Spelling suggestions: "subject:"diffusion atomique"" "subject:"diiffusion atomique""
1 |
Protocole d'appel de multiprocédure à distance dans le système Gothic : définition et mise en oeuvre.Morin, Christine 18 December 1990 (has links) (PDF)
Ces travaux de thèse se sont déroulés dans le cadre du projet Gothic, qui avait pour objectif de concevoir et réaliser un système distribué intégré tolérant aux fautes pour un réseau local de machines multiprocesseurs dotées de Mémoires Stables Rapides (MSR). Le langage de programmation du système Gothic, appelé Polygoth, introduit le concept de multiprocédure pour la construction d'applications distribuées. La multiprocédure est une généralisation de la procédure permettant l'exécution en parallèle de plusieurs calculs. Ces travaux de thèse ont porté sur la conception de protocoles de communication fiable pour la mise en oeuvre d'un protocole d'appel de multiprocédure à distance (RMPC). Nous avons défini un système de communication fiable dont les composants essentiels sont un protocole de communication fiable par messages et un protocole de diffusion fiable ordonnée. L'originalité de ces protocoles repose sur l'utilisation de la MSR associée à chaque processeur pour y ranger les informations cruciales du système de communication et des points de reprise des processus communicants. Le système de communication fiable de Gothic dépasse le cadre du protocole RMPC. Nous avons en particulier défini un protocole de rendez-vous atomique mis en oeuvre dans le système Gothic au-dessus du protocole de communication fiable par messages.
|
2 |
Modélisation 3D de la diffusion atomique dans les minéraux : applications à l'étude des isotopes de l'hydrogène et de l'oxygène, et du couple Al-SiDesbois, Guillaume 28 September 2006 (has links) (PDF)
Cette thèse présente un modèle numérique 3D par différences finies capable de simuler la diffusion atomique dans les monocristaux. Ce nouvel outil permet : de prendre en compte l'anisotropie de diffusion, de générer un large choix de forme de cristal, de considérer n'importe quelle distribution initiale de concentration, de faire évoluer la concentration de surface en fonction du temps et de choisir, sans restriction, la variation de température en fonction du temps.<br />Le modèle 3D créé a été appliqué à quatre cas d'étude : trois portent sur des expériences de diffusion de l'hydrogène réalisées en laboratoire dans le diopside, la lawsonite et la tourmaline, le quatrième sur des profils de diffusion naturels (Al-Si et O) dans des diopsides des Adirondacks. Ces études illustrent le potentiel du modèle numérique 3D développé pour la description et l'interprétation des profils de diffusion dans les minéraux. Ce nouvel outil sera très utile pour interpréter les zonations de plus en plus fines obtenues à l'échelle du grain à l'aide des techniques analytiques modernes.
|
3 |
Comportement à l'oxydation des verres métalliques massifs à base de zirconiumWang, Bin 22 November 2011 (has links) (PDF)
Les verres métalliques massifs à base de zirconium, développés depuis la fin des années 80, présentent des propriétés mécaniques très intéressantes. Ils peuvent être envisagés pour de multiples applications y compris à des températures élevées et il est donc intéressant d'étudier leur résistance à l'oxydation dans de telles conditions. L'objectif fondamental de cette étude consiste à mieux comprendre le rôle de divers paramètre thermodynamiques et chimiques sur le comportement à l'oxydation des verres métalliques à base de zirconium à des températures intermédiaires sous air sec, à déterminer les contraintes résiduelles au sein de la couche d'oxyde formée, en comparaison avec des alliages amorphe cristallisés après un traitement de recuit. La cinétique d'oxydation de ces verres et la structure cristalline de la couche d'oxyde ZrO2 dépend de la température et de la durée d'oxydation : pour des durées courtes d'oxydation et pour une température légèrement inférieure à Tg, la cinétique d'évolution est parabolique alors que si l'échantillon est oxydé à T > Tg, la loi cinétique peut être décomposée en deux parties. Les mêmes alliages cristallisés après un traitement de recuit, s'oxydent selon une loi parabolique quelque soit la température. Pour des durées d'oxydation longues à une température proche de Tg, les lois cinétiques deviennent plus complexes et la cristallisation du verre métallique pouvant avoir lieu au cours des essais d'oxydation. De même la structure cristalline des couches d'oxyde dépend de la température d'oxydation. Ainsi, pour T < Tg, la couche d'oxyde des alliages amorphes est uniquement constituée de la zircone tétragonale alors que pour ces mêmes alliages portés à une température T > Tg et pour les alliages cristallisés, on observe de la zircone monoclinique. Les mécanismes d'oxydation dépendent de la température d'oxydation. Pour les températures où les alliages restent vitreux, la formation de l'oxyde est due à la fois à la diffusion des ions d'oxygène vers l'intérieur mais également à la diffusion des ions de zirconium vers l'extérieur de la couche. En revanche, pour les alliages en cours de cristallisation, la diffusion des ions de zirconium est progressivement freinée jusqu'à devenue nulle lorsque la cristallisation est totale, l'oxydation étant alors uniquement contrôlée par la diffusion interne des ions d'oxygène.Les contraintes résiduelles correspondantes au sein de couches d'oxyde sont de compression, aussi bien pour les alliages amorphes que pour les alliages cristallisés, et qu'elles augmentent linéairement avec l'épaisseur de la couche. Les contraintes de croissance lors de l'oxydation et résiduelle après l'oxydation sont fortement influencées par le changement de phase de la zircone.
|
4 |
Étude de l'influence de la perte de masse sur l'évolution des anomalies d'abondance dans plusieurs types d'étoiles / A Study of the Effects of Mass Loss on the Evolution of Abundance Anomalies in Many Types of StarsVick, Mathieu 15 October 2010 (has links)
La diffusion atomique joue un rôle déterminant dans l'évolution d'étoiles de plusieurs types (Michaud 1970). Dans ces étoiles, la diffusion atomique est principalement régie par la compétition entre l'accélération gravitationnelle et les accélérations radiatives et peut par ce biais mener à de fortes anomalies d'abondances. À l'aide d'un modèle évolutif qui considère les accélérations radiatives de 28 espèces, il est possible de modéliser plusieurs types d'étoiles de Population I, incluant le Soleil (Turcotte et al. 1998a), les étoiles de type F (Turcotte et al. 1998b), les étoiles AmFm (Richer et al. 2000; Richard et al. 2001) et les étoiles de métallicité solaire ayant une masse entre 0.5 et 1.4 Msol (Michaud et al. 2004), ainsi que des étoiles de Pop II (Michaud et al. 2005). Cependant, les modèles qui ne considèrent que la diffusion atomique comme processus de transport dans les intérieurs stellaires génèrent des anomalies d'abondance plus grandes que celles observées pour les étoiles de type Am, Ap et HgMn. Dans ces étoiles, il y a donc un ou plusieurs autres processus qui peuvent influencer le transport de particules, tels la circulation méridionale, la turbulence et la perte de masse. L'objet de cet thèse est de contraindre l'importance de la perte de masse dans l'intérieur de plusieurs étoiles chimiquement particulières de Pop I et Pop II, tout en essayant de différencier ces effets par rapport à ceux reliés aux processus de mélange turbulents. / Atomic diffusion plays an important role in the evolution of many types of stars (Michaud 1970). In these stars, elemental migration is modulated by the competition between radiative accelerations and gravity, and can thus lead to important abundance anomalies both in the interior and at the surface of these stars. With a stellar evolution model which considers detailed particle transport with radiative accelerations for 28 elements, one can study the evolution of many types of stars of Pop II including the Sun (Turcotte et al. 1998a), F stars (Turcotte et al. 1998b), AmFm stars (Richer et al. 2000; Richard et al. 2001), as well as less massive stars (0.5 to 1.4 Msol) with solar metallicity (Michaud et al. 2004). Furthermore, such a model can also look into the evolution of Pop II chemically peculiar stars (Michaud et al. 2005). However, models which consider atomic diffusion as the sole process affecting particle transport lead to abundance anomalies which are greater than the ones observed. There is thus at least one macroscopic process which is preventing such large anomalies to appear at the surface. These processes include mass loss, meridional circulation and turbulence. The main goal of this thesis is to constrain the relative importance of mass loss in the interiors of many chemically peculiar stars of Pop I and Pop II, as well as to properly differentiate its effects from those generated by turbulent mixing processes.
|
5 |
Comportement à l'oxydation des verres métalliques massifs à base de zirconium / Oxidation behaviour of Zr-based bulk metallic glassesWang, Bin 22 November 2011 (has links)
Les verres métalliques massifs à base de zirconium, développés depuis la fin des années 80, présentent des propriétés mécaniques très intéressantes. Ils peuvent être envisagés pour de multiples applications y compris à des températures élevées et il est donc intéressant d’étudier leur résistance à l’oxydation dans de telles conditions. L’objectif fondamental de cette étude consiste à mieux comprendre le rôle de divers paramètre thermodynamiques et chimiques sur le comportement à l’oxydation des verres métalliques à base de zirconium à des températures intermédiaires sous air sec, à déterminer les contraintes résiduelles au sein de la couche d’oxyde formée, en comparaison avec des alliages amorphe cristallisés après un traitement de recuit. La cinétique d’oxydation de ces verres et la structure cristalline de la couche d’oxyde ZrO2 dépend de la température et de la durée d’oxydation : pour des durées courtes d’oxydation et pour une température légèrement inférieure à Tg, la cinétique d’évolution est parabolique alors que si l’échantillon est oxydé à T > Tg, la loi cinétique peut être décomposée en deux parties. Les mêmes alliages cristallisés après un traitement de recuit, s’oxydent selon une loi parabolique quelque soit la température. Pour des durées d’oxydation longues à une température proche de Tg, les lois cinétiques deviennent plus complexes et la cristallisation du verre métallique pouvant avoir lieu au cours des essais d’oxydation. De même la structure cristalline des couches d’oxyde dépend de la température d’oxydation. Ainsi, pour T < Tg, la couche d’oxyde des alliages amorphes est uniquement constituée de la zircone tétragonale alors que pour ces mêmes alliages portés à une température T > Tg et pour les alliages cristallisés, on observe de la zircone monoclinique. Les mécanismes d’oxydation dépendent de la température d’oxydation. Pour les températures où les alliages restent vitreux, la formation de l’oxyde est due à la fois à la diffusion des ions d’oxygène vers l’intérieur mais également à la diffusion des ions de zirconium vers l’extérieur de la couche. En revanche, pour les alliages en cours de cristallisation, la diffusion des ions de zirconium est progressivement freinée jusqu’à devenue nulle lorsque la cristallisation est totale, l’oxydation étant alors uniquement contrôlée par la diffusion interne des ions d’oxygène.Les contraintes résiduelles correspondantes au sein de couches d’oxyde sont de compression, aussi bien pour les alliages amorphes que pour les alliages cristallisés, et qu’elles augmentent linéairement avec l’épaisseur de la couche. Les contraintes de croissance lors de l’oxydation et résiduelle après l’oxydation sont fortement influencées par le changement de phase de la zircone. / The Zr-based bulk metallic glasses, developed since the late 1980s, have very interesting mechanical properties, which can be considered for many applications including working under oxidizing atmosphere conditions at high temperatures. It is therefore interesting to study their oxidation resistance and to characterize the oxide scale formed on alloys’ surface. The fundamental objective of this thesis is to enhance the understanding of the role of various thermodynamic and chemistry parameters on the oxidation behaviour of the Zr-based bulk metallic glasses at high temperature under dry air, to determine the residual stresses in the oxide layer, in comparison with their crystalline alloys with the same chemical composition after an annealing treatment. The oxidation kinetics of these glasses and the crystalline structure of oxide scale ZrO2 depend on the temperature and the oxidation duration: for short periods of oxidation or at a temperature below Tg, the kinetics follows a parabolic law, whereas, if the sample is oxidized at T > Tg, the kinetics can be divided into two parts. The crystalline counterparts are oxidized by a parabolic rule whatever the temperature; for long oxidation duration at a temperature close to Tg, the kinetics becomes more complex because of the crystallisation of the glasses during the oxidation tests. Also the crystalline structure of the oxide layers depends on the oxidation temperature: the oxide layer consists only in tetragonal Zirconia at T < Tg, while monoclinic Zirconia was formed at higher temperature. The mechanism of the formation of the oxide scale is due to both the interior diffusion of Oxygen ions and the external diffusion of Zirconium ions. However the diffusion of Zirconium ions slows gradually during the crystallisation process of the glass matrix. When the crystallisation is completed, the formation of Zirconia is controlled by only the internal diffusion of oxygen ions. The corresponding residual stresses existing in the oxide layer are compressive, both for the metallic glass and counterpart, and they increase linearly with the thickness of the oxide layer. The growth and residual stresses are strongly influenced by the phase transition of Zirconia during oxidation process.
|
6 |
Étude de l'influence de la perte de masse sur l'évolution d'étoiles de plusieurs typesVick, Mathieu M. 10 1900 (has links)
La perte de masse est introduite dans des modèles évolutifs qui traitent en détail le transport
microscopique induit par la diffusion atomique et les accélérations radiatives pour 28 espèces y inclus tous les
isotopes de la base de données OPAL. Les propriétés physiques des solutions sont analysées en détail. Lorsque
l'amplitude de la vitesse advective causée par la perte de masse est plus grande que la vitesse de triage
dirigée vers le centre de l'étoile, le flux local d'un élément est déterminé par des variations du
flux qui se déroulent profondément dans l'étoile. Par contre, l'abondance locale dépend aussi des variations
locales des
accélérations radiatives. Dans ces étoiles, la séparation chimique causée par la diffusion atomique affecte
30% du rayon externe de l'étoile.
Les modèles sont aussi comparés à plusieurs observations d'étoiles AmFm, HAeBe et de Population II dans
le but de caractériser le rôle que pourrait jouer la perte de masse en tant que processus qui inhibe
la diffusion atomique dans les zones stables de ces étoiles.
Les anomalies d'abondances observées à la surface de ces
étoiles sont reproduites par des modèles évolutifs qui
incluent la diffusion atomique et la perte de masse non-séparée. Les taux de perte de
masse considérés ne sont contraints que par les abondances en surface puisque leurs amplitudes sont
probablement trop petites pour être observées directement. Quant aux étoiles AmFm et HAeBe, les
observations d'abondances sont compatibles avec des taux de perte de masse qui sont au maximum 5 fois plus
élevés que le taux de perte de masse solaire, alors que les taux requis pour reproduire les observations
d'étoiles de Population II sont jusqu'à 50-100 fois plus élevés que le taux solaire. Des taux de perte
de masse plus petit que 10^{-14}Msol/an, qui permettent l'apparition d'une zone
convective due aux éléments du pic du fer, mènent à des abondances en surface qui ne sont pas compatibles
avec les observations. Les abondances en surface d'étoiles AmFm et de Population II sont régies par
la séparation chimique qui se déroule profondément dans l'étoile
Delta M/M_* allant de -5 à -6, alors que la
séparation se produit plus près de la surface Delta M/M_* plus près de -7 dans les étoiles HAeBe.
Par rapport aux modèles avec mélange turbulent, la perte de masse mène à une
distribution interne des
éléments très différente. Le mélange turbulent conduit à des
solutions pour lesquelles les
abondances sont homogènes depuis la surface jusque profondément dans l'étoile
(solution diffusive), alors que la perte de masse
permet la séparation chimique dès le bas de la zone convective de
surface (solution advective). Ce résultat pourrait peut-être permettre
à l'astérosismologie
de déterminer l'importance relative de ces deux processus dans
l'intérieur de ces étoiles. / Mass loss has been introduced in a stellar evolution code which takes into
account all the effects of atomic diffusion and
radiative accelerations for the 28 species
included in the OPAL opacity database. The physical properties of the
solutions are analyzed in detail. When the advective velocity induced by mass loss dominates the
inward settling velocity, the local flux
for a given element is determined by flux variations which occur deep within the star.
However, local
abundances are modulated by local variations in radiative
accelerations. Atomic diffusion affects the outer 30%
of the stellar radius of these stars.
The computed models are also compared
to observations of AmFm, HAeBe and Population II
stars in order to
determine to what extent mass loss competes with atomic diffusion
in the stable regions of these stars.
Mass loss rates are solely
constrained via surface abundances, since the mass loss rate amplitudes are likely too small
to be observed directly.
It is shown that most chemical anomalies observed at the
surface of these stars can be
reproduced by models with
unseparated mass loss. While AmFm and HAeBe abundance determinations
are compatible with mass loss rates
which are, at most,
5 times larger than the solar mass loss rate,
Population II stars require much larger
rates (50 to 100 times
the solar rate). Mass loss rates smaller than 10^{-14}Msun/yr which lead
to an iron peak convection zone are not compatible with
surface abundance observations.
Surface abundances in AmFm and Population II stars are shown
to be the result of
chemical separation
occurring deep within the star (Delta M/M_* between -5 and -6);
however, in HAeBe stars, for
which anomalies appear during the pre--main-sequence, the
separation occurs nearer the surface (Delta M/M_* = -7).
With respect to turbulent
mixing, mass loss leads to very
different internal abundance distributions. Whereas turbulent mixing
homogenizes abundances from the surface down to depths
well within the radiative zone (diffusive solution),
mass loss allows for
chemical stratification up to the bottom of the
surface convection zone (advective solution). This could
potentially allow for
asteroseismic tests
which could elucidate the relative
importance of both types of processes in these stars. / Cette thèse a été réalisée en cotutelle. Pour la forme, Gérard Jasniewicz était mon codirecteur 'officiel' en France, bien que mon codirecteur était plutôt Olivier Richard qui m'a encadré lorsque j'étais en France.
|
7 |
Étude de l'influence de la perte de masse sur l'évolution d'étoiles de plusieurs typesVick, Mathieu 10 1900 (has links)
No description available.
|
Page generated in 0.0603 seconds