work are summarized in Chapter 7. These results provide theoreticians and experimentalists with insight into the design and synthesis of novel, highly efficient, stable and environmentally friendly materials for solar cell applications as well as for other purposes in the future.
|
30 |
Computational investigations of the electronic structure of molecular mercury compounds: ion-selective sensorsAfaneh, Akef 06 1900 (has links)
This thesis presents the basic concepts of electronic structure theory and the chemical properties of mercury. The theoretical foundation of DFT and the consequences of relativity are also introduced. The electronic structure of Hg(II) ions, [Hg(L)n(H2O)m]q (L = HO-, Cl-, HS-, S2-) has been studied. We show, in this thesis, that the charge transfer (that is calculated from the hard-soft-acid-base principle (Pearson’s principle)), the total NBO charge and the interaction energies are strongly correlated. Our studies indicate the effect of the solvent on the global electrophilicity, the charge transfer and consequently the interaction strength between Hg(II) and ligand L. The formation constants, logK, of Hg2+−complexes are calculated. The procedure that we follow in this thesis to calculate the formation constants, logK’s, are in good agreement with the extrapolated experimental values. We introduce and explain why it is important adding water molecules explicitly during the calculations of the logK. The recommended logK value of HgS is 27.2. We examined two different types of organic compounds as sensors for heavy metal ions: lumazine (Lm) and 6-thienyllumazine (TLm). We found that the simple calculation of pKa values using DFT methods and implicit solvent models failed to reproduce the experimental values. However, calculated orbital energies and gas phase acidities both indicate that the compound TLm is inherently more acidic than the parent species Lm. We demonstrate that: (1) we need to take in our consideration the population of each tautomer and conformer during the calculations of the pKa values, and (2) thienyl group has indirect effect on the acidity of the proton on N1 in the uracil ring. Last but not least, the fluorescence spectrum of the sensors (L) and their [(L)nM(H2O)m]2+ complexes (L = Lumazine (Lm) and 6-thienyllumazine (TLm) and M = Cd2+and Hg2+) are calculated using time dependent DFT (TDDFT). The results show that TDDFT is in good agreement with experimental results. This chapter provides a new concept in the design of fluorescence turn-on/off sensors that has wider applicability for other systems. Finally, we provide a summary of the works compiled in this thesis and an outlook on potential future work. / October 2015
|
Page generated in 0.0763 seconds