• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 4
  • 3
  • 3
  • 1
  • Tagged with
  • 33
  • 33
  • 33
  • 13
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A reliability inspired strategy for intelligent performance management with predictive driver behaviour: A case study for a diesel particulate filter

Doikin, Aleksandr, Campean, Felician, Priest, Martin, Lin, C., Angiolini, E. 10 December 2021 (has links)
Yes / The increase availability of operational data from the fleets of cars in the field offers opportunities to deploy machine learning to identify patterns of driver behaviour. This provides contextual intelligence insight that can be used to design strategies for online optimisation of the vehicle performance, including compliance with stringent legislation. This paper illustrates this approach with a case study for a Diesel Particulate Filter, where machine learning deployed to real world automotive data is used in conjunction with a reliability inspired performance modelling paradigm to design a strategy to enhance operational performance based on predictive driver behaviour. The model-in-the-loop simulation of the proposed strategy on a fleet of vehicles showed significant improvement compared to the base strategy, demonstrating the value of the approach.
22

Pevnostně deformační analýza uchycení filtru pevných částic na traktoru Zetor Forterra / Stress-strain Analysis of Diesel Particulate Filter Support on Tractor Zetor Forterra

Kučera, Petr January 2014 (has links)
The subject of this master's thesis is the FEM analysis of the construction of the diesel particulate filter support on the tractor Zetor Forterra. The introduction of this thesis is about the theoretical part dealing with the issue of emissions from diesel engines and ways to reduce them. The following part describing the creation of the computational model. Then, the static stress-strain analysis, modal analysis and fatigue analysis are solved in the ANSYS Workbench software. The assessment of the safety of the structure in terms of limit states, that may occur during the operation of the tractor, based on the results of calculations is in the conclusion of the thesis.
23

Acoustic modelling and testing of advanced exhaust system components for automotive engines

Allam, Sabry January 2004 (has links)
The increased use of the diesel engine in the passenger car, truck and bus market is due to high efficiency and lower fuel costs. This growing market share has brought with it several environmental issues for instance soot particle emission. Different technologies to remove the soot have been developed and are normally based on some kind of soot trap. In particular for automobiles the use of diesel particulate traps or filters (DPF:s) based on ceramic monolithic honeycombs are becoming a standard. This new exhaust system component will affect the acoustics and also work as a muffler. To properly design exhaust systems acoustic models for diesel particulate traps are needed. The first part of this thesis considers the modelling of sound transmission and attenuation for traps that consist of narrow channels separated by porous walls. This work has resulted in two new models an approximate 1-D model and a more complete model based on the governing equations for a visco-thermal fluid. Both models are expressed as acoustic 2-ports which makes them suitable for implementation in acoustic software for exhaust systems analysis. The models have been validated by experiments on clean filters at room temperature with flow and the agreement is good. In addition the developed filter models have been used to set up a model for a complete After Treatment Device (ATD) for a passenger car. The unit consisted of a chamber which contained both a diesel trap and a Catalytic Converter (CC). This complete model was also validated by experiments at room temperature. The second part of the thesis focuses on experimental techniques for plane wave decomposition in ducts with flow. Measurements in ducts with flow are difficult since flow noise (turbulence) can strongly influence the data. The difficulties are also evident from the lack of good published in-duct measurement data, e.g., muffler transmission loss data, for Mach-numbers above 0.1-0.2. The first paper in this part of the thesis investigates the effect of different microphone mountings and signal processing techniques for suppressing flow noise. The second paper investigates in particular flow noise suppression techniques in connection with the measurement of acoustic 2-ports. Finally, the third paper suggests a general wave decomposition procedure using microphone arrays and over-determination. This procedure can be used to determine the full plane wave data, e.g., the wave amplitudes and complex wave numbers k+ and k-. The new procedure has been applied to accurately measure the sound radiation from an unflanged pipe with flow. This problem is of interest for correctly determining the radiated power from an engine exhaust outlet. The measured data for the reflection coefficient and end correction have been compared with the theory of Munt [33] and the agreement is excellent. The measurements also produced data for the damping value (imaginary part of the wavenumber) which were compared to a model suggested by Howe [13]. The agreement is good for a normalized boundary layer thickness less than 30-40
24

Acoustic modelling and testing of advanced exhaust system components for automotive engines

Allam, Sabry January 2004 (has links)
<p>The increased use of the diesel engine in the passenger car, truck and bus market is due to high efficiency and lower fuel costs. This growing market share has brought with it several environmental issues for instance soot particle emission. Different technologies to remove the soot have been developed and are normally based on some kind of soot trap. In particular for automobiles the use of diesel particulate traps or filters (DPF:s) based on ceramic monolithic honeycombs are becoming a standard. This new exhaust system component will affect the acoustics and also work as a muffler. To properly design exhaust systems acoustic models for diesel particulate traps are needed. The first part of this thesis considers the modelling of sound transmission and attenuation for traps that consist of narrow channels separated by porous walls. This work has resulted in two new models an approximate 1-D model and a more complete model based on the governing equations for a visco-thermal fluid. Both models are expressed as acoustic 2-ports which makes them suitable for implementation in acoustic software for exhaust systems analysis. The models have been validated by experiments on clean filters at room temperature with flow and the agreement is good. In addition the developed filter models have been used to set up a model for a complete After Treatment Device (ATD) for a passenger car. The unit consisted of a chamber which contained both a diesel trap and a Catalytic Converter (CC). This complete model was also validated by experiments at room temperature. The second part of the thesis focuses on experimental techniques for plane wave decomposition in ducts with flow. Measurements in ducts with flow are difficult since flow noise (turbulence) can strongly influence the data. The difficulties are also evident from the lack of good published in-duct measurement data, e.g., muffler transmission loss data, for Mach-numbers above 0.1-0.2. The first paper in this part of the thesis investigates the effect of different microphone mountings and signal processing techniques for suppressing flow noise. The second paper investigates in particular flow noise suppression techniques in connection with the measurement of acoustic 2-ports. Finally, the third paper suggests a general wave decomposition procedure using microphone arrays and over-determination. This procedure can be used to determine the full plane wave data, e.g., the wave amplitudes and complex wave numbers k+ and k-. The new procedure has been applied to accurately measure the sound radiation from an unflanged pipe with flow. This problem is of interest for correctly determining the radiated power from an engine exhaust outlet. The measured data for the reflection coefficient and end correction have been compared with the theory of Munt [33] and the agreement is excellent. The measurements also produced data for the damping value (imaginary part of the wavenumber) which were compared to a model suggested by Howe [13]. The agreement is good for a normalized boundary layer thickness less than 30-40</p>
25

Simulations on flow and soot deposition in diesel particulate filters

Ohori, Shinya, Yamamoto, Kazuhiro 08 1900 (has links)
No description available.
26

N-Radical Injection For Augmenting The Nox Removal In Diesel Engine Exhaust By Electric Discharges

Sushma, B R 07 1900 (has links) (PDF)
No description available.
27

Catalyseurs conducteurs ioniques pour l'oxydation des suies / Ionic conducting ceramics for soot oxidation

Obeid, Emil 26 September 2013 (has links)
Cette étude a pour finalité le développement d'une nouvelle famille de catalyseurs pour la combustion des suies Diesel afin de produire des filtres à particules (FAP) à régénération continue basse température. En effet, les régénérations périodiques des FAP actuellement commercialisés, engendrent une surconsommation plus ou moins élevée en carburant. Les catalyseurs étudiés sont des céramiques conductrices par les ions oxygènes et exempts de métal noble. L'ensemble de ces études a permis d'aboutir à plusieurs conclusions majeures. Les oxygènes actifs pour oxyder les particules de suies à basse température sont les oxygènes contenus dans le catalyseur. L'oxydation de la suie a donc lieu à l'interface solide/solide : suie/catalyseur. Un mécanisme de type électrochimique comme dans une pile à combustible mais à l'échelle nanométrique a été proposé : l'oxydation de la suie représente la réaction anodique qui se déroule aux points de contact suie / 8-YSZ, les électrons produits diffusent à travers les particules de suie vers les point triples entre les particules de suie (conductrices électroniques), la phase gaz (présence d'oxygène) et 8-YSZ (conducteur ionique) où se déroule la réaction cathodique d'incorporation de l'oxygène gazeux dans le matériau. Les paramètres clés qui gouvernent l'activité catalytique sont la surface de contact suie/catalyseur et donc la granulométrie de la poudre de catalyseur ainsi que la pression partielle d'oxygène dans la phase gaz et la mobilité de l'oxygène dans le catalyseur / This study aims to develop a new family of catalysts for diesel soot combustion to produce and optimize self-DPFs, based on ionic conducting ceramics, able to continuously burn soot particulates at low temperatures without fuel overconsumption and without the use of noble metals. The investigated catalysts are oxygen ionically conducting ceramics. Yttria stabilized Zirconia (8-YSZ containing 8 mol% of yttria) was chosen as the reference catalyst due to its high thermal and chemical stability and good ionic conductivity. A set of experiments was implemented to vary different parameters that can influence the reactivity of the reference catalyst. All of these studies have resulted in several major conclusions. Oxygen species active to oxidize soot particles at low temperature are those contained in the catalyst. An electrochemical type mechanism as in a fuel cell but at the nanoscale was proposed: the soot oxidation represents the anodic reaction which occurs at the contact points soot / 8-YSZ/O2 (gas) electrons are diffused through soot particles to triple points between the soot particles (electronic conductor), the gas phase (presence of oxygen) and 8-YSZ (ion conductor) where the cathodic reaction takes place with the incorporation of gaseous oxygen into the ceramic. The key parameters that influence the catalytic activity of 8-YSZ are soot / catalyst contact and thus the agglomerates size of the catalyst powder, the oxygen partial pressure in the gas phase and the mobility of oxygen in the catalyst
28

Influence of Soot on the Transport Mechanisms inside the Filter Wall of SCR-Coated Diesel Particulate Filters

Purfürst, Marcus 27 April 2018 (has links)
The effect of soot on the catalytic properties of a diesel particulate filter coated with a catalyst for the selective catalytic reduction of NOx with ammonia (SDPF) was studied by means of model-gas experiments. After loading of the SDPF with model soot from 0 to 10 g l-1, the NH3 storage as well as the catalytic DeNOx behavior of the standard SCR reaction was investigated. The model soot present in the filter was shown to have an NH3 storage capacity. The soot deposit inside the SDPF filter wall lead to a decreased NO conversion in SCR experiments of up to 20 %. The NH3 breakthrough was found to be shifted towards earlier time-on-stream during NH3 adsorption on soot loaded SDPF samples. Both effects could be attributed to a diffusive mass transport limitation of the gas species through the soot to reach at the chemically active sites inside SDPF filter wall. The self-diffusion coefficient of NH3 probe molecules within a soot layer could be measured using Pulsed Field Gradient-NMR technique. The unit collector model is capable of describing the backpressure upon soot loading with a depth filtered (inside filter wall) soot amount of 1 g l-1 and 0.36 g l-1, respectively, for both SDPF types under investigation. Based on Scanning Electron Microscopy (SEM) investigation a 1-D microscopic soot filter wall-model was set up. The model implies soot as diffusion barrier for mass transport. It was calibrated based on experimental observations and allows to conclude on the distribution of the soot within the filter wall. Thus, a high soot-coverage of the porous filter wall close to the inlet channel, a slightly covered middle part and a soot free zone close to the outlet explains the observed reduction in NO conversion as well as the NH3 breakthrough at earlier time-on-stream during NH3 adsorption experiments for SDPF samples loaded with soot. A modelled homogeneous soot distribution (0.6 µm soot layer on top of washcoat) within the whole SDPF was shown to result in NO conversion drop up to 45 %.
29

Understanding particulate matter - Material analyses of real-life diesel particulate filters and correlation to vehicles’ operational data / Att förstå partiklar - Analyser av verkliga dieselpartikelfilter och korrelationer till fordonsdriftparametrar

Nordin, Linus January 2021 (has links)
Syftet med denna studie var att undersöka effekterna av driftsparametrar på ett antal mätbara askrelaterade parametrar i dieselpartikelfilter (DPF) i tunga fordon. Tidigare studier visar att askans packningsdensitet, askflöde och hur askan fördelas inuti ett DPF är beroende av parametrar som temperatur, avgasflöde och oljeförbrukning ett fordon har. Det finns anledning att tro att dessa parametrar också påverkas av hur ett fordon används, varför olika driftsparametrar analyserades för korrelation med de uppmätta askparametrarna. De driftsparametrar som undersöktes i denna studie var medelhastighet, antal stopp per 100 km, tomgångsprocent och bränsleförbrukning. Studien startade med metodutveckling av mätning av askvikter hos DPF och jämförde tre olika metoder, benämnda I, II och III. Metod II, som innebar att väga en bit av ett filter före och efter rengöring av filterstycket från aska med tryckluft valdes som den mest pålitliga och användbara metoden eftersom den var snabbare, behövde mindre av varje DPF för att ge kompletta resultat och kunde användas vid analys av DPF-prover som inte hade undersökts innan de användes i ett fordon. Askvikten, tillsammans med den volymetriska fyllningsgraden och genom att känna till inloppsvolymen för ett DPF användes för att beräkna askans packningsdensitet. Fyllningsgraden och askfördelningsprofilen mättes med bildanalys av mikroskopbilder av sågade tvärsnitt av filterstycket. Korrelationsstudien utfördes sedan med dessa metoder och korrelerades med operativa data extraherade från databaser på Scania CV. För att studera vilka parametrar som var korrelerade till varandra utfördes en principal component analysis (PCA) med de operativa och uppmätta variablerna som en matris av data. PCA-analysen visade att tre primalkomponenter (PC) utgjorde &gt;90% av variationen i de erhållna data och att plug/wall-förhållandet, som är ett numeriskt värde för askfördelningen, var starkt positivt korrelerat med ett fordons medelhastighet och negativt korrelerat med antalet stopp, tomgångsprocent och bränsleförbrukning. Vidare visade askflödet en svagare positiv korrelation med tomgångsprocent, antal stopp och bränsleförbrukning medan oljeförbrukningen visade en ännu lägre korrelation med dessa parametrar. Detta indikerar att oljeförbrukningen ej skall ses som en konstant proportionell andel av bränsleförbrukningen för samtliga fordon vid beräkning av serviceintervall för DPFer. Askans packningsdensitet visade ingen till mycket låg korrelation med andra variabler i studien vilket kan bero på att proverna med hög andel väggaska har använts betydligt kortare sträcka än övriga prover, vilket kan ha gjort så att askan inte hunnits packas hårt i filterkanalerna. / The purpose of this study was to investigate the impact of operational parameters on a number of measurable ash related numbers within diesel particle filters (DPFs) of heavy duty vehicles. Previous studies show that ash packing density, ash flow and how the ash is distributed inside a DPF is dependent on parameters such as temperature, exhaust flow profiles and how much oil a vehicle consumes. There is reason to believe that these parameters are also affected by how a vehicle is operated which is why different operational parameters were analysed for correlation with the measured ash numbers. The operational parameters that was investigated in this study was average speed, number of stops per 100 km, idling percentage and fuel consumption. The study started with method development of measuring ash weights of DPFs and compared three different methods, named I, II and III. Method II, which relies on weighing a piece of a filter substrate before and after cleaning the filter piece from ash with pressurized air was chosen as the most reliable and useful method as it was faster, needed less of each DPF to complete the analysis and could be used when analysing DPF samples that had not been investigated previous to its use in a vehicle. The ash weight, together with the volumetric filling degree and known inlet volume of the DPF was used to calculate the ash packing density. The filling degree and ash distribution profile was measured with an image analysis of microscope images of sawed cross sections of the filter piece. The correlation study was then performed with these methods and correlated with operational data extracted from databases at Scania CV. To study which parameters were correlated to each other a primal component analysis (PCA) was performed with the operational and measured variables as a matrix of data. The PCA analysis showed that three primal components made up &gt;90 % of variation in the data and that plug/wall ratio, which is a numerical value of the ash distribution, was strongly positively correlated with average speed of a vehicle and negatively correlated with number of stops, idling percentage and fuel consumption. Furthermore, ash flow showed a slight positive correlation with idling percentage, number of stops and fuel consumption while oil consumption showed an even slighter correlation with these parameters. This indicates that the oil consumption cannot be taken as a constant value as percentage of fuel consumption when calculating service intervals of DPFs. The ash packing density showed none to very low correlation with any other variables in the study, which could depend on the fact that the DPFs with high percentage of wall ash had a significantly lower runtime which could mean that the ash has not had time to be packed tightly in the filter channels.
30

Výzkum progresivních metod snižování obsahu škodlivých látek ve výfukových plynech vznětových motorů / Research of Progressive Methods for Reduction of Emissions in CI Engine Exhaust Gasses

Franz, Rudolf January 2020 (has links)
The scope of this dissertation work is a description of modern methods of reducing exhaust emission in diesel engines. The fundamental part is the application of these methods for diesel engines for off-road use that means for engines that are used in tractors and road machines. The mentioned evidence for the practical utility of the results of this dissertation thesis in practice and their verification on the actual engine are given in the conclusion.

Page generated in 0.0897 seconds