• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 5
  • 2
  • Tagged with
  • 25
  • 25
  • 16
  • 16
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Geometria esférica para a formação de professores: uma proposta interdisciplinar

Pataki, Irene 28 November 2003 (has links)
Made available in DSpace on 2016-04-27T16:58:21Z (GMT). No. of bitstreams: 1 irene pataki.pdf: 2012677 bytes, checksum: 06b1249e92ce7aa730b0c645dcdc5ae1 (MD5) Previous issue date: 2003-11-28 / This work concerns the inservice education of mathematics teachers. One of its aims is to propose, to teachers, a teaching sequence, with activities that show the interdisciplinary relationship that exists between spherical geometry and geography, forming interconnections between these domains, at the same time as contextualising the content to be considered and motivating learning in a way that articulates the object of study with reality. Another aim is to provide to the teachers involved reflections about aspects related to the teaching of spherical geometry. Based on the Theory of Didactic Situation developed by G. BROUSSEAU (1986), the research methodology Didactic Engineering of M. ARTIGUE (1988) and the theory of Britt-Mari BARTH (1993) concerning teacher education, we elaborate a teaching sequence, composed of a motivating problem-situation along with eight other activities involving notions of spherical geometry. We investigate the question: How can a teaching sequence permit the appropriation of a new domain spherical geometry and encourage educators to re-elaborate their thinking? Our research hypotheses assume that geometrical knowledge allows different perspectives about our world, that the apprehension of content can lead to changes in our behaviour as teachers and that the use of interdisciplinarity and contextualisation will establish connections between different fields of knowledge. The analysis of the results points to a change in the attitudes and values of the teachers, which confirms our research hypothesis and emphasises the importance of the methodology adopted, leading us to believe that some aspects of the geometry studies were learnt and became institutionalised knowledge / Este trabalho dirige-se à formação continuada de professores de Matemática. Um dos seus objetivos é propor, aos professores, uma seqüência didática, com atividades, que mostre a relação interdisciplinar existente entre a Geometria esférica e a Geografia, formando interconexões entre esses domínios, ao mesmo tempo em que contextualiza os conteúdos a serem considerados e possibilita uma aprendizagem motivadora, que articule o objeto de estudo com a realidade. Outro objetivo é proporcionar aos professores envolvidos reflexões e questionamentos sobre alguns aspectos do ensino da Geometria esférica. Fundamentados na Teoria das Situações Didáticas desenvolvida por G. BROUSSEAU (1986), na Metodologia de Pesquisa denominada Engenharia Didática de M. ARTIGUE (1988) e na Teoria de Britt-Mari BARTH (1993) concernente à Formação de Professores, elaboramos uma seqüência didática, a partir de uma situação-problema motivadora e mais oito atividades, abordando noções de Geometria esférica. Investigamos a questão: Como uma seqüência de ensino pode possibilitar a apropriação de um novo domínio a Geometria esférica e levar o educador a reelaborar seu pensar? Nossas hipóteses de pesquisa pressupõem que o conhecimento geométrico nos permite ter olhares diferentes do nosso mundo, que a apreensão dos conteúdos poderá nos conduzir a mudanças no comportamento como docente e que o uso da interdisciplinaridade e da contextualização estabelecerá conexões com outros campos do conhecimento. A análise dos resultados obtidos aponta uma mudança de atitudes e valores, nos professores, que confirmam nossas hipóteses de pesquisa e enfatizam a importância da Metodologia adotada, levando-nos a crer que alguns aspectos da Geometria em estudo foram apreendidos e se tornaram saberes institucionalizados
22

Formação contínua de professores: um contexto e situações de uso de tecnologias de comunicação e informação. / Inservice teacher education\'s: one context and situations using communication and information technologies.

José Joelson Pimentel de Almeida 03 April 2006 (has links)
Esta dissertação, resultado de uma pesquisa etnográfica realizada em determinada escola municipal da cidade de São Paulo, trata de contextos e situações de formação contínua de professores com o uso de tecnologias de comunicação e informação. Para o levantamento de dados, além de observações focais foram utilizados registros oficiais feitos pelos professores em horário coletivo e entrevistas a oito professoras da referida unidade escolar, a fim de orientar uma discussão para saber como ocorre (e se ocorre) a incorporação de tecnologias pelos professores e a relação disto com a sua formação contínua; analisar se esta incorporação é desencadeada por interesse próprio dos professores; e verificar quais são as possibilidades de formação mediante o uso destas tecnologias. Para orientar a análise dos dados coletados foram utilizados alguns conceitos fundamentais, quais sejam: contextos, situações e formação contínua de professores, inclusive no caso específico do uso de tecnologias de comunicação e informação. A formação contínua é entendida a partir dos conceitos de professor reflexivo e de professor pesquisador, sendo estes fundamentados em metáforas com origens no fenômeno da desregulação da Educação. Percebeu-se, neste trabalho, uma possibilidade metodológica para a proposição de situações didáticas de formação de professores em contextos semelhantes. / This research work is the result of an ethnographic study at a Municipal School in the city of São Paulo. It is about inservice teacher education\'s contexts and situations using Communication and Information Technologies. For the data analyses, added to focal observations , it was examined some official registries done by teachers during the joint hours and interviews with eight teachers from the same school. The idea was to discuss how the technology is incorporated by the teachers, how this happened (if this happened) and also how this is linked to their inservice education; to analyze if the technology integration is developed because of the teachers interest and to verify the possibilities of education by using those technologies. The data analysis was guided by some concepts such as: contexts, situations and inservice teacher education, including inservice teacher education using communication and information technologies. The inservice education is understood according to reflective teacher and research-teacher concepts. Those concepts are based on metaphors that have its origins in the deregulation of education phenomenon. In this research work, it was developed a methodological possibility to didactic situations for inservice teacher education in similar contexts.
23

Didactique des grandeurs en mesure et élèves en difficulté d'apprentissage du 2e cycle du primaire

Tieidé, Thérèse D. 05 1900 (has links)
Le programme -Une école adaptée à tous ses élèves-, qui s'inscrit dans la réforme actuelle de l'éducation au Québec, nous a amenée à nous intéresser aux représentations dans les grandeurs en mesure en mathématiques des élèves en difficulté d'apprentissage. Nous nous sommes proposés de reconduire plusieurs paramètres de la recherche de Brousseau (1987, 1992) auprès de cette clientèle. La théorie des champs conceptuels (TCC) de Vergnaud (1991), appliquée aux structures additives, a été particulièrement utile pour l'analyse et l'interprétation de leurs représentations. Comme méthode de recherche, nous avons utilisé la théorie des situations didactiques en mathématiques (TSDM), réseau de concepts et de méthode de recherche appuyé sur l'ingénierie didactique qui permet une meilleure compréhension de l'articulation des contenus à enseigner. Grâce à la TSDM, nous avons observé les approches didactiques des enseignants avec leurs élèves. Notre recherche est de type exploratoire et qualitatif et les données recueillies auprès de 26 élèves de deux classes spéciales du deuxième cycle du primaire ont été traitées selon une méthode d'analyse de contenu. Deux conduites ont été adoptées par les élèves. La première, de type procédural a été utilisée par presque tous les élèves. Elle consiste à utiliser des systèmes de comptage plus ou moins sophistiqués, de la planification aux suites d'actions. La deuxième consiste à récupérer directement en mémoire à long terme le résultat associé à un couple donné et au contrôle de son exécution. L'observation des conduites révèle que les erreurs sont dues à une rupture du sens. Ainsi, les difficultés d'ordre conceptuel et de symbolisation nous sont apparues plus importantes lorsque l'activité d'échange demandait la compétence "utilisation" et renvoyait à la compréhension de la tâche, soit les tâches dans lesquelles ils doivent eux-mêmes découvrir les rapports entre les variables à travailler et à simuler les actions décrites dans les énoncés. En conséquence, les problèmes d'échanges se sont révélés difficiles à modéliser en actes et significativement plus ardus que les autres. L'étude des interactions enseignants et élèves a démontré que la parole a été presque uniquement le fait des enseignants qui ont utilisé l'approche du contrôle des actes ou du sens ou les deux stratégies pour aider des élèves en difficulté. Selon le type de situation à résoudre dans ces activités de mesurage de longueur et de masse, des mobilisations plurielles ont été mises en oeuvre par les élèves, telles que la manipulation d'un ou des étalon(s) par superposition, par reports successifs, par pliage ou par coupure lorsque l'étalon dépassait; par retrait ou ajout d'un peu de sable afin de stabiliser les plateaux. Nous avons également observé que bien que certains élèves aient utilisé leurs doigts pour se donner une perception globale extériorisée des quantités, plusieurs ont employé des procédures très diverses au cours de ces mêmes séances. Les résultats présentés étayent l'hypothèse selon laquelle les concepts de grandeur et de mesure prennent du sens à travers des situations problèmes liées à des situations vécues par les élèves, comme les comparaisons directes. Eles renforcent et relient les grandeurs, leurs propriétés et les connaissances numériques. / -An education system adjusted to all its pupils-, in line with the present reform of the education system of Québec has led us in this project, to examine how students with learning problems deal with numbers and measurements in mathematics. In the present study, our purpose is to double-check many of the parameters defined in the work of Brousseau (1987, 1992). The theory of the conceptual fields of Vergnaud (1991)applied to the additives structures, was particularly useful in our analysis of the facts and the interpretation of their representations. In this work, the methodology we adopted is the Didactic engineering, wich allow a better understanding in articulating the contents to each. Using Theory of didactic situations in mathematics, we examined the didactic approaches the teachers have in their relationship with their students. The data for our study, which is of the exploratory and qualitative type, was collected with twenty six students of the second cycle of the primary school. That data was analysed in conformity with a medthodology of content analysis. The examination of the student's behavior revealed two attitudes. Almost all the students used the first attitude, which is of the procedural type. It consisted in using counting systems more or less sophisticated from the planning to the folowing actions involved. The second attitude implied memorizing for the long term, the result associated with a specific couple of actions and the control of their execution. The observaton of the student's attitudes reveals that the errors they made are related to a semantic disruption in their interpretation of the varied tips and strategies the teachers tried to help them with to solve the different problems. Thus, it appeared to us that the difficulties at the conceptual and symbolization levels were more important when the exchange activity involved their competence to evaluate and activity related to the understanding to the task to achieve. In other terms, they had more difficulty with the tasks where they had to establish by themselves to link between the variables, and simulate the actions involved by those tasks. Consequently, the tasks involving exchange operations happened to be more difficult to translate into actions, and were clearly more problematic than the other tasks. The study of the interaction between teachers and students revealed that only teachers used words in the process, where they used the approach of the control of the actions, or the approach of control of the meaning or both strategies to help students with problems. Depending on the type of problem encountered during these activities of measurements of length and masses, the students had recourse to numerous experiments such as manipulation of the standard measure(s). They proceeded by superimposing, by successive deferments, by folding, by cutting when the standard was exceeding in size; or by reduction or addition of some amount of sand to bring into balance the scale. We noticed also that despite the fact that certain students used their fingers to have a global idea of the external measures of the quantities, many of those same students had recourse to a diversity of other procedures during the same test. The result presented here support the hypothesis that says that the concepts of size and measurement get more meaning in a specific context, where they relate to real situations lived by the students, as well as by direct comparisons. They reinforce and establish links between the so-called sizes, their properties and the numeric knowledge.
24

Estudio de la influencia del proceso de formación docente sobre el sistema de creencias hacia el trabajo matemático del concepto de área, en estudiantes de pedagogía en matemáticas.

Morales, Hernán 05 1900 (has links)
No description available.
25

Didactique des grandeurs en mesure et élèves en difficulté d'apprentissage du 2e cycle du primaire

Tieidé, Thérèse D. 05 1900 (has links)
Le programme -Une école adaptée à tous ses élèves-, qui s'inscrit dans la réforme actuelle de l'éducation au Québec, nous a amenée à nous intéresser aux représentations dans les grandeurs en mesure en mathématiques des élèves en difficulté d'apprentissage. Nous nous sommes proposés de reconduire plusieurs paramètres de la recherche de Brousseau (1987, 1992) auprès de cette clientèle. La théorie des champs conceptuels (TCC) de Vergnaud (1991), appliquée aux structures additives, a été particulièrement utile pour l'analyse et l'interprétation de leurs représentations. Comme méthode de recherche, nous avons utilisé la théorie des situations didactiques en mathématiques (TSDM), réseau de concepts et de méthode de recherche appuyé sur l'ingénierie didactique qui permet une meilleure compréhension de l'articulation des contenus à enseigner. Grâce à la TSDM, nous avons observé les approches didactiques des enseignants avec leurs élèves. Notre recherche est de type exploratoire et qualitatif et les données recueillies auprès de 26 élèves de deux classes spéciales du deuxième cycle du primaire ont été traitées selon une méthode d'analyse de contenu. Deux conduites ont été adoptées par les élèves. La première, de type procédural a été utilisée par presque tous les élèves. Elle consiste à utiliser des systèmes de comptage plus ou moins sophistiqués, de la planification aux suites d'actions. La deuxième consiste à récupérer directement en mémoire à long terme le résultat associé à un couple donné et au contrôle de son exécution. L'observation des conduites révèle que les erreurs sont dues à une rupture du sens. Ainsi, les difficultés d'ordre conceptuel et de symbolisation nous sont apparues plus importantes lorsque l'activité d'échange demandait la compétence "utilisation" et renvoyait à la compréhension de la tâche, soit les tâches dans lesquelles ils doivent eux-mêmes découvrir les rapports entre les variables à travailler et à simuler les actions décrites dans les énoncés. En conséquence, les problèmes d'échanges se sont révélés difficiles à modéliser en actes et significativement plus ardus que les autres. L'étude des interactions enseignants et élèves a démontré que la parole a été presque uniquement le fait des enseignants qui ont utilisé l'approche du contrôle des actes ou du sens ou les deux stratégies pour aider des élèves en difficulté. Selon le type de situation à résoudre dans ces activités de mesurage de longueur et de masse, des mobilisations plurielles ont été mises en oeuvre par les élèves, telles que la manipulation d'un ou des étalon(s) par superposition, par reports successifs, par pliage ou par coupure lorsque l'étalon dépassait; par retrait ou ajout d'un peu de sable afin de stabiliser les plateaux. Nous avons également observé que bien que certains élèves aient utilisé leurs doigts pour se donner une perception globale extériorisée des quantités, plusieurs ont employé des procédures très diverses au cours de ces mêmes séances. Les résultats présentés étayent l'hypothèse selon laquelle les concepts de grandeur et de mesure prennent du sens à travers des situations problèmes liées à des situations vécues par les élèves, comme les comparaisons directes. Eles renforcent et relient les grandeurs, leurs propriétés et les connaissances numériques. / -An education system adjusted to all its pupils-, in line with the present reform of the education system of Québec has led us in this project, to examine how students with learning problems deal with numbers and measurements in mathematics. In the present study, our purpose is to double-check many of the parameters defined in the work of Brousseau (1987, 1992). The theory of the conceptual fields of Vergnaud (1991)applied to the additives structures, was particularly useful in our analysis of the facts and the interpretation of their representations. In this work, the methodology we adopted is the Didactic engineering, wich allow a better understanding in articulating the contents to each. Using Theory of didactic situations in mathematics, we examined the didactic approaches the teachers have in their relationship with their students. The data for our study, which is of the exploratory and qualitative type, was collected with twenty six students of the second cycle of the primary school. That data was analysed in conformity with a medthodology of content analysis. The examination of the student's behavior revealed two attitudes. Almost all the students used the first attitude, which is of the procedural type. It consisted in using counting systems more or less sophisticated from the planning to the folowing actions involved. The second attitude implied memorizing for the long term, the result associated with a specific couple of actions and the control of their execution. The observaton of the student's attitudes reveals that the errors they made are related to a semantic disruption in their interpretation of the varied tips and strategies the teachers tried to help them with to solve the different problems. Thus, it appeared to us that the difficulties at the conceptual and symbolization levels were more important when the exchange activity involved their competence to evaluate and activity related to the understanding to the task to achieve. In other terms, they had more difficulty with the tasks where they had to establish by themselves to link between the variables, and simulate the actions involved by those tasks. Consequently, the tasks involving exchange operations happened to be more difficult to translate into actions, and were clearly more problematic than the other tasks. The study of the interaction between teachers and students revealed that only teachers used words in the process, where they used the approach of the control of the actions, or the approach of control of the meaning or both strategies to help students with problems. Depending on the type of problem encountered during these activities of measurements of length and masses, the students had recourse to numerous experiments such as manipulation of the standard measure(s). They proceeded by superimposing, by successive deferments, by folding, by cutting when the standard was exceeding in size; or by reduction or addition of some amount of sand to bring into balance the scale. We noticed also that despite the fact that certain students used their fingers to have a global idea of the external measures of the quantities, many of those same students had recourse to a diversity of other procedures during the same test. The result presented here support the hypothesis that says that the concepts of size and measurement get more meaning in a specific context, where they relate to real situations lived by the students, as well as by direct comparisons. They reinforce and establish links between the so-called sizes, their properties and the numeric knowledge.

Page generated in 0.1051 seconds