• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 3
  • 1
  • Tagged with
  • 20
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Desempenho superficial de barras laminadas redondas de aço SAE 1043 frente às variáveis de condicionamento de tarugos, temperatura de laminação e uso do descarepador

Bueno, Eduardo Weigelt January 2012 (has links)
Os defeitos superficiais são os maiores problemas de qualidade em barras laminadas a quente, representando inúmeros transtornos durante o processo produtivo, pois dependendo de suas características geram elevada rejeição durante o processo de inspeção. Elevada rejeição significa retrabalho e possível sucateamento. Dentre as diversas causas para a ocorrência de defeitos superficiais, estão os defeitos nos tarugos, a temperatura de laminação, conseqüência da temperatura de reaquecimento e ritmo de laminação e a remoção de carepa após o reaquecimento. Definiu-se o aço SAE 1043 para o desenvolvimento deste trabalho devido aos níveis de rejeição superficial e elevados volumes de produção, o que gera grande impacto na produção das linhas de inspeção. Os resultados obtidos a partir dos testes realizados demonstram que a temperatura de laminação até determinado limite não tem influência na rejeição superficial, mas que abaixo deste gera elevado índice de rejeição. O uso do descarepador tem grande influencia nos níveis de defeitos superficiais, e o controle de seus parâmetros principais é fundamental. O condicionamento superficial dos tarugos é o parâmetro que mais apresentou influência positiva sobre a rejeição superficial, demonstrando que defeitos pré-existentes na matéria-prima têm grande impacto no produto final da laminação. / Surface defects are major quality problems in hot rolled bars, representing numerous disturbances during the production process, as depending on their characteristics generate high rejection during the inspection process. High rejection means rework and scrap. Among the various causes for the occurrence of surface defects are defects in the billets, rolling temperature, a consequence of the reheating temperature and rate of roll and removal of scale after reheating. The steel SAE 1043 used in this work was selected due to its level of surface defects and high production volumes, which generates large impact on production inspection process. The results show that the rolling temperature of up to a certain limit does not influence the surface defects, but below this generates a high rate of rejection. The use of descaling has a large influence on the levels of surface defects, and control of its main parameters is essential. The surface conditioning of billets is the parameter that showed a positive influence on the reduction of surface defects, demonstrating that pre-existing defects in materials has large impact on the final rolled product.
12

Desempenho superficial de barras laminadas redondas de aço SAE 1043 frente às variáveis de condicionamento de tarugos, temperatura de laminação e uso do descarepador

Bueno, Eduardo Weigelt January 2012 (has links)
Os defeitos superficiais são os maiores problemas de qualidade em barras laminadas a quente, representando inúmeros transtornos durante o processo produtivo, pois dependendo de suas características geram elevada rejeição durante o processo de inspeção. Elevada rejeição significa retrabalho e possível sucateamento. Dentre as diversas causas para a ocorrência de defeitos superficiais, estão os defeitos nos tarugos, a temperatura de laminação, conseqüência da temperatura de reaquecimento e ritmo de laminação e a remoção de carepa após o reaquecimento. Definiu-se o aço SAE 1043 para o desenvolvimento deste trabalho devido aos níveis de rejeição superficial e elevados volumes de produção, o que gera grande impacto na produção das linhas de inspeção. Os resultados obtidos a partir dos testes realizados demonstram que a temperatura de laminação até determinado limite não tem influência na rejeição superficial, mas que abaixo deste gera elevado índice de rejeição. O uso do descarepador tem grande influencia nos níveis de defeitos superficiais, e o controle de seus parâmetros principais é fundamental. O condicionamento superficial dos tarugos é o parâmetro que mais apresentou influência positiva sobre a rejeição superficial, demonstrando que defeitos pré-existentes na matéria-prima têm grande impacto no produto final da laminação. / Surface defects are major quality problems in hot rolled bars, representing numerous disturbances during the production process, as depending on their characteristics generate high rejection during the inspection process. High rejection means rework and scrap. Among the various causes for the occurrence of surface defects are defects in the billets, rolling temperature, a consequence of the reheating temperature and rate of roll and removal of scale after reheating. The steel SAE 1043 used in this work was selected due to its level of surface defects and high production volumes, which generates large impact on production inspection process. The results show that the rolling temperature of up to a certain limit does not influence the surface defects, but below this generates a high rate of rejection. The use of descaling has a large influence on the levels of surface defects, and control of its main parameters is essential. The surface conditioning of billets is the parameter that showed a positive influence on the reduction of surface defects, demonstrating that pre-existing defects in materials has large impact on the final rolled product.
13

Desempenho superficial de barras laminadas redondas de aço SAE 1043 frente às variáveis de condicionamento de tarugos, temperatura de laminação e uso do descarepador

Bueno, Eduardo Weigelt January 2012 (has links)
Os defeitos superficiais são os maiores problemas de qualidade em barras laminadas a quente, representando inúmeros transtornos durante o processo produtivo, pois dependendo de suas características geram elevada rejeição durante o processo de inspeção. Elevada rejeição significa retrabalho e possível sucateamento. Dentre as diversas causas para a ocorrência de defeitos superficiais, estão os defeitos nos tarugos, a temperatura de laminação, conseqüência da temperatura de reaquecimento e ritmo de laminação e a remoção de carepa após o reaquecimento. Definiu-se o aço SAE 1043 para o desenvolvimento deste trabalho devido aos níveis de rejeição superficial e elevados volumes de produção, o que gera grande impacto na produção das linhas de inspeção. Os resultados obtidos a partir dos testes realizados demonstram que a temperatura de laminação até determinado limite não tem influência na rejeição superficial, mas que abaixo deste gera elevado índice de rejeição. O uso do descarepador tem grande influencia nos níveis de defeitos superficiais, e o controle de seus parâmetros principais é fundamental. O condicionamento superficial dos tarugos é o parâmetro que mais apresentou influência positiva sobre a rejeição superficial, demonstrando que defeitos pré-existentes na matéria-prima têm grande impacto no produto final da laminação. / Surface defects are major quality problems in hot rolled bars, representing numerous disturbances during the production process, as depending on their characteristics generate high rejection during the inspection process. High rejection means rework and scrap. Among the various causes for the occurrence of surface defects are defects in the billets, rolling temperature, a consequence of the reheating temperature and rate of roll and removal of scale after reheating. The steel SAE 1043 used in this work was selected due to its level of surface defects and high production volumes, which generates large impact on production inspection process. The results show that the rolling temperature of up to a certain limit does not influence the surface defects, but below this generates a high rate of rejection. The use of descaling has a large influence on the levels of surface defects, and control of its main parameters is essential. The surface conditioning of billets is the parameter that showed a positive influence on the reduction of surface defects, demonstrating that pre-existing defects in materials has large impact on the final rolled product.
14

Development of a calcium carbonate scale formation experimental set-up for the evaluation of physical water treatment devices

Da Veiga, Reinaldo 19 November 2008 (has links)
D.Ing.
15

Návrh a dispoziční uspořádání vysokotlaké čerpací stanice / Design and lay-out of high pressure pumping station.

Václavík, Tomáš January 2009 (has links)
The aim of diploma thesis is design and lay-out of high pressure pumping station with plunger pumps for splash of scales from slabs of hot-rolled. Theoretic (introduction) part of this thesis contain description of formation of scales and description of ways how it is possible remove these scales. And this part contains also explication of effect of water jet on solid material. The practical part of diploma thesis is focused on design of pumping station including of dimensioning of machinery. Part of this work is also technical documentation for proposed pumping station and specification of main machines and devices.
16

Investigation of cavitating and pulsed high-pressure water jet devices for process scale removal /

Tadic, Dihon Misha. January 2004 (has links) (PDF)
Thesis (M.Eng.Sc.) - University of Queensland, 2004. / Includes bibliography.
17

Glödskalsrensning på göt med varierande tvärsnitt

Oppitz, Mattias January 2015 (has links)
På Ovako i Hofors, framställs stål via götgjutning. Göten har ett kvadratiskt tvärsnitt som varierar mellan 300 och 700 mm. Dessa transporteras från stålverket, till valsverket för uppvärmning. Varpå de varmvalsas till färdiga ämnen. Under tiden i ugnen när göten värms upp, oxiderar järn och andra legeringar och bildar glödskal. Om glödskalet valsas in i ämnet ger det upphov till defekter, som föroreningar och sprickor, med kvalitetsproblem som följd. Därför var det en önskan från Ovako att ta fram en metod för att rensa glödskal på göt med varierande tvärsnitt.   Syftet med examensarbetet var att utreda möjligheterna att avlägsna glödskal från göt, med hjälp av vattentryck eller andra metoder.   Olika metoder har utvärderats utifrån tidigare forskning inom området, och utifrån olika värderingar, valdes högtrycksspolning med vatten som metod att gå vidare med. Under höga tryck och flöden sprutas vatten genom dysor, som bryter glödskalet och avlägsnar det från götet. Denna metod är den mest förekommande på de flesta valsverk. Problematiken hos Ovako är att deras göt har varierande tvärsnitt, och utrustningen måste anpassa sig efter dimensionerna.   Beräkningar gjordes med värden från befintliga valsverk, och med deras utrustning som klarar av att rensa glödskal på ett tillfredsställande sätt.   Ett systemtryck på 25 MPa, med ett totalflöde på nästan 130 l/s levereras genom 44 dysor fördelat på götets fyra sidor. Avståndet mellan dysor och göt är 150 mm, där dysornas stråle har en vinkel på 15 grader mot ytans normal. Detta system ger ett yttryck på 0,92 MPa. Varav yttrycket bör ligga mellan 0,5 och 1,0 MPa för att ge god rensning. Ackumulator bör användas, med en volym på ca 0,35 m3.   När götets tvärsnitt ändras vid rensningen, kommer dysramperna att justeras för att alltid ha samma avstånd från dysorna till götet. Slutsatsen av arbetet är att denna metod och utrustning kommer att rensa göt på ett tillfredsställande sätt. Däremot bör utrustningen optimeras, för att passa de olika typerna av stål som tillverkas på Ovako. / At Ovako in Hofors, steel is produced through ingot casting. These ingots have a square cross-section, which varies between 300 and 700 mm. These are transported from the steel plant, to a hot-rolling mill for reheating. Whereupon it then gets rolled into finished materials. During the time in the furnaces, when ingots are heated, iron and other alloys oxidize and form a scale. If this scale then is rolled into the material, defects, such as impurity and cracks are formed in the steel, with quality issues as a result. Therefore, it was a desire from Ovako to develop a method to clean the scale on ingots with varying cross-section.   The aim of this thesis was to investigate the possibility of removing scale from ingots using high-pressure water or other methods.   Various methods have been evaluated on the basis of previous research in the area, and based on different values, water was chosen as a method to proceed with. Under high pressure and flow, water is sprayed through nozzles, which breaks the scale and removes it from the ingot. This method is the most occurring in hot-rolling mills. The problem at Ovako is that their ingots have varying cross-section, and the equipment must adapt to the difference in the dimensions.   Calculations were made using values from existing rolling mills and with their equipment that is capable of descale in a satisfactory manner.   A system pressure of 25 MPa, with a total flow of almost 130 l/s are delivered through 44 nozzles distributed over the ingots four sides. The nozzle distance to the ingot is 150 mm, where the nozzles have a jet angle of 15 degrees to the surface normal. This system provides a surface pressure of 0,92 MPa. Which should be between 0,5 and 1,0 MPa to give a satisfactory result. Accumulator should be used, with a volume of 0,35 m3.   When the ingots cross-section changes during descaling, the spray headers will adapt to have the same distance between nozzles and the ingot. The conclusion of this work, is that this method and equipment will clean ingots in a satisfactory manner. However, the equipment should be optimized to suit the different types of steel, produced in Ovako.
18

Effect of mould flux on scale adhesion to reheated stainless steel slabs

Ndiabintu, Mukadi Jean-Jacques 26 November 2009 (has links)
Effects of mould flux contaminant on scale-steel adhesion and hydraulic descaling of scale formed on slabs were investigated. In this investigation, stainless steel type 304 (austenitic with 18% Cr and 8% Ni) and specific mould fluxes were used when growing the scale on contaminated samples under simulated industrial reheating conditions, with subsequent high pressure water hydraulic descaling. The basic hypothesis was that the steel-scale adhesion depends on the microstructure of different phases present in the scale, the segregation of specific elements at the interface and the interfacial morphology of the scale after reheating. It was found that mould flux contaminant decreases scale-steel adhesion and therefore improved the descaling effectiveness significantly compared to non contaminated stainless steel. The descaling effectiveness of contaminated and uncontaminated slab was dependent to the presence of metal free paths (chromite layers along the austenite grains boundaries) and the presence of unoxidized metal in the scale due to nickel enrichment at the interface. Compared to the uncontaminated samples, the descaling of contaminated samples was efficient which could be due to the fact that some mechanisms which increase scale– steel adhesion (notably nickel enrichment at the interface) were considerably reduced. For all contaminated samples, the descaling effectiveness after visual observation were close to 100% and it was found that mould flux type 832 ( low basicity) gave a high descaling efficiency with better steel surface quality after descaling compared to mould fluxes type 810 and RF1. / Dissertation (MSc)--University of Pretoria, 2009. / Materials Science and Metallurgical Engineering / unrestricted
19

Vývoj nových přístupů v odstraňování okují při kontinuální výrobě oceli s využitím vysokotlakého vodního paprsku / Development of New Approaches in Descaling in the Continuous Production of Steel using High-Pressure Water Jet

Votavová, Helena January 2019 (has links)
The thesis summarizes general and up-to-date knowledge of descaling during the continuous production of the hot-rolled steel and proposes further streamlining of this process in industrial production. The first chapter of the thesis deals with the origin, structure and physical properties of the scales. The second chapter describes the principles of descaling by using a high pressure flat water jet. The third chapter introduces the principles of the experimental methods and describes the used laboratory equipment. The fourth chapter summarizes the description of the particular experiments and their evaluation, and thus represents the focus of the dissertation. It is divided into six sections which independently solve predefined objectives of the dissertation. The first section focuses on the height and structure development of the scales on 54SiCr6 and HDT580X steels. It has been proven that the height of the formed scales increases with the time and temperature of the oxidation. The layered nature of the scales was verified at the same time. The second section examines the effect of the nozzle stabilizer on the focussing and distribution of the impact pressure of the nozzle. Experiments have shown that increase of 11 % of an average maximum nozzle pressure can be achieved, depending on the type of nozzle and the length of the stabilizer. The third section deals with the analysis of shadowgraphy images of water jet structures of the nozzles. A script was developed for analysis of these shadowgraphy photos by an adaptive thresholding. The findings are correlated using a regression analysis with an average heat transfer coefficient. It has been reported that most of the standard nozzle configurations produced disintegrated stream of little droplets at the height of the rolled surface. The fourth section focuses on the area of water jet overlap, especially the area of the so-called washout, where the impact pressure of one nozzle is reduced by the nozzle stream of the other. The influence of the pressure change and the mutual displacement of the nozzles is investigated. The analysis showed that the change of pressure did not have any effect on the percentage of reduction of the impact pressure in the area of the washout. It has been shown that if the area of the washout is wide the descaling efficiency in this area may be reduced. The fifth section builds on the previous section and focuses directly on the areas of waterjet overlaps. The influence of the change of rotation and pitch of the nozzles is studied. Experiments have shown that small changes in nozzle pitch do not have a significant impact on impact pressure and heat transfer coefficient. The effect of nozzle rotation, on the other hand, was a significant factor for the efficiency and homogeneity of the descaling of the surface. The last section deals with the effect of the rolling speed on the heat transfer coefficient in the descaling process. The regression model has shown that with a higher rolling speed there is a reduction in the average heat transfer coefficient. Conclusion summarizes the results of the dissertation and proposes which findings can be used in the industry to make the descaling process more effective.
20

VLIV PARAMETRŮ VYSOKOTLAKÉHO OSTŘIKU NA KVALITU ODOKUJENÍ / EFFECT OF HIGH PRESSURE WATER BEAM PARAMETERS ON QUALITY OF DESCALED SURFACE

Vavrečka, Lukáš January 2011 (has links)
This work is focussed on hydraulic descaling of hot surfaces. Hydraulic descaling is a process when layers of oxides are removed from hot steel surfaces during continuous rolling. High pressure water beam is used. Quality of descaled surfaces is important for final quality of rolled product. Insufficient descaling causes drop of final quality, degradation of rolls and lost of yields. High-pressure water beam has two effects on a scale layer. The first effect is mechanical caused by impact pressure. The second one is a relatively intensive thermal shock depending on a set of parameters (water pressure, nozzle type, distance from the surface, inclination angle, speed of product moving). There are a lot of theories about principles of scales removing. Main task of this work is to make it clear which theory is acceptable and which is just ,,theory”. For this purpose mathematical modelling and experimental work were used. In experimental part, three types of experimental measurement were done. First one, measurement of dynamical effect of water beam – impact pressure. Second one, measurement of temperature drop when a product is passing under the nozzle. Measured data (temperatures) from this measurement are evaluated with inverse task and heat transfer coefficient is obtained. And the third experimental measurement is simulation of whole process of descaling. Quality of descaled surfaces is valuated according to amount of remained oxide scales. Data from firs and second experimental measurement are used as boundary conditions for mathematical modelling. For mathematical simulations, FEM (finite element method) system ANSYS was used. Obtained data from experimental measurement were applied on 2D and 3D models of basic steel material with layer of scale. Influence of theses data on final temperature, stress and strain fields were observed.

Page generated in 0.0687 seconds