• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 233
  • 65
  • 6
  • 1
  • Tagged with
  • 298
  • 123
  • 116
  • 115
  • 87
  • 75
  • 64
  • 64
  • 58
  • 48
  • 39
  • 37
  • 34
  • 32
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Modélisation et simulation du rayonnement dans les jets de moteurs à propergol solide à haute altitude / Modelisation and Simulation of radiation in high altitude plumes of solid propellant engines

Binauld, Quentin 21 December 2018 (has links)
Le rayonnement dans les jets issus de moteurs à propergol solide constitue un phénomène essentiel à l’estimation des flux aux parois et à la prédiction de la signature radiative des engins. A haute altitude, de l’ordre de 100 km, ces jets sont caractérisés par des écoulements compressibles diphasiques, à fort aspect raréfié dans certaines régions, compos ´es de particules d’alumine et de gaz de combustion. Le transfert radiatif y joue un rôle important dans la mesure où il influence fortement le refroidissement et le changement de phase des particules. Afin de simuler numériquement les jets et leur rayonnement, différents modèles ont été développés. Le rayonnement des gaz a été pris en compte à l’aide de modèles statistiques à bandes étroites. Le phénomène de surfusion qui régit le changement de phase de l’alumine et les champs de température associés aux différentes tailles de particules, a été pris en compte. Enfin, une méthode de splitting des puissances radiatives a été mise en œuvre afin de permettre le couplage entre le rayonnement et l’écoulement dans des milieux en des ‘équilibre thermique gaz/particules. Ces modèles ont été implémentes dans une plateforme de calcul, permettant de coupler un solveur fluide utilisant une approche Navier-Stokes, un solveur eulérien pour traiter la phase dispersée et un solveur radiatif qui utilise une méthode de Monte Carlo. L’outil numérique développe a été partiellement validé en comparant nos résultats aux mesures obtenues dans le cadre de l’expérience BSUV2. Dans les conditions de cette expérience, le rayonnement des particules est prédominant mais la contribution des gaz s’avère non négligeable. Des simulations sous différentes hypothèses ont permis de mettre en évidence le rôle primordial du transfert radiatif, couplé au phénomène de surfusion, dans l’établissement des champs de température des particules. La dernière partie de ces travaux s’est attachée à l’étude du déséquilibre vibrationnel de la phase gazeuse et de son impact sur le rayonnement dans les jets. Il est montré que le gel partiel des niveaux de vibration de la molécule CO2 durant la détente du jet peut augmenter de façon significative son rayonnement. / Radiation from solid propellant rocketplumes is important for the prediction of thermalfluxes on vehicle walls and of plume signature. Athigh altitudes, of approximately 100 km, those plumesare characterized by two-phase compressible flows,highly rarefied in some regions, composed of aluminaparticles and exhaust combustion gases. Radiativetransfer plays an important role in the cooling and thephase change of the particles.In order to carry out numerical simulations of rocketplumes and their radiation, several models have beendeveloped. The radiation of the gas phase is takeninto account using statistical narrow bands models.The supercooling phenomenon has been modeled todeal with the phase change of alumina and to obtaincorrect temperature fields for the different size classesof particles. Finally, a splitting method of the radiativepower has been established to enable the couplingbetween radiation and the flow field under gas/particlethermal non-equelibrium. These models have beenimplemented in a calculation platform, enabling tocouple a Navier-Stokes solver for the gas phase, anEulerian solver dealing with the dispersed phase anda radiative solver based on a Monte Carlo method.The developed numerical tool has been partly validatedcomparing our results with the measurementsobtained during the BSUV2 experiment. In the conditionsof this experiment, particle radiation is shownto be predominant but the contribution of the gasphase is found to be non-negligible. Simulations underdifferent hypotheses have put the emphasis onthe importance of radiative transfer, coupled with thesupercooling phenomenon, for an accurate evaluationof particle temperature fields.The last part of this work focuses on the study ofgas vibrational non-equilibrium and its impact on radiationfrom high altitude plumes. It is shown thatthe slow deexcitation of vibrational levels of the CO2molecule during the plume expansion may increasesignificantly its radiation.
182

Etude expérimentale des éjecteurs : Application à la récupération de l'énergie de détente des machines frigorifiques au CO2 / Experimental study of ejector : Application to the recovery of the expansion work of CO2 refrigeration machines

Bouzrara, Ali 10 September 2018 (has links)
Les fluides naturels employés en réfrigération et en conditionnement d’air possèdent de faibles PRG et sont de ce fait une véritable alternative aux HFC. Cependant, leur généralisation se heurte à des limites provenant de leur caractère toxique (NH3), inflammable (hydrocarbures, NH3) ou de leurs caractéristiques thermodynamiques défavorables (CO2). Leur utilisation accrue nécessite la mise en œuvre de composants spécifiques (échangeurs de chaleur intermédiaire, éjecteur) qui sans qui les performances seraient inférieures à celles obtenues avec les HFC (COPCO2 = 55 % du COPHFC-134a pour des températures de sources de 0 °C et 40 °C). L’utilisation d’un éjecteur comme organe de détente est une solution envisagée pour réduire les irréversibilités. Les éjecteurs diphasiques constituent une alternative intéressante pour les dispositifs de détente classiques utilisés depuis plusieurs décennies. Le principal avantage de l’éjecteur est de récupérer une partie de l’énergie cinétique du processus de détente de la haute pression à la basse pression pour augmenter la pression d’aspiration du compresseur. Ceci entraîne une diminution du travail consommé par ce dernier et, par suite, une augmentation du coefficient de performance du système. Néanmoins, une bonne conception d’un éjecteur diphasique nécessite une analyse détaillée en termes de simulations numériques et travaux expérimentaux. Ainsi, l’objectif de ce travail est d’apporter une contribution expérimentale à l’étude des machines frigorifiques au CO2 transcritique équipées d’éjecteur diphasique. Des efforts importants ont été investis dans la conception d’un éjecteur diphasique avec diverses géométries pour évaluer les principales caractéristiques à savoir le facteur d’entraînement et le rapport de compression. Les essais effectués ont permis de mettre en évidence l’influence des différents paramètres géométriques sur les performances de la machine (différents diamètres au col des tuyères primaires, différents diamètres de mélangeurs, longueurs de mélangeurs, distance entre le plan de sortie de la tuyère primaire et l’entrée du mélangeur, l’angle de divergent des tuyères primaires…) ainsi que les paramètres thermodynamiques (température d’évaporation, température à l’entrée de la tuyère primaire). / Natural refrigerants used in refrigeration and air conditioning have low GWP and are therefore a real alternative to HFCs. However, their generalization comes up against limits due to their toxic (NH3), flammable (hydrocarbons, NH3) or their unfavorable thermodynamic characteristics (CO2). Their increased use requires the implementation of specific components (intermediate heat exchangers, ejector) which without performance would be lower than those obtained with HFCs (COPCO2 = 55% of COPHFC-134a for temperatures source of 0 °C and 40 °C). The use of an ejector as an expansion device is a solution considered to reduce irreversibility. Two-phase ejector has been an interesting alternative for conventional expansion devices for several decades. The main advantage of the ejector is to recover some of the kinetic energy of the process of expansion from high pressure to low pressure to increase the suction pressure of the compressor. This results in a reduction of the work consumed by the latter and, consequently, an increase in the coefficient of performance of the system. Nevertheless, a good design of a two-phase ejector requires a detailed analysis in terms of numerical simulations and experimental work. Thus, the objective of this work is to make an experimental contribution to the study of transcritical CO2refrigeration machines equipped with two-phase ejector. Significant efforts have been invested in the design of a two-phase ejector with various geometries to evaluate the main characteristics namely the entrainment ratio and the compression ratio. The tests carried out made it possible to highlight the influence of the various geometrical parameters on the performances of the machine (different diameters of the throat of the primary nozzle, different mixers diameters and lengths, distance between the exit of the primary nozzle and the inlet of the mixer, the divergence angle of the primary nozzles ...) as well as the thermodynamic parameters (evaporation temperature, temperature at the inlet of the primary nozzle).
183

Etude expérimentale et numérique des phénomènes de condensation dans un tube vertical partiellement immergé / Experimental and numerical study of condensation phenomena in a partially submerged vertical pipe

Khaophone, Davy 28 January 2016 (has links)
Cette thèse est dédiée à l'étude expérimentale et numérique des phénomènes de condensation dans un pressuriseur de chaufferie nucléaire embarquée conçu par l'entreprise DCNS. Au sein du système est observé un écoulement diphasique avec changement d'état, descendant dans un tube vertical partiellement immergé dans du liquide. Le liquide sous-refroidi s'écoule dans le tube sous l'effet de la gravité en entrainant de la vapeur saturée qui se condense à son contact. Dans un premier temps, l'étude des phénomènes de condensation est réalisée sur un banc expérimental dont la conception, le dimensionnement, la réalisation et l'exploitation ont été effectués au cours de cette thèse. Le dispositif est une version simplifiée à l'échelle 1 du système réel. Cette étude expérimentale a permis d'identifier les régimes d'écoulements diphasiques présents dans le système et d'analyser l'impact de trois paramètres : le débit de liquide injecté, le sous-refroidissement de ce liquide à l'entrée du tube et la pression en sortie de tube. Par ailleurs, l'étude propose un modèle déterminant les conditions pour laquelle le tube d'essais est complètement noyé, ce qui minimise les phénomènes de condensation. Dans un second temps, une simulation numérique de l'écoulement diphasique est réalisée par CFD sur ANSYS Fluent à l'aide du modèle " Volume Of Fluid ". La prise en compte de la condensation de la vapeur au contact du liquide sous-refroidi a nécessité le développement, grâce aux fonctions utilisateur du logiciel, d'un modèle spécifique s'appuyant sur un modèle de la littérature. Les résultats obtenus ont permis de reproduire qualitativement le déversement du liquide observé expérimentalement en entrée de tube ainsi que la condensation de la phase vapeur au contact de la phase liquide. / This thesis focuses on condensation phenomena occurring in a patented system designed by DCNS Company. The system ensures pressure regulation of nuclear boiler rooms embarked in naval vessels. Within the system occurs a downward liquid/vapor flow with phase change in a partially submerged vertical pipe. Subcooled liquid flows into the pipe and induce a suction of saturated vapor which condense in contact with liquid phase. This study aim to understand the physical phenomena occurring in the system and to simulate these phenomena. First, the condensation phenomena are studied with a test loop which conception, dimensioning, realization and exploitation were realized during this study. The experimental study identified the flow regimes occurring in the system and analyzed the impact of three parameters: the liquid flow rate, the liquid subcooling and the pressure at the system outlet. This study also proposed a simple model which determine the necessary conditions to completely drown the pipe, which minimize condensation phenomena. Thereafter, the numerical simulation of the two-phase flow was realized by CFD on ANSYS Fluent with the "Volume of Fluid" model. The condensation simulation was achieved by applying a condensation model used in literature. This model was added to the numerical code with User-Defined Functions (UDF). The simulation reproduced the weir regime flow at the pipe entrance and the vapor condensation inside the pipe.
184

Étude du mécanisme de dégradation du méthanol au contact du nickel dans le cadre d'une boucle fluide diphasique à pompage capillaire / STUDY OF THE METHANOL DEGRADATION IN THE CONTEXT OF A TWO-PHASE FLUID CAPILLARY PUMPED LOOP

Renault, Jean-Christophe 20 December 2017 (has links)
Dans le domaine ferroviaire les contraintes pesant sur les systèmes de traction électrique sont telles que cela constitue une branche à part de l’électronique, appelée « électronique de puissance ». La nécessité du refroidissement est exacerbée par la présence de très fortes puissances électriques circulant dans ces systèmes. Une adaptation au domaine ferroviaire des boucles fluides diphasiques à pompage capillaire, initialement conçues pour des applications spatiales, pourrait constituer une réponse avantageuse à ce besoin de refroidissement. Ce sont des moyens de transfert thermique passifs, modulaires, très performants et très fiables. La vaporisation du fluide caloporteur se fait dans une mèche poreuse, engendrant une différence de pression entre la vapeur et le liquide, permettant la mise en mouvement du fluide dans tout le système. Elles fonctionnent donc sans pompe ni aucun organe mécanique de mise en mouvement du fluide.Des adaptations ont été effectuées par ALSTOM et EHP (Euro Heat Pipe) sur ces boucles conduisant à un prototype appelé « Capillary Pumped Loop for Integrated Power » (CPLIP). Dans ce contexte, l’objectif de cette thèse est d’étudier la compatibilité chimique du fluide diphasique utilisé dans la CPLIP, le méthanol, avec le matériau de la mèche poreuse de la CPLIP, du nickel fritté. Cette compatibilité sera notamment étudiée aux températures de fonctionnement qui pourraient être plus élevées qu’elles ne le sont actuellement avec l’utilisation du carbure de silicium dans l’électronique de puissance. Deux bancs d’essai ont été développés spécifiquement pour l’étude du vieillissement d’un fluide au contact d’un solide catalytique. Le premier est un réacteur batch permettant de déterminer la cinétique de réaction. Un second banc d’essais a été conçu dans le but de se rapprocher des conditions de fonctionnement des boucles fluides diphasiques. Du fait des contraintes liées à l’étude de la réaction par analyse des composés chimiques, il n’était pas possible de faire circuler le fluide par pompage capillaire. C’est donc une boucle fluide diphasique gravitaire qui a été mise au point. Le fonctionnement de ce procédé étant loin d’être trivial, une partie de ce travail est consacrée à décrire le comportement thermique de ce procédé, à l’aide de résultats expérimentaux ainsi que d’un modèle numérique simple. Les analyses sur ces deux bancs de test ont été faites à l’aide d’un micro-chromatographe en phase gazeuse. Des essais de caractérisation de la surface, au travers d’analyses de microscopie à balayage électronique, de spectrophotométrie à rayon X et des analyses BET ont permis d’avoir une idée plus précise de la surface du nickel fritté. Ces analyses ont également été effectuées après réaction, de manière à obtenir plus d’informations sur l’évolution de l’état de surface au cours de la réaction. Différents essais ont ensuite été effectués pour différentes températures et différentes granulométries qui nous ont permis de proposer un mécanisme de la dégradation du méthanol au contact du matériau constituant la mèche poreuse. Enfin, des premiers tests ont été effectués sur la boucle fluide diphasique de manière à étudier la dégradation du méthanol dans des conditions proches de celles qui seront rencontrées dans les boucles industrielles. / In the railway field the constraints on electric traction systems are such that these systems constitute a separate branch of electronics, called "power electronics". Furthermore, the needs for cooling these systems are increased by the presence of very high electrical currents flowing in these systems. An adaptation to the railway field of two-phase fluid capillary pumped loops, initially designed for space applications, could be an advantageous response to this cooling need. The capillary pumped loops are passive and modular heat transfer devices, characterized by their highly efficient and highly reliable behavior. The vaporization of the heat transfer fluid takes place in a porous wick, generating a pressure difference between the vapor and the liquid phase, allowing the setting in motion of the fluid throughout the system. They therefore operate without pump or any mechanical element to set the fluid in motion. Adaptations have been made by ALSTOM and EHP (Euro Heat Pipe) on these loops, leading to a prototype called "Capillary Pumped Loop for Integrated Power" (CPLIP). The goal of this PhD, in this context, is to study the chemical compatibility of methanol, which is the fluid used in the CPLIP, with the material of the CPLIP wick based on sintered nickel. Their compatibility will be mainly studied for temperatures higher than those currently encountered in the loop, to take into account the increase of operating temperature due to the development of silicon carbide in power electronics.Two test benches have been developed specifically for the study of the aging of a couple fluid/catalytic solid in contact. The first one is a batch reactor used to determine the reaction kinetics. A second test bench has been designed with the aim to partially reproduce the operating conditions of the CPLIP. Because of the constraints related to the study of the reaction including analysis of the chemical compounds, it was not possible to generate capillary pumping to the setting in motion of the fluid. A gravitational two-phase fluid loop has therefore been developed. Since the use of this process is quite complex, a part of this work is devoted to describe its thermal behavior, using experimental results as well as a simple numerical model. On these two test benches, a gas chromatograph was used to perform chemical analyzes. Surface characterization tests, using scanning electron microscopy, X-ray spectrophotometry and BET analyzes, provided a more accurate knowledge of the surface area of the sintered nickel. Analyzes were also carried out after reaction, in order to obtain more information on the evolution of the surface state during the reaction. Various tests were then carried out for different temperatures and particle sizes which allowed us to offer a degradation mechanism of methanol in contact with the nickel of the porous wick. Finally, first tests were carried out on the gravitational two-phase fluid loop in order to study the degradation of methanol under conditions representative to those encountered in industrial loops
185

Evaluation de la méthode Euler-Euler pour la simulation aux grandes échelles des chambres à carburant liquide / Evaluation of the Euler-Euler approach for large eddy simulation of combustion chamber operated with liquid fuel

Sanjosé, Marlène 14 December 2009 (has links)
Les turbines aéronautiques doivent satisfaire à des normes d’émissions polluantes toujours en baisse. La qualité du mélange du carburant et de l’air dans la chambre de combustion est responsable de la formation de polluants nocifs pour l’environnement. La simulation aux grandes échelles (LES) permet d’étudier les mécanismes de mélanges turbulents de l’air et du carburant. La prise en compte de l’aspect liquide du carburant injecté devient nécessaire pour prédire correctement l’apparition de vapeur de carburant au sein du foyer. Le but de cette thèse est évaluer la fiabilité des simulations LES Euler-Euler dans une configuration complexe. Les processus d’injection, et d’évaporation du carburant liquide sont analysés et modélisés dans les simulations LES car ils pilotent la formation de vapeur de carburant. Les méthodes numériques pour résoudre les équations continues de la phase dispersée doivent permettre des simulations précises et robustes dans une configuration représentative d’une chambre de combustion. Les simulations présentées dans ces travaux reproduisent l’écoulement diphasique évaporant non-réactif du banc d’essai Mercato. Ce banc est équipé d’un système d’injection d’air vrillé et d’un atomiseur pressurisé-swirlé de kérosène typiques des foyers aéronautiques réels. Dans ces travaux, le modèle pour l’injection de liquide FIM-UR a été développé pour définir les conditions limites conduisant à un spray issu d’un atomiseur préssurisé-swirlé. Le kérosène employé dans les campagnes expérimentales est modélisé dans les simulations par un composé permettant d’obtenir des temps d’évaporation réalistes. Trois stratégies numériques ont été mises en place sur la configuration Mercato. Les comparaisons des résultats numériques aux mesures expérimentales ont permis d’évaluer la stratégie numérique conduisant à la meilleure précision. L’utilisation du schéma centré TTGC associé à un opérateur de viscosité artificielle localisée par un senseur adapté est optimale lorsque l’équation sur l’énergie décorrélée des gouttes est résolue. Cette stratégie permet de contrôler la localisation et les niveaux de viscosité par rapport à un schéma décentré. Les termes sources liés au mouvement mésoscopique permettent de redistribuer l’énergie dans les zones de compression ou de détente de la phase dispersée, et d’obtenir les bonnes répartitions des fluctuations dans la chambre de combustion. La stratégie retenue est comparée aux statistiques de la dynamique du spray résolu par une approche Lagrangienne employant la même injection monodispersse. Le méthode Euler-Euler conduit à la même précision de la dynamique de la phase dispersée que la méthode Euler-Lagrange. L’accès à l’évolution instationnaire de l’écoulement permet d’identifier les mêmes mécanismes de dispersion et de mélange dans les deux simulations. Des différences sur la répartition de diamètre moyen et de carburant dans la chambre ont été mis en évidence et reliés à la polydispersion locale qui n’est pas résolue dans l’approche Euler-Euler monodisperse et qui apparaît naturellement dans l’approche Euler-Lagrange malgré l’injection monodisperse. / Aeronautical gas turbines are facing growing demands on emission reductions. Indeed, the quality of the air-fuel mixture directly triggers the formation of pollutants degrading the environment. Large Eddy Simulation is an accurate numerical method to predict turbulent mixing in combustors. Adding the liquid phase of the fuel in these simulations also becomes necessary to properly predict the injection process and the vaporization of the fuel in the combustion chamber. The purpose of this dissertation is to evaluate the accuracy and reliability of Euler-Euler LES in a complex combustor configuration. The injection and vaporization processes of the fuel liquid phase are both modeled in the present LES as they drive the formation of the fuel gas phase. Moreover, the numerical methods that solve the continuous equations of the disperse phase must be accurate and robust in realistic combustor configurations. The simulations shown in the present study reproduce the non-reactive two-phase flow of the ONERA Mercato test bench. The experimental set-up is equipped with an air-swirler injection system and a pressure-swirled atomizer typical of actual turboengine combustors. In the present work the FIM-UR liquid injection model has been developed. It creates boundary conditions profiles for a liquid spray produced by a pressure-swirled atomizer. Kerosene used in the experiments is modeled in the present numerical simulations by a single species leading to a good estimate of the vaporization rate. Three numerical strategies have been tested on the Mercato configuration. Comparisons between experimental and LES results help defining the most accurate numerical strategy. The use of the centered numerical scheme TTGC stabilized by a localized artificial viscosity operator is best when the random uncorrelated energy of droplets is also resolved. Unlike an upwind numerical scheme, the selected strategy allows the user to control where and how much artificial viscosity is added. The source terms coming from the mesoscopic movement redistribute the energy in the compression or expanding zones of the disperse phase, and provide the proper distribution of fluctuations in the combustion chamber. The obtained strategy is compared with the statistics provided by a Lagrangian description of the liquid spray in the same mono-disperse injection. The Euler-Euler approach leads to the same accuracy in the same spray dynamics of the disperse phase as in the Euler-Lagrange method. Both unsteady flow simulations also provide the same dispersion and mixing processes in the Mercato set-up. Differences on the mean diameter and the fuel distribution in the combustion chamber are seen and related to the local poly-dispersion that cannot be resolved in the mono-disperse Euler-Euler approach and that naturally appear in the Euler-Lagrange method despite the mono-disperse injection.
186

LARGE EDDY SIMULATION OF EVAPORATING SPRAYS IN COMPLEX GEOMETRIES USING EULERIAN AND LAGRANGIAN METHODS

Jaegle, Félix 14 December 2009 (has links) (PDF)
Dû aux efforts apportés à la réduction des émissions de NOx dans des chambres de combustion aéronautiques il y a une tendance récente vers des systèmes à combustion pauvre. Cela résulte dans l'apparition de nouveaux types d'injecteur qui sont caractérisés par une complexité géométrique accrue et par des nouvelles stratégies pour l'injection du carburant liquide, comme des systèmes multi-point. Les deux éléments créent des exigences supplémentaires pour des outils de simulation numériques. La simulation à grandes échelles (SGE ou LES en anglais) est aujourd'hui considérée comme la méthode la plus prometteuse pour capturer des phénomènes d'écoulement complexes qui apparaissent dans une telle application. Dans le présent travail, deux sujets principaux sont abordés: Le premier est le traitement de la paroi ce qui nécessite une modélisation qui reste délicate en SGE, en particulier dans des géométries complexes. Une nouvelle méthode d'implémentation pour des lois de paroi est proposée. Une étude dans une géométrie réaliste démontre que la nouvelle formulation donne de meilleurs résultats comparé à l'implémentation classique. Ensuite, la capacité d'une approche SGE typique (utilisant des lois de paroi) de prédire la perte de charge dans une géométrie représentative est analysée et des sources d'erreur sont identifiées. Le deuxième sujet est la simulation du carburant liquide dans une chambre de combustion. Avec des méthodes Eulériennes et Lagrangiennes, deux approches sont disponibles pour cette tâche. La méthode Eulérienne considère un spray de gouttelettes comme un milieu continu pour lequel on peut écrire des équations de transport. Dans la formulation Lagrangienne, des gouttes individuelles sont suivies ce qui mène à des équations simples. D'autre part, sur le plan numérique, le grand nombre de gouttes à traiter peut s'avérer délicat. La comparaison des deux méthodes sous conditions identiques (solveur gazeux, modèles physiques) est un aspect central du présent travail. Les phénomènes les plus importants dans ce contexte sont l'évaporation ainsi que le problème d'injection d'un jet liquide dans un écoulement gazeux transverse ce qui correspond à une version simplifiée d'un système multi-point. Le cas d'application final est la configuration d'un seul injecteur aéronautique, monté dans un banc d'essai expérimental. Ceci permet d'appliquer de manière simultanée tous les développements préliminaires de ce travail. L'écoulement considéré est non-réactif mais à part cela il correspond au régime ralenti d'un moteur d'avion. Dû aux conditions préchauffées, le spray issu du sstème d'injection multi-point s'évapore dans la chambre. Cet écoulement est simulé, utilisant les approaches Eulériennes et Lagrangiennes et les résultats sont comparés aux données expérimentales.
187

Schémas numériques et conditions limites pour la simulation aux grandes échelles de la combustion diphasique dans les foyers d' hélicoptère.

Lamarque, Nicolas 06 December 2007 (has links) (PDF)
Pour réduire la consommation en carburant et respecter des normes anti-pollution toujours plus sévères, les motoristes font de plus en plus appel à la combustion prémélangée pauvre. Cependant, ce Régime est enclin aux instabilités thermo-Acoustiques pouvant dégrader fortement le foyer. La Simulation aux Grandes Echelles (LES) est, à ce titre, un outil présentant un grand potentiel pour une meilleure compréhension de ces phénomènes, comme l'ont montré certains travaux réalisés jusqu' à présent. Dans la majorité des applications industrielles, le carburant est injecté sous forme liquide, ce qu'il faut prendre en compte dans les simulations numériques. Cette thèse présente donc une stratégie de description de la combustion diphasique turbulente en géométries complexes, basée sur le formalisme Eulérien mésoscopique pour la phase dispersée. La discrétisation des termes convectifs constitue un des points cruciaux pour assurer la qualité d'une LES. Une description détaillée de différents schémas numériques de convection (volumes finis cell-vertex, Taylor-Galerkin)<br />est tout d'abord fournie. On procède ensuite à une analyse théorique puis pratique des erreurs induites par ceux-ci et on propose des solutions pour les réduire. Une attention particulière est portée aux discrétisations aux bords du domaine de calcul ainsi qu'au type de conditions limites choisi. La chambre de combustion du banc expérimental MERCATO de l'ONERA sert à mettre en oeuvre, à valider et enfin à évaluer ces stratégies numériques. Enfin, trois méthodes de détermination des impédances acoustiques de conduits à section variable sont analysées et validées. Celles-ci permettent de caractériser les conditions limites d'entrée et de sortie des brûleurs industriels, en particulier pour les calculs de modes propres acoustiques.
188

Étude par simulation numérique directe du comportement et de la dispersion de particules solides en écoulement non homogène isotherme ou anisotherme

Arcen, Boris 10 November 2006 (has links) (PDF)
Le travail présenté dans ce mémoire concerne l'étude du mouvement d'inclusions solides en suspension dans un écoulement turbulent de canal isotherme et anisotherme par simulation numérique directe. Grâce à cet outil de simulation, nous avons pu analyser l'influence de l'inertie et du croisement de trajectoires sur les caractéristiques dynamiques et thermiques de la phase dispersée ainsi que sur celles du fluide vu au sein d'une turbulence non homogène. Cela pourra notamment faciliter le développement futur des modélisations euléro-lagrangienne et euléro-eulérienne dans ce type de turbulence. Nous avons essayé d'examiner au mieux la conséquence de ces effets sur les statistiques de la phase dispersée telles que la concentration, la moyenne et l'écart type de la vitesse, les covariances fluide-particules, les corrélations triples de la vitesse des particules. Parallèlement à cela, les caractéristiques du fluide vu par les particules ont été étudiées, nous nous sommes intéressés à la vitesse de dérive, aux tensions de Reynolds du fluide vu, et la décorrélation temporelle des fluctuations de la vitesse du fluide vu. En ce qui concerne la partie thermique, nous présentons les statistiques thermiques de la phase dispersée et du fluide vu par les particules au sein de l'écoulement anisotherme vertical descendant. Tous ces aspects sont développés en gardant à l'esprit le cadre général de cette étude, c'est-à-dire comprendre le comportement thermique de la phase dispersée et fournir des informations concernant des grandeurs importantes intervenant dans la modélisation de tels écoulements.
189

Etudes sur les systèmes fixes d'aspersion d'eau en tunnel

Ponticq, Xavier 18 December 2008 (has links) (PDF)
Les systèmes fixes par aspersion d'eau sont souvent cités comme un moyen pour améliorer le niveau de sécurité dans les tunnels routiers. Cependant, leurs effets sur un incendie en tunnel et les interactions possibles avec le système de ventilation sont encore mal connus. Le travail présenté ici vise à étudier l'action de ces systèmes par une approche phénoménologique de l'évaporation et l'utilisation d'un modèle CFD tridimensionnel. L'emploi d'un code CFD incluant des modèles diphasiques repose sur la simulation de deux situations expérimentales : une expérience académique de spray évaporant et des essais d'incendie avec aspersion dans un tunnel à échelle réduite. Les résultats obtenus sont relativement satisfaisants, en utilisant une modélisation Euler-Lagrange pour l'écoulement diphasique. L'influence du système d'aspersion sur la propagation de la couche de fumée est plus particulièrement étudiée. Cependant, ce type de modélisation nécessite des données d'entrée d'un niveau difficilement accessible sans avoir recours à une expérience de caractérisation des buses. Une approche plus phénoménologique, à intégrer dans un modèle unidimensionnel, est envisagée comme alternative.
190

Contribution à la modélisation de la combustion turbulente des milieux à deux phases

Demoulin, François-Xavier 17 December 1999 (has links) (PDF)
Le sujet de cette thèse est la modélisation de la combustion turbulente en milieu diphasique telle qu'elle a lieu par exemple dans les moteurs Diesel. Certaines expériences notamment celles présentées dans cette thèse suggèrent que quand le combustible nécessaire à la combustion est sous forme d'un nuage de gouttes, les fluctuations en particulier de richesse dans le milieu gazeux sont plus fortes. Cela doit être pris en compte dans la modélisation et pourrait être dû à la présence des gouttes. Celles-ci en s'évaporant, jouent le rôle de sources de combustible ponctuelles, aléatoirement réparties dans l'espace, ce qui crée plus de fluctuations à l'échelle de l'espace intergoutte. Ces fluctuations supplémentaires sont prises en compte ici par un groupe de termes lié à l'évaporation, dans l'équation de la variance de la variable de mélange, qui sont fermés en considérant les équations locales d'un milieu diphasique. L'importance d'une nouvelle variable décrivant l'état du mélange à la surface des gouttes au moment de l'évaporation d'une particule fluide a été montrée. Une équation fermée a été écrite pour cette variable. Ces deux nouvelles caractéristiques permettent de mieux décrire l'état du mélange. Pour représenter la combustion nous avons d'abord utilisé un modèle qui suppose que la chimie est infiniment rapide. L'état du milieu thermochimique est alors complètement dépendant de l'évaporation et du mélange sans influence de la cinétique chimique. Le modèle MIL de Gonzalez et Borghi est ensuite utilisé pour prendre en compte certains effets chimiques. Il suppose que la chimie est infiniment brusque, c'est-à-dire à température d'activation très élevée. Ces deux modèles ont été testés pour deux configurations expérimentales, une flamme de type jet et une bombe simulant la combustion dans les moteurs Diesel. Les taux de fluctuation trouvés lors de ces simulations sont assez élevés et mettent en avant la nécessité de bien estimer la dissipation des fluctuations scalaires. Les résultats trouvées en utilisant ces modèles sont comparables à ceux mesurés, notamment dans le cas de la bombe de type Diesel, le modèle MIL permet de retrouver un temps d'auto-allumage et une longueur de la flamme réaliste.

Page generated in 0.0396 seconds