• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 28
  • 28
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Task and User Adaptation based on Character Expression for Spoken Dialogue Systems / 音声対話システムのためのキャラクタ表現に基づくタスク・ユーザ適応

Yamamoto, Kenta 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第24728号 / 情博第816号 / 新制||情||137(附属図書館) / 京都大学大学院情報学研究科知能情報学専攻 / (主査)教授 河原 達也, 教授 熊田 孝恒, 教授 黒橋 禎夫 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
2

Employing linked data and dialogue for modelling cultural awareness of a user

Denaux, R., Dimitrova, V., Lau, L., Brna, P., Thakker, Dhaval, Steiner, C. January 2014 (has links)
Yes / Intercultural competence is an essential 21st Century skill. A key issue for developers of cross-cultural training simulators is the need to provide relevant learning experience adapted to the learner’s abilities. This paper presents a dialogic approach for a quick assessment of the depth of a learner's current intercultural awareness as part of the EU ImREAL project. To support the dialogue, Linked Data is seen as a rich knowledge base for a diverse range of resources on cultural aspects. This paper investigates how semantic technologies could be used to: (a) extract a pool of concrete culturally-relevant facts from DBpedia that can be linked to various cultural groups and to the learner, (b) model a learner's knowledge on a selected set of cultural themes and (c) provide a novel, adaptive and user-friendly, user modelling dialogue for cultural awareness. The usability and usefulness of the approach is evaluated by CrowdFlower and Expert Inspection.
3

Den svenska callcenterbranschen och de tekniska lösningar som används : Branschanalys samt identifiering av problematiska dialogsystemsyttranden med hjälp av maskininlärning / The Swedish call center industry and the technologies it utilizes : Industry analysis and identification of problematic system utterances using machine learning

Wirström, Li, Huledal, Mattias January 2015 (has links)
Detta arbete består av två delar. Den första delen syftar till att beskriva och analysera callcenterbranschen i Sverige samt vilka faktorer som påverkar branschen och dess utveckling. Analysen grundar sig i två modeller: Porters fempunktsmodell och PEST. Fokus ligger på den del av branschen som består av kundtjänstverksamhet för att koppla till arbetets andra del. Analysen visar att branschen främst påverkas av hög konkurrens och företagens, som behöver tillhandahålla kundtjänst, val mellan interna eller externa kundtjänstlösningar. Analysen indikerar även att branschen kommer fortsätta växa och att det finns en trend att företag i större utsträckning väljer att outsourca sin kundtjänst. Utvecklingen hos de tekniska lösningar som används i callcenter, till exempel dialogsystem, är efterfrågade av företagen då dessa är viktiga verktyg för att skapa en väl fungerande kundtjänst. Dagens digitala system har uppenbara utvecklingsområden. Det är ofta stora internationella företag eller internationella arbetslag som utvecklar de digitala systemen. Dock sträcker sig användningsområdet för dessa system långt utanför endast callcenterbranschen. Den andra delen handlar om att identifiera problematiska dialogsystemyttranden med hjälp av maskininlärning och inspireras av SpeDial, ett EU-projekt med syfte att förbättra dialogsystem. Yttranden från dialogsystemet kan anses problematiska beroende på till exempel att systemet missuppfattat användarens avsikt. Syftet med arbetets andra del är att undersöka vilken eller vilka maskininlärningsmetoder i verktyget WEKA som lämpar sig bäst för att identifiera problematiska dialogsystemyttranden. De data som använts i arbetet kommer från en kundtjänstentré baserad på fritt tal, vilket innebär att användaren själv uppmanas beskriva sitt ärende för att kunna kopplas vidare till rätt avdelning inom kundtjänsten. Våra data har tillhandahållits av företaget Voice Provider som utvecklar, implementerar och underhåller kundtjänstsystem. Voice Provider kom vi i kontakt med via Institutionen för tal, musik och hörsel (TMH), vid Kungliga Tekniska högskolan, som deltar i SpeDial-projektet. Arbetet gick initialt ut på att förbereda tillhandahållen data för att kunna användas av maskininlärningsverktyget WEKAs inbyggda klassificerare, varefter sex klassificerare valdes ut för vidare utvärdering. Resultaten visar att ingen av klassificerarna lyckades utföra uppgiften på ett fullt ut tillfredsställande sätt. Den som lyckades bäst var dock metoden Random Forest. Det är svårt att dra några ytterligare slutsatser från resultaten. / This work consists of two parts. The first part aims to describe and analyze the call center industry in Sweden and the factors that affect the industry and its development. The analysis is based on two models: Porter’s five forces and PEST. The focus is mainly on the part of the industry that consists of customer service operations. The analysis shows that the industry is mainly affected by high competition and businesses’, that need to provide customer service, choice between internal or external customer service operations. The analysis also indicates that the industry will continue to grow and that there is a trend that companies increasingly choose to outsource their customer service. The development of  the technological solutions used in call centers, for example, dialogue systems, are requested by companies as these are important tools to create a well-functioning customer service. Digital systems today have obvious development areas. It is often large international companies or international teams that develop the digital systems used. However, extends the area of ​​use for these systems far beyond the call center industry. The second part involves identifying problematic dialogue system utterances using machine learning and is inspired by SpeDial, an EU project aimed at improving dialogue systems. Problematic dialogue system utterances can be considered problematic depending on, for example, that the system misinterprets the user's intention. The aim of the work done in the second part is to investigate what or which machine learning methods in the WEKA tool that are best suited to identify problematic dialogue system utterances. The data used in this work comes from a customer service entrance based on free speech, which means that the user is asked to describe their case to be transferred to the right department within the customer service. Our data has been provided by the company Voice Provider that develops, implements and maintains customer service systems. We came in contact with Voice Provider through the Department of Speech, Music and Hearing (TMH), at the Royal Institute of Technology, that are involved in the SpeDial project. The work initially consisted of preparing the supplied data to enable it to me used by the machine learning tool WEKA’s built-in classifiers, after which six classifiers were selected for further evaluation. The results show that none of the classifiers managed to accomplish the task in a fully satisfactory manner.  Whoever the method that was most successful was the Random Forest method. It is difficult to draw any further conclusions from the results.
4

Rozpoznávání řeči pomocí KALDI / Rozpoznávání řeči pomocí KALDI

Plátek, Ondřej January 2014 (has links)
The topic of this thesis is to implement efficient decoder for speech recognition training system ASR Kaldi (http://kaldi.sourceforge.net/). Kaldi is already deployed with decoders, but they are not convenient for dialogue systems. The main goal of this thesis to develop a real time decoder for a dialogue system, which minimize latency and optimize speed. Methods used for speeding up the decoder are not limited to multi-threading decoding or usage of GPU cards for general computations. Part of this work is devoted to training an acoustic model and also testing it in the "Vystadial" dialogue system. Powered by TCPDF (www.tcpdf.org)
5

Att utvärdera AdApt, ett multimodalt konverserande dialogsystem, med PARADISE / Evaluating AdApt, a multi-modal conversational, dialogue system, using PARADISE

Hjalmarsson, Anna January 2003 (has links)
<p>This master’s thesis presents experiences from an evaluation of AdApt, a multi- modal, conversational dialogue system, using PARADISE, PARAdigm for Dialogue System Evaluation, a general framework for evaluation. The purpose of this master’s thesis was to assess PARADISE as an evaluation tool for such a system. An experimental study with 26 subjects was performed. The subjects were asked to interact with one of three different system versions of AdApt. Data was collected through questionnaires, hand tagging of the dialogues and automatic logging of the interaction. Analysis of the results suggests that further research is needed to develop a general framework for evaluation which is easy to apply and can be used for varying kinds of spoken dialogue systems. The data collected in this study can be used as starting point for further research.</p>
6

Open-ended Spoken Language Technology: Studies on Spoken Dialogue Systems and Spoken Document Retrieval Systems / 拡張可能な音声言語技術: 音声対話システムと音声文書検索システムにおける研究

Kanda, Naoyuki 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第18415号 / 情博第530号 / 新制||情||94(附属図書館) / 31273 / 京都大学大学院情報学研究科知能情報学専攻 / (主査)教授 奥乃 博, 教授 河原 達也, 教授 髙木 直史, 講師 吉井 和佳 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
7

Engagement Recognition based on Multimodal Behaviors for Human-Robot Dialogue / ロボットとの対話におけるマルチモーダルなふるまいに基づくエンゲージメント認識 / # ja-Kana

Inoue, Koji 25 September 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第21392号 / 情博第678号 / 新制||情||117(附属図書館) / 京都大学大学院情報学研究科知能情報学専攻 / (主査)教授 河原 達也, 教授 西田 豊明, 教授 神田 崇行 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
8

Asynchronous Dialogue System

Nguyen, Keman, Andersson, Alfred January 2022 (has links)
Conversations between the PC (player character) and NPCs (non-player characters) in conventional games are usually sequence-based. The NPC talks to a certain point before pending the player's input, sometimes consisting of several prepared actions displayed on the screen in order to advance the conversation. While this method does provide the ability to converse within video games, our study shows it lacks the immersiveness that asynchronously based dialogue provides in some scenarios. Interruptions occur in real-life conversations and may add to a more convincing interaction. In this paper, we present a novel dialogue system that incorporates interruptions alongside emotion, making it possible for different participants involved in the conversation to interrupt and speak over each other while also having lasting consequences. This approach improves conversational players' experience by increasing character believability and engagement. For illustration purposes, interruption was integrated into a text-based game encompassing two variations of the same scenario. The study involved playing both variations of the same game, one being a traditional sequence-based conversation while the other had a fluent dialogue which supports interruption both from the PC and NPCs. Eight students previously familiar with video game dialogues played both variations, half starting with the other version. Each test ended with a survey followed by an interview talking about the answers. Each test took 30-40 min.
9

Advancing Dialogue Systems through Corpus Construction Focusing on User Internal States and External Knowledge / ユーザ内部状態と外部知識に着目したコーパス構築による対話システムの高度化

Kodama, Takashi 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第25422号 / 情博第860号 / 新制||情||144(附属図書館) / 京都大学大学院情報学研究科知能情報学専攻 / (主査)特定教授 黒橋 禎夫, 教授 河原 達也, 教授 西田 眞也 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
10

Deep generative models for natural language processing

Miao, Yishu January 2017 (has links)
Deep generative models are essential to Natural Language Processing (NLP) due to their outstanding ability to use unlabelled data, to incorporate abundant linguistic features, and to learn interpretable dependencies among data. As the structure becomes deeper and more complex, having an effective and efficient inference method becomes increasingly important. In this thesis, neural variational inference is applied to carry out inference for deep generative models. While traditional variational methods derive an analytic approximation for the intractable distributions over latent variables, here we construct an inference network conditioned on the discrete text input to provide the variational distribution. The powerful neural networks are able to approximate complicated non-linear distributions and grant the possibilities for more interesting and complicated generative models. Therefore, we develop the potential of neural variational inference and apply it to a variety of models for NLP with continuous or discrete latent variables. This thesis is divided into three parts. Part I introduces a <b>generic variational inference framework</b> for generative and conditional models of text. For continuous or discrete latent variables, we apply a continuous reparameterisation trick or the REINFORCE algorithm to build low-variance gradient estimators. To further explore Bayesian non-parametrics in deep neural networks, we propose a family of neural networks that parameterise categorical distributions with continuous latent variables. Using the stick-breaking construction, an unbounded categorical distribution is incorporated into our deep generative models which can be optimised by stochastic gradient back-propagation with a continuous reparameterisation. Part II explores <b>continuous latent variable models for NLP</b>. Chapter 3 discusses the Neural Variational Document Model (NVDM): an unsupervised generative model of text which aims to extract a continuous semantic latent variable for each document. In Chapter 4, the neural topic models modify the neural document models by parameterising categorical distributions with continuous latent variables, where the topics are explicitly modelled by discrete latent variables. The models are further extended to neural unbounded topic models with the help of stick-breaking construction, and a truncation-free variational inference method is proposed based on a Recurrent Stick-breaking construction (RSB). Chapter 5 describes the Neural Answer Selection Model (NASM) for learning a latent stochastic attention mechanism to model the semantics of question-answer pairs and predict their relatedness. Part III discusses <b>discrete latent variable models</b>. Chapter 6 introduces latent sentence compression models. The Auto-encoding Sentence Compression Model (ASC), as a discrete variational auto-encoder, generates a sentence by a sequence of discrete latent variables representing explicit words. The Forced Attention Sentence Compression Model (FSC) incorporates a combined pointer network biased towards the usage of words from source sentence, which significantly improves the performance when jointly trained with the ASC model in a semi-supervised learning fashion. Chapter 7 describes the Latent Intention Dialogue Models (LIDM) that employ a discrete latent variable to learn underlying dialogue intentions. Additionally, the latent intentions can be interpreted as actions guiding the generation of machine responses, which could be further refined autonomously by reinforcement learning. Finally, Chapter 8 summarizes our findings and directions for future work.

Page generated in 0.061 seconds