• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 11
  • 1
  • 1
  • Tagged with
  • 31
  • 10
  • 10
  • 9
  • 9
  • 9
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Enantioselective Brønsted Acid-Catalyzed Reaction Methodology Part A: Enantioselective Mannich Reaction Part B: Enantioselective Desymmetrization of <em>meso</em>-Aziridines

Rowland, Emily Bretherick 03 July 2008 (has links)
The synthesis of enantiomerically pure compounds is of vital importance. Most biologically active natural products are chiral and require asymmetric synthesis, chiral resolution, or the use of naturally chiral starting materials for their preparation. Organocatalytic enantioselective reaction methodology is a continuously growing area in organic chemistry. The use of organocatalysts as a potentially environmentally friendly alternative to metal catalysts is appealing to the pharmaceutical industry. In this dissertation an enantioselective Mannich reaction using an organocatalyst was investigated. The reaction was between a ß-keto ester and an imine electrophile catalyzed by vaulted biphenanthrol (VAPOL) phosphoric acid. The reaction resulted in products with high yields, but low to moderate enantioselectivity and diastereoselectivity. The development of the first Brønsted acid-catalyzed desymmetrization of meso-aziridines was also investigated. This is one of the first instances where a phosphoric acid has been used to catalyze a reaction that did not involve an imine. It was shown that the chiral VAPOL phosphoric acid was an excellent catalyst for the reaction resulting in high yields and enantioselectivities for the chiral ring opened products. It was also shown, for the first time, that a vaulted binaphthol (VANOL) phosphoric acid can also catalyze the ring-opening of meso-aziridines with comparable results to the VAPOL phosphoric acid in some cases. Mechanistic NMR studies were used to probe the reaction, and it is believed that evidence leads one to conclude that a unique mechanism for phosphoric acid-catalysis is followed. The products that can be obtained from this reaction, 1,2-diamines, are of high value for synthetic chemists. They have been used as chiral auxiliaries, ligands, and precursors to natural products.
12

Chiral BINOL Metal Phosphate/Phosphoric Acid Catalyzed Enantioselective Addition of Phosphorus and Sulfur Nucleophiles to Imines and Epoxides

Ingle, Gajendrasingh 01 January 2012 (has links)
The research presented in this dissertation focuses on chiral BINOL metal phosphatephosphoric acid catalyzed enantioselective additions of phosphorus and sulfur nucleophiles to imines and epoxides. In chapter 2, we reported a new method to synthesize chiral amino phosphine oxides. The reaction combines N-substituted imines and diphenylphosphine oxide catalyzed by chiral magnesium 9-antryl phosphate. A wide variety of aliphatic and aromatic aldimines substituted by electron neutral benzhydryl or dibenzocycloheptene groups were excellent substrates for the addition reaction. The imines protected with dibenzocycloheptene protecting group provided better enantioselectivity than those protected with benzhydryl group, while both imines gave comparable yields. Also, the substituted diphenylphosphine oxides were excellent nucleophiles obtaining chiral α-amino phosphine oxides in good yields and enantioselectivities. In chapter 3, we reported the first catalytic asymmetric method to prepare enantioenriched N,S-acetals catalyzed TRIP phosphoric acids. The reaction combined N-acyl imines with thiols to generate products in excellent yield and enantioselectivity. Electron-rich and electron-deficient aromatic N-acyl imines were excellent substrate for the addition reaction. A wide range of aliphatic and aromatic thiols obtained the N,S-acetals in excellent yields and enantioselectivities. The TRIP phosphoric acid was found to be an extremely efficient catalyst for the transformation, resulting in asymmetric induction at extremely low catalyst loading. In chapter 4, a highly enantioselective method for desymmetrization of meso-epoxides using thiols catalyzed by substituted BINOL lithium phosphate is reported. This is the first example of epoxide activation using metal phosphate is reported. Various five and six membered aliphatic cyclic meso-epoxides were excellent substrates for the desymmetrization reaction; aromatic acyclic epoxides also reacted with excellent yield and asymmetric induction. Similarly electron rich and electron deficient aromatic thiols obtained the β-hydroxyl sulfides in excellent yields and enantioselectivities.
13

Development Of New Synthetic Strategies For Aminocyclitols

Demir (davulcu), Emine 01 January 2003 (has links) (PDF)
Cyclitols are of great importance due to their biological activities playing a crucial role in living organisms as well as their synthetic usefulness in the synthesis of other natural compounds or pharmaceuticals. In this study, new synthetic strategies leading to the aminocyclitols were investigated. The synthesis of aminoconduritol and aminoinositol derivatives (173 and 174) were achieved starting from easily available compound, 7-oxa-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride (166) obtained from the Diels-Alder reaction of furan and maleic anhydride. The anhydride functionality in 166 was converted into the half-ester 169 by desymmetrization in methanol. The carboxylic acid moiety in the molecule was used to obtain urethane functionality by making use of Curtius rearrangement. After the cleavage of oxa-bridge with the help of a Lewis acid the aminoconduritol derivative 173 was synthesized. The cis-dihydroxylation of 173 with osmium tetroxide resulted in the formation of inositol derivative 174. Consequently, we developed a new methodology for the synthesis of aminocyclitol derivatives.
14

Asymmetric Syntheses Of Various Novel Chiral Ligands With Norbornene Backbone: The Use Of Chiral Catalyst In Asymmetric Reactions

Olcay, Elmali 01 June 2005 (has links) (PDF)
The synthetic strategy of this study mainly depends upon the asymmetric desymmetrization of meso norbornene type an anhydride. Asymmetric desymmetrization was achieved by using chinchona alkaloids under kinetically controlled conditions. The resultant mono ester carboxylic acid was epimerized to trans configuration. Subsequent esterification followed by lithium aluminum hydride reduction afforded the first chiral diol ligand with 98 % ee. Transformation of diol to corresponding trans diamine was achieved via Mitsunobu-Gabriel combination. The resultant diamine was first transformed into salen type ligand with 3,5-di-tert-butyl-2-hydroxybenzaldehyde. Throughout this process, no racemization was observed and all the ligands tested in asymmetric reactions have 98 % ee value. The second part of the thesis involves the asymmetric test reactions of the chiral ligands to check the effectiveness of them. The first testing method was diethylzinc addition to benzaldehyde. The ligands showed moderate effectiveness. The salen type ligand was tested in asymmetric epoxidation and aziridination reactions and it showed good effectiveness. Another applied method was desymmetrization of meso 2-cyclohexene-3,4-diol in which 2-(diphenylphosphino)benzoic acid attached trans-diol and trans-diamine type ligands were tested. Since norbornene type strained bicyclic systems are available in ring opening methathesis polymerization (ROMP) reactions, trans-diamine was subjected to ROMP to get an enlarged macromolecular system
15

Efficient Asymmetric Synthesis of Axially Chiral Biaryls and Spirofuranones via Phase-Transfer-Catalyzed Reactions / 相間移動反応による軸不斉ビアリールおよびスピロフラノンの効率的不斉合成

Xiangfei, Wu 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19513号 / 理博第4173号 / 新制||理||1599(附属図書館) / 32549 / 京都大学大学院理学研究科化学専攻 / (主査)教授 丸岡 啓二, 教授 大須賀 篤弘, 教授 依光 英樹 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
16

Synthèse et désymétrisation d'arylcyclohexa-2,5-diènes : application à la synthèse totale de l'épi-Elwesine

Rousseau, Géraldine 13 November 2008 (has links)
La désymétrisation d’arylcyclohexa-2,5-diènes est une méthode très efficace pour obtenir en une seule étape des squelettes complexes à partir de synthons simples. Lors de cette thèse, une nouvelle approche à la synthèse d’arylcyclohexadiènes porteur d’un centre quaternaire a été développée. L’une des structures synthétisées par cette voie a ensuite été désymétrisée par une réaction d’hydroamination diastéréosélective, nous permettant de réaliser la première synthèse énantiosélective de l’épi-Elwesine. Notre démarche s’est ensuite orientée vers la synthèse et la désymétrisation de nouveaux types de diènes spirocycliques de type oxindoles. La présence dans ces diènes de deux faces très différenciées nous a permis de réaliser des processus complètement diastéréosélectifs. De plus une nouvelle séquence réarrangement-alkylation a été mise au point, nous permettant d’accéder efficacement à des squelettes de type phénanthridinones de façon régio- et diastéréosélective. / The desymmetrization of arylcyclohexa-2,5-dienes is a powerful method to synthesize complex structures from simple synthons in a single step. We first developed a new protocol to obtain arylcyclohexa-2,5-dienes bearing a quaternary center. One of these structures was desymmetrized via a diastereoselective hydroamination and further elaborated into epi-Elwesine, an Amaryllidaceae alkaloid. We next turned our attention towards the synthesis and desymmetrization of spirocyclic cyclohexadienes. Diastereoselective processes were carried out due to the presence of two well- differentiated faces. A new rearrangement-alkylation process was developed and provides efficient access to phenanthridinones regio- and diastereoselectively.
17

Asymmetric Transformations Catalyzed By Chiral BINOL Alkaline Earth Metal Phosphate Complexes

Nimmagadda, Sri Krishna 26 October 2016 (has links)
Small molecule hydrogen bond donors have emerged as versatile catalysts in asymmetric synthesis. Within this class, chiral BINOL phosphoric acid is regarded as one of the pioneer catalysts used in several asymmetric transformations. The ability of the catalyst to activate the substrates could be controlled in two different ways. (1) Dual activation/bifunctional activation of substrate by hydrogen bond interactions or ion pairing with phosphoric acid or (2) By forming chiral BINOL phosphate metal complex that could significantly alter the interactions in chiral space. In particular, chiral alkaline earth metal phosphate complexes have unique advantages as catalysts owing to the ubiquitous availability of alkaline earth metals, strong Brønsted basicity of their counterions, mild but significant Lewis acidity of the metal and their ability to coordinate at multiple reactive sites due to large ionic radius. Chapter 1 summarizes the recent development of alkaline earth metal complexes in asymmetric catalysis. My thesis dissertation is focused on the application of chiral alkaline earth metal phosphate complexes in novel asymmetric reactions. In Chapter 2, we disclosed an efficient asymmetric one-pot synthesis of chiral 1,3-oxazolidines and chiral 1,3-oxazinanes. Chiral oxazolidines and oxazinanes are widely used as auxiliaries in asymmetric transition metal catalysis and also key structural motifs in natural products with biological activities. We developed a new synthetic method for chiral 1,3-oxazolidines which follows the enantioselective addition of alcohols to imines catalyzed by chiral 3,3’-(triisopropylphenyl)-derived BINOL magnesium phosphate to form hemiaminal intermediate, which then undergoes mild base mediated intramolecular nucleophilic substitution to afford highly enantioselective 1,3-oxazolidines and 1,3-oxazinanes in good yields. In Chapter 3, we developed the first catalytic enantioselective desymmetrization process for the synthesis of novel axially chiral cyclohexylidene oxime ethers. Even though these molecules were found to be optically active in 1910, methods to synthesize these molecules are scarce. We have developed an efficient desymmetrization process of 4-phenyl cyclohexanones with phenoxyamines catalyzed by chiral BINOL strontium phosphate complex to afford highly enantioselective products. We then extended this methodology to the dynamic kinetic resolution of 2-substituted cyclohexanones to form chiral 2-substituted cyclohexyl oximes in good enantioselectivities, as demonstrated in Chapter 4. We further demonstrated the utility of these compounds by converting them to chiral 2-aryl cyclohexylamines which are important synthetic intermediates.
18

Towards the synthesis of monoterpenoids indole alkaloids of the aspidospermatan and strychnan type / Nouvelles voies d'accés aux alcaloides d'Aspidosperma

Dawood, Dawood Hosni 17 December 2010 (has links)
L'objectif de ce travail était d'accéder au squelette des alcaloïdes de type Aspidosperma et Strychnos à partir d'arylcyclohexa-2,5-diènes. Ces derniers sont d'abord synthétisés par réaction de Birch alkylante, puis ont été désymétrisés dans un premier temps par des réactions de Michael. Cette réaction fournit la cétone de Büchi, le noyau tétracyclique des alcaloïdes Aspidosperma en seulement en 6 étapes et un rendement global de 17%. Dans un second temps, la réaction d'amination oxydante catalysée par des métaux (Pd, Cu) a été développée. Cette réaction a permis un accès rapide au squelette pentacyclique d’aza-aspidospermanes et au squelette tétracycliques des alcaloïdes de type Strychnos. En parallèle, nous avons décrit une approche vers le squelette pentacyclique de la mossambine et la strychnine. / The aim of this work was to access the skeleton of the Aspidosperma and the Strychnos alkaloids using arylcyclohexa-2,5-dienes as common synthetic precursors. Initially, these arylcyclohexadienes were synthesized through Birch reductive alkylation reactions. The desymmetrization of these cyclohexadienes was developed via the Michael addition reaction, providing the Büchi ketone, the tetracyclic core of Aspidosperma alkaloids, in only 6 steps and 17% overall yield. On the other hand, we described the oxidative amination reaction catalyzed by metals (Pd, Cu). The palladium oxidative amination reaction allowed a fast access to the pentacyclic framework of aza-aspidospermanes and the tetracyclic framework of the strychnos. In parallel, we have described an approach toward the pentacyclic skeleton of mossambine and strychnine.
19

Development and application of asymmetric C-N bond formation

Snell, Robert Henry January 2011 (has links)
A synthetic investigation on the chemistry of cyclotryptamine derived natural products, with a particular focus on the synthesis of the trimeric-alkaloid, hodgkinsine. Methodology has been developed to tackle this complex natural product which utilises a desymmetrization approach; this strategy hinges on the development and applications of asymmetric C-N bond forming reactions. Chapter one examines elements of symmetry in natural products, looking in particular at the synthesis of compounds which contain cyclotryptamine functionality. Chapter two contains a brief review of enantioselective desymmetrization paying attention, if possible, on its application in the synthesis of natural products. In the remaining chapters we discuss our own progress and results in our pursuit of an efficient enantioselective total synthesis of hodgkinsine.
20

Conception et synthèse d'analogues pyrrolidiniques d'alcaloïdes de Lobelia comme ligands potentiels des récepteurs nicotiniques centraux à l'acétylcholine / Conception and synthesis of pyrrolidine analogues of Lobelia alkaloids as potential neuronal nicotinic acetylcholine receptors

Amara, Zacharias 09 July 2012 (has links)
Au cours de ce travail, nous nous sommes intéressés à développer des voies de synthèse convergentes et diastéréosélectives en vue de préparer des analogues pyrrolidiniques des alcaloïdes de Lobelia comme nouveaux ligands des récepteurs nicotiniques centraux à l’acétylcholine. Ainsi, nous avons mis au point une méthode « bidirectionnelle » basée sur des réactions de double aza-Michael et donnant accès à des pyrrolidines 2,5-disubstituées. Une étude de réactivité a également été mené afin d’améliorer la chimiosélectivité des différents processus réactionnels impliquant des réactions d’aza-Michael dans des séquences de cyclisation tandem. Dans un second temps, nous avons décrit une voie dite « d’élongation monodirectionnelle » permettant d’accéder à des 2,5-trans-pyrrolidines énantiopures. Enfin, la dernière partie de ce manuscrit aborde une étude prospective de réductions désymétrisantes pour la synthèse d’homologues pyrrolidiniques de la lobéline. / The present work has been dedicated to the development of convergent and diastereoselective routes for the preparation of pyrrolidine Lobelia alkaloid analogues as novel neuronal nicotinic receptors. We have settled a selective bidirectional strategy based on chain homologation by double olefination followed by aza-Michael reactions as a straightforward access to 2,5-cis-disubstituted pyrrolidines that was extended to the synthesis of 2,6-cis-piperidines. Additional studies have been carried out in order to drive chemoselectivities in the course of competitive tandem aza-Michael-induced ring closure reactions. In the same time, we also described a monodirectional route to access 2,5-trans-disubstituted pyrrolidines. The last part of this manuscript has been finally dedicated to a prospective reductive desymmetrization study for the rapid and enantioselective synthesis of pyrrolobeline homologues.

Page generated in 0.0857 seconds