• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 8
  • 6
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 75
  • 75
  • 24
  • 23
  • 23
  • 18
  • 16
  • 14
  • 13
  • 13
  • 12
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Effects of Thermoacoustic Oscillations on Spray Combustion Dynamics with Implications for Lean Direct Injection Systems

Chishty, Wajid Ali 07 July 2005 (has links)
Thermoacoustic instabilities in modern high-performance, low-emission gas turbine engines are often observable as large amplitude pressure oscillations and can result in serious performance and structural degradations. These acoustic oscillations can cause oscillations in combustor through-flows and given the right phase conditions, can also drive unsteady heat release. This coupling has the potential to enhance the amplitude of pressure oscillations. To curb the potential harms caused by the existence of thermoacoustic instabilities, recent efforts have focused on the active suppression and even complete control of these instabilities. Intuitively, development of effective active combustion control methodologies is strongly dependent on the knowledge of the onset and sustenance of thermoacoustic instabilities. Specially, non-premixed spray combustion environment pose additional challenges due to the inherent unstable dynamics of sprays. The understanding of the manner in which the combustor acoustics affect the spray characteristics, which in turn result in heat release oscillation, is therefore, of paramount importance. The experimental investigations and the modeling studies conducted towards achieving this knowledge have been presented in this dissertation. Experimental efforts comprise both reacting and non-reacting flow studies. Reacting flow experiments were conducted on a overall lean direct injection, swirl-stabilized combustor rig. The investigations spanned combustor characterization and stability mapping over the operating regime. All experiments were performed under atmospheric pressure condition, which is considered as an obvious first step towards providing valuable insights into more intense processes in actual gas turbine combustors. The onset of thermoacoustic instability and the transition of the combustor to two unstable regimes were investigated via phase-locked chemiluminescence imaging and measurement and phase-locked acoustic characterization. It was found that the onset of the thermoacoustic instability is a function of the energy gain of the system, while the sustenance of instability is due to the in-phase relationship between combustor acoustics and unsteady heat release driven by acoustic oscillations. The presence of non-linearities in the system between combustor acoustic and heat release and also between combustor acoustics and air through-flow were found to exist. The impact of high amplitude limit-cycle pressure on droplet breakdown under very low mean airflow and the localized effects of forced primary fuel modulations on heat release were also investigated. The non-reacting flow experiments were conducted to study the spray behavior under the presence of an acoustic field. An isothermal acoustic rig was specially fabricated, where the pressure oscillations were generated using an acoustic driver. Phase Doppler Anemometry was used to measure the droplet velocities and sizes under varying acoustic forcing conditions and spray feed pressures. Measurements made at different locations in the spray were related to these variations in mean and unsteady inputs. The droplet velocities were found to show a second order response to acoustic forcing with the cut-off frequency equal to the relaxation time corresponding to mean droplet size. It was also found that under acoustic forcing the droplets migrate radially away from the spray centerline and show oscillatory excursions in their movement. Non-reacting flow experiments were also performed using Time-Resolved Digital Particle Image Velocimetry to characterize modulated sprays. Frequency response of droplet diameters were analyzed in the pulsed spray. These pilot experiments were conducted to assess the capability of the system to measure dynamic data. Modeling efforts were undertaken to gain physical insights of spray dynamics under the influence of acoustic forcing and to explain the experimental findings. The radial migration of droplets and their oscillatory movement were validated. The flame characteristics in the two unstable regimes and the transition between them were explained. It was found that under certain acoustic and mean air-flow condition, bands of high droplet densities were formed which resulted in diffusion type group burning of droplets. It was also shown that very high acoustic amplitudes cause secondary breakup of droplets. / Ph. D.
52

Study of the Gasoline Direct Injection Process under Novel Operating Conditions

Bautista Rodríguez, Abián 11 June 2021 (has links)
[ES] La inyección de combustible es, entre los temas de investigación de motores, una de las piezas críticas para obtener un motor eficiente. El papel es aún más significativo cuando se persigue una estrategia de inyección directa. La geometría interna y el movimiento de la aguja determinan el comportamiento del flujo del inyector, que se sabe que afecta enormemente al desarrollo externo del spray y, en última instancia, al rendimiento de la combustión dentro de la cámara. La conciencia sobre el cambio climático y los contaminantes ha ido creciendo, impulsando el esfuerzo en motores más limpios. En este sentido, los motores de gasolina tienen un margen más amplio para mejo- rar que los motores diesel. La evolución de los antiguos PFI a las modernas estrategias de inyección directa, que se utilizan en los motores de nueva generación, demuestra esta tendencia. Los sistemas GDI tienen el potencial de cumplir con las estrictas emisiones y aumentar el ahorro de combustible, sin embargo, todavía se enfrenta a muchos desafíos. Este trabajo implica el uso de dos inyectores, uno es una moderna tobera de GDI de investigación designada por el Engine Combustion Network (ECN), y el otro es una unidad de inyección de producción (PIU) con la misma tecnología y una geometría ligeramente diferente. Ambos equipos se someten a una completa caracterización (flujo interno y externo) que abarca las técnicas más avanzadas en diversas instalaciones experimentales. Además, se diseña y construye una nueva instalación para realizar experimentos en condiciones de evaporación instantánea (cuando la presión de vapor del combustible inyectado es superior a la presión del volumen de descarga). La instalación construida está diseñada para simular un ambiente de descarga en ciertas condiciones del motor en las que podrían producirse fenómenos de flash boiling. Así, debido a las propiedades típicas del combustible de gasolina, era un requisito operar con presiones de cámara de 0,2 a 15 bares. Además, la temperatura ambiente se controlaba mediante la implementación de una resistencia que puede calentar el gas ambiente. La instalación funciona en un bucle abierto, pudiendo renovar el volumen de gas entre las inyecciones. Por último, se construyeron tres amplios accesos ópticos para acomodar muchas técnicas de diagnóstico óptico como DBI, MIE, shadowgraphy o PDA, entre otros. Para la evaluación del flujo interno se determinó la geometría de las toberas y la orientación de los agujeros, el movimiento de la aguja y, por último, la caracterización del ratio de inyección (ROM) y el momento de inyección (ROI) de ambas toberas. La geometría de las toberas y la elevación de la aguja se midieron mediante técnicas avanzadas de rayos X en el Laboratorio Nacional de Argonne (ANL). Las mediciones de ROI y ROM se realizaron utilizando las instalaciones de CMT-Motores Térmicos siguiendo los conocimientos técnicos aplicados en los inyectores de gasóleo y adaptándolos a las toberas de GDI. El ROI nos permitió comparar las boquillas, cuyo número de orificios y geometría eran diferentes, aunque entregan aproximadamente la misma cantidad de combustible. Se ensayó la respuesta a condiciones típicas de motor como variaciones en la presión del rail, la presión de descarga, la temperatura del combustible, etc. Para el inyector de investigación "Spray G", se desarrolló un modelo 0-D de la velocidad de inyección que permite obtener la señal para diferentes condiciones y duración de la inyección, lo cual es útil para la calibración del motor y la validación del CFD. Además, para la caracterización de la ROM, se desarrolló la metodología de la técnica de deformación plástica para obtener la orientación del cono del spray y orientar adecuadamente los chorros de combustible para la medición de ROM. En el análisis hidráulico se combinaron los datos para estudiar los bajos valores del coeficiente de descarga y / [CA] La injecció de combustible és, entre els temes d'investigació de motors, una de les peces crítiques per a obtindre un motor eficient. El paper és encara més significatiu quan es persegueix una estratègia d'injecció directa. La geometria interna i el moviment de l'agulla determinen el comportament del flux de l'injector, que se sap que afecta enormement el desenvolupament extern de l'esprai i, en última instància, al rendiment de la combustió dins de la cambra. La consciència sobre el canvi climàtic i els contaminants ha anat creixent, impulsant l'esforç en motors més nets. En aquest sentit, els motors de gasolina tenen un marge més ampli per a millorar que els motors dièsel. L'evolució dels antics PFI a les modernes estratègies d'injecció directa, que s'utilitzen en els motors de nova generació, demostra aquesta tendència. Els sistemes GDI tenen el potencial de complir amb les estrictes emissions i aug- mentar l'estalvi de combustible, no obstant això, encara s'enfronta a molts desafiaments. Aquest treball implica l'ús de dos injectors, un és una moderna tovera de GDI d'investigació designada pel Engine Combustion Network (ECN), i l'altre és una unitat d'injecció de producció (PIU) amb la mateixa tecnologia i una geometria lleugerament diferent. Tots dos equips se sotmeten a una completa caracterització (flux intern i extern) que abasta les tècniques més avançades en diverses instal·lacions experimentals. A més, es dissenya i construeix una nova instal·lació per a realitzar experiments en condicions d'evaporació instantània (quan la pressió de vapor del combustible injectat és superior a la pressió del volum de descàrrega). La instal·lació construïda està dissenyada per a simular un ambient de descàrrega en certes condicions del motor en les quals podrien produir-se fenòmens de flash boiling. Així, a causa de les propietats típiques del combustible de gasolina, era un requisit operar amb pressions de cambra de 0,2 a 15 bars. A més, la temperatura ambient es controlava mitjançant la implementació d'una resistència que pot calfar el gas ambiente. La instal·lació funciona en un bucle obert, podent renovar el volum de gas entre les injeccions. Finalment, es van construir tres amplis accessos òptics per a acomodar moltes tècniques de diagnòstic òptic com DBI, MIE, shadowgraphy o PDA, entre altres. Per a l'avaluació del flux intern es va determinar la geometria de les toveres i l'orientació dels forats, el moviment de l'agulla i, finalment, la caracterització del ràtio d'injecció (ROM) i el moment d'injecció (ROI) de totes dues toveres. La geometria de les toveres i l'elevació de l'agulla es van mesurar mitjançant tècniques avançades de raigs X en el Laboratori Nacional de Argonne (ANL). Els mesuraments de ROI i ROM es van realitzar utilitzant les instal·lacions de CMT-Motores Térmicos seguint els coneixements tècnics aplicats en els injectors de gasoil i adaptant-los a les toveres de GDI. El ROI ens va permetre comparar els filtres, el nombre d'orificis dels quals i geometria eren diferents, encara que entreguen aproximadament la mateixa quantitat de combustible. Es va assajar la resposta a condicions típiques de motor com a variacions en la pressió del rail, la pressió de descàrrega, la temperatura del combustible, etc. Per a l'injector d'investigació "Esprai G", es va desenvolupar un model 0-D de la velocitat d'injecció que permet obtindre el senyal per a diferents condicions i duració de la injecció, la qual cosa és útil per al calibratge del motor i la validació del CFD. A més, per a la caracterització de la ROM, es va desenvolupar la metodologia de la tècnica de deformació plàstica per a obtindre l'orientació del con de l'esprai i orientar adequadament els dolls de combustible per al mesurament de ROM. En l'anàlisi hidràulica es van combinar les dades per a estudiar els baixos valors del coeficient de descàrrega i del coeficient d'àr / [EN] Fuel injection is among the engine research topics one of the critical pieces to obtain an efficient engine. The role is even more significant when a direct injection strategy is pursued. The internal geometry and pintle movement determine the injector flow behavior, which is known to hugely affect the external spray development and, ultimately, the combustion performance inside the chamber. Climate change and pollutants awareness has been growing, pushing forward the effort on cleaner engines. In this regard, gasoline en- gines have a wider margin to improve than diesel engines. The evolution from old Port Fuel Injectors to modern direct injection strategies, which are used in new generation engines, demonstrates this trend. GDI systems have the potential to comply with stringent emissions and increase fuel economy, however, it still faces many challenges. This work involves the use of two injectors, one is a modern research GDI nozzle appointed by the Engine Combustion Network (ECN), and the other is a production injector unit (PIU) with the same technology and slightly different geometry. Both hardware's undergo a complete characterization (internal and external flow) covering the state- of-the-art techniques in various experimental facilities. Furthermore, a new facility is designed and built to perform experiments under flash boiling conditions (when the fuel injected's vapor pressure is higher than the pressure in the discharge volume). The developed facility is designed to simulate a discharge ambient at certain engine conditions in which flash boiling phenomena could occur. Thus, due to typical gasoline fuel properties, it was a requirement to operate from chamber pressures from 0.2 bar to 15 bar. Also, the ambient temperature was controlled by implementing a resistor that can heat the ambient gas. The facility operates in an open loop, being able to renovate the gas volume between injections. Finally, three wide optical accesses were built to accommodate many optical diagnostic techniques such as DBI, MIE, shadowgraphy, or PDA, among others. For the internal flow description, it was determined the nozzles geometry and holes orientation, the pintle movement, and finally, the characterization of the rate of momentum (ROM) and rate of injection (ROI) of both nozzles. The nozzles geometry and needle lift were measured using advanced optical x-ray techniques at Argonne National Laboratory (ANL). The ROI and ROM measurements were performed using CMT-Motores Térmicos facilities follow- ing the know-how applied in diesel injectors and adapting it to GDI nozzles. The ROI allowed us to compare the nozzles, whose orifices number and geometry were different, although they deliver approximately the same amount of fuel. It was tested their response to typical boundary conditions such as rail pressure, discharge pressure, fuel temperature, etc. For the research nozzle "Spray G", it was developed a 0-D model of the rate of injection allowing to obtain the signal for different injection duration and conditions, which is useful in engine calibration and CFD validation. Furthermore, for the ROM characterization, the plastic deformation technique methodology was developed to obtain spray cone orientation and adequately guide the fuel jets for measuring ROM. The hydraulic analysis combined the data to study the low discharge coefficient and area coefficient values, which could result from low needle lift combined with novel hole designs in both nozzles that promote cavitation and air interaction from inside the orifice. In the external flow characterization, it was used the new developed vessel to study the external spray covering flash boiling conditions. It was employed four surrogate fuels to simulate different volatility properties of gasoline com- pounds and ultimately reproduce more extreme flashing conditions. It was used lateral visualization using DBI and Schlieren in addition to frontal MIE visualization. Some of t / Bautista Rodríguez, A. (2021). Study of the Gasoline Direct Injection Process under Novel Operating Conditions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/167809
53

A comparative study on the performance of biodiesel in a modern 1.9L turbo diesel engine

Kotze, Johan 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: This thesis comprises of the testing and evaluation of a modern diesel engine running on both biodiesel and mineral diesel on the upgraded Bio-fuels Testing Facility (BTF) at Stellenbosch University. The project was motivated by the need to install a modern diesel engine onto the existing BTF test rig for biodiesel testing. In this project, the BTF was re-designed to support a new Volkswagen 1.9L TDI engine. The capabilities of the BTF were then expanded further by the implementation of a low-cost pressure indicating system, utilising an optical pressure transducer. During the testing of biodiesel, it was found that the calorific value of the biodiesel was 14% lower than that of the tested mineral diesel. The ignition quality (cetane index) of the biodiesel was also lower than that of the mineral diesel. Even so, the engine only experienced a maximum power loss of 4.2%. During heat-release analysis, it was determined that there was no significant difference in the combustion process of biodiesel and that of mineral diesel. The conclusion could be made that biodiesel is suitable for use in modern TDI engines. Testing validated the operation of the upgraded test cell, and in trials it was determined that the test results are highly repeatable. The pressure indicating set proved to have some limitations. Only simplified heat-release analyses and reasonable indicated power calculations could be performed with the indicating set. Recommendations were made for improvement in future research. / Centre for Renewable and Sustainable Energy Studies
54

Avaliação do uso da cela de reação dinâmica em espectrometria de massas com plasma acoplado indutivamente (DRC-ICP-MS) para determinação de elementos químicos em sangue / Evaluation of the use of dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) for determination of elements in whole blood

Batista, Bruno Lemos 30 April 2009 (has links)
A espectrometria de massas com plasma acoplado indutivamente com simples quadrupolo (q-ICP-MS) e cela de reação dinâmica (DRC-ICP-MS) foi avaliada para determinação seqüencial de Al, As, Cd, Co, Cu, Cr, Mn, Mo, Pb, Pt, Sb, Se, Sn, Te, Tl, V e Zn em sangue. Para as análises, amostras de sangue (200 µL) foram diluídas 1:50 em uma solução contendo 0,01% v/v Triton® X-100 e 0,5% v/v de ácido nítrico. As calibrações foram realizadas com ajuste de matriz, utilizando sangue ovino. Como gás de reação utilizou-se a NH3. O uso do DRC foi fundamental para a determinação de Cr e V. A escolha da melhor vazão do gás e a otimização do parâmetro de rejeição (RPq) foram estudadas utilizando sangue base ovino ou uma solução de matriz sintética (SMS), de acordo com a concentração do analito no sangue base. Os limites de detecção (3s/coeficiente angular) para determinação de 27Al, 75As, 111Cd, 59Co, 63Cu, 55Mn, 98Mo, 208Pb, 195Pt, 123Sb, 82Se, 120Sn, 130Te, 205Tl e 66Zn em sangue por q-ICP-MS foram 0,223; 0,014; 0,003; 0,011; 0,304; 0,009; 0,009; 0,003; 0,001; 0,005; 0,264; 0,006; 0,010; 0,001; 0,834 µg L-1, respectivamente, e para determinação de 52Cr e 51V em sangue por DRC-ICP-MS utilizando o gás de reação amônia os limites de detecção foram de 0,007 e 0,006 µg L-1. Para a determinação de 27Al, 63Cu, 65Cu, 64Zn e 66Zn em sangue por q-ICP-MS através da calibração com ajuste de matriz com SMS os limites de detecção foram 0,083; 0,090; 0,055; 0,281; 0,306 µg L-1, respectivamente. A validação do método foi realizada por meio da análise de materiais de referência do INSP-Canadá, NYSDOH-EUA e Seronorm-Noruega. / The use of inductively coupled plasma mass spectrometry with quadrupole (q-ICP-MS) and dynamic reaction cell (DRC-ICP-MS) was evaluated for sequential determination of Al, As, Cd, Co, Cu, Cr, Mn, Mo, Pb, Pt, Sb, Se, Sn, Te, Tl, V and Zn in whole blood by q-ICP-MS or DRC-ICP-MS methods. Prior to analysis, sample (200 µL) were diluted 1:50 v/v in a solution containing 0.01% v/v Triton® X-100 and 0.5% v/v nitric acid. For all elements, except Cr and V, the instrument was operated in q-ICP-MS mode. The use of DRC was only mandatory for Cr and V. NH3 was evaluated as the reaction gas. Selection of best flow rate of reaction gas and optimization of the quadrupole dynamic bandpass rejection parameter (RPq) were carried out, using base whole blood or synthetic matrix solution (SMS), in according with element base blood concentration. Method detection limits (3s/slope) for 27Al, 75As, 111Cd, 59Co, 63Cu, 55Mn, 98Mo, 208Pb, 195Pt, 123Sb, 82Se, 120Sn, 130Te, 205Tl and 66Zn determination in whole blood by q-ICP-MS against matrix matching calibration (base blood) were 0.223; 0.014; 0.003; 0.011; 0.304; 0.009; 0.009; 0.003; 0.001; 0.005; 0.264; 0.006; 0.010; 0.001; 0.834 µg L-1, respectively, and for 52Cr and 51V determination in whole blood by DRC-ICP-MS the detection limits were 0.007 e 0.006 µg L-1. For 27Al, 63Cu, 65Cu, 64Zn and 66Zn determination by q-ICP-MS through matrix matching calibration with SMS the detection limits were 0.083; 0.090; 0.055; 0.281; 0.306 µg L-1, respectively. Method validation was accomplished by the analysis of reference materials from INSP-Canada, NYSDOH-USA, Seronorm-Norway.
55

Aufladung von Pkw DI - Ottomotoren mit Abgasturboladern mit variabler Turbinengeometrie

Schmalzl, Hans-Peter 21 October 2006 (has links) (PDF)
Das Konzept „Downsizing“ für Otto- und Dieselmotoren zur Verbesserung von Kraftstoffverbrauch und Schadstoffemission ist inzwischen durch viele praktische Beispiele und theoretische Untersuchungen zweifelsfrei bestätigt worden. Da „Downsizing“ aber untrennbar mit der Aufladung verbunden ist, wächst der Bedarf nach Aufladetechnologien, die das Hauptmanko des „Downsizing“ – das mangelhafte Drehmoment bei niedriger Motordrehzahl – überwinden. Mit zunehmender spezifischer Leistung und damit höheren Aufladegraden tritt diese Problematik immer stärker in den Vordergrund. Vor diesem Hintergrund hat sich für den Pkw-Dieselmotor die Aufladung mit VTG durchgesetzt. Beim Ottomotor wurde bislang der Schritt vom einfacheren Wastegate-Lader zur VTG noch nicht unternommen. Die Gründe dafür sind insbesondere in der höheren thermischen Belastung, aufgrund der höheren Abgastemperatur, und der größeren Luftdurchsatzspanne zu finden. Andererseits besteht inzwischen speziell beim Ottomotor ein großer Bedarf bezüglich der Verbesserung des Kraftstoffverbrauches und der Fahrdynamik in Kombination mit der Turboaufladung. Vor dem Hintergrund der in den letzten Jahren durchgeführten Weiterentwicklungen auf dem Gebiet der Benzindirekteinspritzung und der Aufladetechnik, stellt sich inzwischen verstärkt die Frage, ob durch den Einsatz einer VTG am Ottomotor ähnlich große Verbrauchseinsparungen und Verbesserungen in der Fahrdynamik erzielt werden können, wie dies vor einigen Jahren beim Pkw-Dieselmotor der Fall war. Im Rahmen der durchgeführten Arbeit wurden die Potentiale einer VTG an einem direkteinspritzenden Ottomotor eingehend durch Experimente und Motorprozesssimulation untersucht. Bei der direkten Übertragung der heute üblichen Diesel-VTG-Technik auf die Anwendung am Ottomotor können allerdings nur unwesentliche Verbesserungen beim spezifischen Kraftstoffverbrauch erzielt werden. Um die volle Drehzahlspanne des Ottomotors in seiner Basisabstimmung bedienen zu können, muss der Verstellbereich der VTG extrem ausgereizt werden, was Wirkungsgradnachteile mit sich bringt. Mit dem Übergang auf ein 2-flutiges Zwillingsstromturbinengehäuse in Kombination mit VTG wird es möglich, den Gaswechsel des Motors zu verbessern, da der Auslassvorgang der einzelnen Zylinder weniger durch die anderen Zylinder behindert wird. Der Effekt ist allerdings wesentlich schwächer ausgeprägt als bei einem 2-flutigen Wastegate Lader, da hier die Flutentrennung bis kurz vor das Turbinenrad erfolgen kann. Bei der VTG-Zwillingsstromturbine endet die Trennung konstruktionsbedingt bereits vor dem Leitgitter. Im Bereich des beschaufelten Ringkanales treffen die beiden bis dorthin getrennten Abgasstränge aufeinander und beeinflussen sich hier wieder gegenseitig, wobei die negativen Auswirkungen geringer sind als bei einer 1-flutigen Turbine, ganz ohne Trennung im Turbinengehäuse. Die bessere Nutzung der kinetischen Energie aus dem Vorauslassstoß, die bei Stoßaufladung mit getrennt geführten Abgaskanälen üblicherweise möglich ist, kann allerdings bei einer VTG-Turbine nicht erreicht werden. Speziell im unteren Motordrehzahlbereich, wo die Leitschaufeln weit geschlossen sind, werden die Druckpulsationen stark gedämpft und haben somit nur noch einen geringen Anteil an der Totalenthalpie des Abgases. Wie sich aus den Untersuchungen zeigte, kann dieser Nachteil der VTG aber durch den kleineren Turbinendurchsatz bei kleiner Schaufelstellung überkompensiert werden, wodurch das Drehmoment bei niedrigen Motordrehzahlen angehoben werden kann. Eine wesentlich bessere Flutentrennung kann durch die Verwendung einer VTG-Doppelstromturbine erreicht werden. Durch zwei über den Turbinenumfang getrennt geführte Spiralkanäle können die Überströmquerschnitte verkleinert, und damit die gegenseitige Beeinflussung der Abgasströme wesentlich verringert werden. Die Verhältnisse sind in dieser Ausführung vergleichbar mit Wastegate- Zwillingsstromturbinen, was die Effektivität der Flutentrennung anbelangt. Das volle Potential dieser optimierten Flutentrennung kann durch eine geänderte Applikation der Nockenwellenverstellungen im Motorkennfeld ausgeschöpft werden. Es ist damit möglich, längere Ventilüberschneidungen im unteren Motordrehzahlbereich zu realisieren und damit den Spülluftanteil in diesem Kennfeldbereich wesentlich zu steigern. Diese Maßnahme hat einen sehr positiven Einfluss auf die Motorbetriebswerte aufgrund: • Verringerter Klopfempfindlichkeit durch Reduktion des Restgasanteiles. • Absenkung der mittleren Abgastemperatur vor Turbine und damit der Möglichkeit, das Verbrennungsluftverhältnis anzuheben. • Verringerung der notwendigen Durchsatzspanne für Verdichter und Turbine und damit der Möglichkeit den Lader bei besseren Wirkungsgraden zu betreiben. Aufgrund des mit der Doppelstromanordnung begrenzten Zuströmquerschnittes über den Umfang der Turbine (180° pro Turbinenstrang) stellt sich allerdings ein geringerer Maximaldurchsatz für die Turbine ein. Die Simulationsergebnisse haben gezeigt, dass dadurch der mittlere Abgasdruck vor Turbine im oberen Volllastdrehzahlbereich ansteigt. Um dies zu verhindern, kann die Doppelstromturbine mit einer so genannten Stau–Stoß–Umschaltung versehen werden, mit der die beiden Turbinenstränge bei hohen Motordrehzahlen verbunden werden. Bei geöffnetem Umschaltventil kann sich das Abgas auf beide Turbinenstränge verteilen, und die Pulsation wird zusätzlich reduziert. Beide Effekte bewirken ein Absinken der Turbinenleistung und damit die gewünschte Begrenzung des Ladedruckes. Gleichzeitig ist es auch möglich, das Stoß–Stau–Umschaltventil als zusätzliches Wastegate zu betreiben, wodurch der Durchsatzbereich der Turbine noch weiter gesteigert werden kann. Die Kombination der geschilderten Maßnahmen: • VTG mit Doppelstromturbine • Stoß-Stau-Umschaltung • Vergrößerte Ventilüberschneidung hat bei den durchgeführten Untersuchungen zu einer Steigerung des stationären Volllastdrehmomentes von 40 % bei nM = 1500 1/min geführt, bei gleichzeitiger Verbesserung des Spüldruckgefälles um ca. 400 mbar im Nennleistungspunkt gegenüber dem 1-flutigen Wastegate-Basislader. Im Instationärbetrieb konnte am Beispiel eines Lastsprunges bei nM = 1800 1/min eine Verkürzung der Zeit bis zum Erreichen von 90 % des Nennmomentes um ca. 50 % festgestellt werden. Obgleich auf Basis der untersuchten Varianten bezüglich der aerodynamischen Auslegung der Einzelkomponenten, der Regelbarkeit der VTG und der mechanischen Haltbarkeit noch weitere Entwicklungsaktivitäten notwendig sein werden, kann aufgrund der sehr positiven Untersuchungsergebnisse von einem großen Potential für die Aufladung von DI-Ottomotoren mit variabler Turbinengeometrie ausgegangen werden.
56

Potentiel de la combustion HCCI et injection précoce / Potential of HCCI combustion and early injection

André, Mathieu 15 December 2010 (has links)
Depuis plusieurs années, l’une des problématiques sociétales est de diminuer les émissions de polluants et de gaz à effet de serre dans l’atmosphère. Le secteur du transport terrestre est directement concerné par ces considérations. Le moteur Diesel semble promis à un bel avenir grâce à son rendement supérieur à celui du moteur à allumage commandé, conduisant à de plus faibles rejets de CO2. Cependant, sa combustion génère des émissions d’oxyde d’azote (NOx) et de particules dans l’atmosphère. Les normes anti-pollution étant de plus en plus sévères et les incitations à diminuer les consommations de carburant de plus en plus fortes, le moteur Diesel est confronté à une problématique NOx/particules/consommation toujours plus difficile à résoudre. Une des voies envisagées consiste à modifier le mode de combustion afin de limiter les émissions polluantes à la source tout en conservant de faibles consommations. La voie la plus prometteuse est la combustion HCCI (Homogeneous Charge Compression Ignition) obtenue par injections directes précoces. Plusieurs limitations critiques doivent cependant être revues et améliorées : le mouillage des parois par le carburant liquide et le contrôle de la combustion à forte charge. Le but de cette thèse est ainsi de mieux comprendre les phénomènes mis en jeu lors de la combustion HCCI à forte charge obtenue par des multi-injections directes précoces. Une méthodologie a été mise au point afin de détecter le mouillage des parois du cylindre, ce qui a permis de comprendre l’effet du phasage et de la pression d’injection sur cette problématique. Une stratégie optimale de multi-injections permettant d’atteindre une charge élevée sans mouiller les parois a ainsi été développée et choisie. Nous avons ensuite pu mettre en évidence le potentiel de la stratification par la dilution en tant que moyen de contrôle de la combustion en admettant le diluant dans un seul des 2 conduits d’admission. Des mesures réalisées en complémentarité sur le même moteur mais en version ‘optique’, ont permis, à partir de la technique de Fluorescence Induite par Laser, de montrer que concentrer le diluant dans les zones réactives où se situe le carburant permet un meilleur contrôle de la combustion, ce qui permet d’amener le taux de dilution a des niveaux faisables technologiquement. / For several years, reduce pollutant and greenhouse gas emissions in the atmosphere is become a leitmotiv. The automotive world is directly affected by these considerations. Diesel engine has a promising future thanks to its efficiency higher than that of S.I. engine, leading to lower CO2 emissions. However, Diesel combustion emits nitrogen oxides (NOx) and particulates in the atmosphere. Emissions regulations are more and more severe, and considerations about fuel consumption are more and more significant. Thus, Diesel engine has to face a NOx/particulates/consumption issue that is more and more difficult to answer. One of the considered ways to reduce pollutant emissions while maintaining low fuel consumptions is to change the combustion mode. The most promising way is Homogeneous Charge Compression Ignition (HCCI) combustion with early direct injections. However, two major issues have to be answered: the wall wetting and the combustion control at high load. Thus, the objective of this PhD thesis is to better understand phenomena occurring during HCCI combustion at high load with early direct injections in order to answer these issues. We have developed a new methodology to detect the cylinder wall wetting process. This allowed to understand the effects of injection phasing and injection pressure on this issue. A multiple injections strategy has been tested and improved. It reaches a high load without cylinder wall wetting. Then, we have highlighted the potential of dilutant stratification as a technique of control of combustion. This technique is based on the introduction of dilutant in one inlet pipe while air is introduced in the other. The use of Laser Induced Fluorescence imaging on the same engine but with optical accesses showed that condensing dilutant in the reactive zones where the fuel is improves combustion control and allows the use of reasonable dilution level.
57

Avaliação do uso da cela de reação dinâmica em espectrometria de massas com plasma acoplado indutivamente (DRC-ICP-MS) para determinação de elementos químicos em sangue / Evaluation of the use of dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) for determination of elements in whole blood

Bruno Lemos Batista 30 April 2009 (has links)
A espectrometria de massas com plasma acoplado indutivamente com simples quadrupolo (q-ICP-MS) e cela de reação dinâmica (DRC-ICP-MS) foi avaliada para determinação seqüencial de Al, As, Cd, Co, Cu, Cr, Mn, Mo, Pb, Pt, Sb, Se, Sn, Te, Tl, V e Zn em sangue. Para as análises, amostras de sangue (200 µL) foram diluídas 1:50 em uma solução contendo 0,01% v/v Triton® X-100 e 0,5% v/v de ácido nítrico. As calibrações foram realizadas com ajuste de matriz, utilizando sangue ovino. Como gás de reação utilizou-se a NH3. O uso do DRC foi fundamental para a determinação de Cr e V. A escolha da melhor vazão do gás e a otimização do parâmetro de rejeição (RPq) foram estudadas utilizando sangue base ovino ou uma solução de matriz sintética (SMS), de acordo com a concentração do analito no sangue base. Os limites de detecção (3s/coeficiente angular) para determinação de 27Al, 75As, 111Cd, 59Co, 63Cu, 55Mn, 98Mo, 208Pb, 195Pt, 123Sb, 82Se, 120Sn, 130Te, 205Tl e 66Zn em sangue por q-ICP-MS foram 0,223; 0,014; 0,003; 0,011; 0,304; 0,009; 0,009; 0,003; 0,001; 0,005; 0,264; 0,006; 0,010; 0,001; 0,834 µg L-1, respectivamente, e para determinação de 52Cr e 51V em sangue por DRC-ICP-MS utilizando o gás de reação amônia os limites de detecção foram de 0,007 e 0,006 µg L-1. Para a determinação de 27Al, 63Cu, 65Cu, 64Zn e 66Zn em sangue por q-ICP-MS através da calibração com ajuste de matriz com SMS os limites de detecção foram 0,083; 0,090; 0,055; 0,281; 0,306 µg L-1, respectivamente. A validação do método foi realizada por meio da análise de materiais de referência do INSP-Canadá, NYSDOH-EUA e Seronorm-Noruega. / The use of inductively coupled plasma mass spectrometry with quadrupole (q-ICP-MS) and dynamic reaction cell (DRC-ICP-MS) was evaluated for sequential determination of Al, As, Cd, Co, Cu, Cr, Mn, Mo, Pb, Pt, Sb, Se, Sn, Te, Tl, V and Zn in whole blood by q-ICP-MS or DRC-ICP-MS methods. Prior to analysis, sample (200 µL) were diluted 1:50 v/v in a solution containing 0.01% v/v Triton® X-100 and 0.5% v/v nitric acid. For all elements, except Cr and V, the instrument was operated in q-ICP-MS mode. The use of DRC was only mandatory for Cr and V. NH3 was evaluated as the reaction gas. Selection of best flow rate of reaction gas and optimization of the quadrupole dynamic bandpass rejection parameter (RPq) were carried out, using base whole blood or synthetic matrix solution (SMS), in according with element base blood concentration. Method detection limits (3s/slope) for 27Al, 75As, 111Cd, 59Co, 63Cu, 55Mn, 98Mo, 208Pb, 195Pt, 123Sb, 82Se, 120Sn, 130Te, 205Tl and 66Zn determination in whole blood by q-ICP-MS against matrix matching calibration (base blood) were 0.223; 0.014; 0.003; 0.011; 0.304; 0.009; 0.009; 0.003; 0.001; 0.005; 0.264; 0.006; 0.010; 0.001; 0.834 µg L-1, respectively, and for 52Cr and 51V determination in whole blood by DRC-ICP-MS the detection limits were 0.007 e 0.006 µg L-1. For 27Al, 63Cu, 65Cu, 64Zn and 66Zn determination by q-ICP-MS through matrix matching calibration with SMS the detection limits were 0.083; 0.090; 0.055; 0.281; 0.306 µg L-1, respectively. Method validation was accomplished by the analysis of reference materials from INSP-Canada, NYSDOH-USA, Seronorm-Norway.
58

Aufladung von Pkw DI - Ottomotoren mit Abgasturboladern mit variabler Turbinengeometrie

Schmalzl, Hans-Peter 26 June 2006 (has links)
Das Konzept „Downsizing“ für Otto- und Dieselmotoren zur Verbesserung von Kraftstoffverbrauch und Schadstoffemission ist inzwischen durch viele praktische Beispiele und theoretische Untersuchungen zweifelsfrei bestätigt worden. Da „Downsizing“ aber untrennbar mit der Aufladung verbunden ist, wächst der Bedarf nach Aufladetechnologien, die das Hauptmanko des „Downsizing“ – das mangelhafte Drehmoment bei niedriger Motordrehzahl – überwinden. Mit zunehmender spezifischer Leistung und damit höheren Aufladegraden tritt diese Problematik immer stärker in den Vordergrund. Vor diesem Hintergrund hat sich für den Pkw-Dieselmotor die Aufladung mit VTG durchgesetzt. Beim Ottomotor wurde bislang der Schritt vom einfacheren Wastegate-Lader zur VTG noch nicht unternommen. Die Gründe dafür sind insbesondere in der höheren thermischen Belastung, aufgrund der höheren Abgastemperatur, und der größeren Luftdurchsatzspanne zu finden. Andererseits besteht inzwischen speziell beim Ottomotor ein großer Bedarf bezüglich der Verbesserung des Kraftstoffverbrauches und der Fahrdynamik in Kombination mit der Turboaufladung. Vor dem Hintergrund der in den letzten Jahren durchgeführten Weiterentwicklungen auf dem Gebiet der Benzindirekteinspritzung und der Aufladetechnik, stellt sich inzwischen verstärkt die Frage, ob durch den Einsatz einer VTG am Ottomotor ähnlich große Verbrauchseinsparungen und Verbesserungen in der Fahrdynamik erzielt werden können, wie dies vor einigen Jahren beim Pkw-Dieselmotor der Fall war. Im Rahmen der durchgeführten Arbeit wurden die Potentiale einer VTG an einem direkteinspritzenden Ottomotor eingehend durch Experimente und Motorprozesssimulation untersucht. Bei der direkten Übertragung der heute üblichen Diesel-VTG-Technik auf die Anwendung am Ottomotor können allerdings nur unwesentliche Verbesserungen beim spezifischen Kraftstoffverbrauch erzielt werden. Um die volle Drehzahlspanne des Ottomotors in seiner Basisabstimmung bedienen zu können, muss der Verstellbereich der VTG extrem ausgereizt werden, was Wirkungsgradnachteile mit sich bringt. Mit dem Übergang auf ein 2-flutiges Zwillingsstromturbinengehäuse in Kombination mit VTG wird es möglich, den Gaswechsel des Motors zu verbessern, da der Auslassvorgang der einzelnen Zylinder weniger durch die anderen Zylinder behindert wird. Der Effekt ist allerdings wesentlich schwächer ausgeprägt als bei einem 2-flutigen Wastegate Lader, da hier die Flutentrennung bis kurz vor das Turbinenrad erfolgen kann. Bei der VTG-Zwillingsstromturbine endet die Trennung konstruktionsbedingt bereits vor dem Leitgitter. Im Bereich des beschaufelten Ringkanales treffen die beiden bis dorthin getrennten Abgasstränge aufeinander und beeinflussen sich hier wieder gegenseitig, wobei die negativen Auswirkungen geringer sind als bei einer 1-flutigen Turbine, ganz ohne Trennung im Turbinengehäuse. Die bessere Nutzung der kinetischen Energie aus dem Vorauslassstoß, die bei Stoßaufladung mit getrennt geführten Abgaskanälen üblicherweise möglich ist, kann allerdings bei einer VTG-Turbine nicht erreicht werden. Speziell im unteren Motordrehzahlbereich, wo die Leitschaufeln weit geschlossen sind, werden die Druckpulsationen stark gedämpft und haben somit nur noch einen geringen Anteil an der Totalenthalpie des Abgases. Wie sich aus den Untersuchungen zeigte, kann dieser Nachteil der VTG aber durch den kleineren Turbinendurchsatz bei kleiner Schaufelstellung überkompensiert werden, wodurch das Drehmoment bei niedrigen Motordrehzahlen angehoben werden kann. Eine wesentlich bessere Flutentrennung kann durch die Verwendung einer VTG-Doppelstromturbine erreicht werden. Durch zwei über den Turbinenumfang getrennt geführte Spiralkanäle können die Überströmquerschnitte verkleinert, und damit die gegenseitige Beeinflussung der Abgasströme wesentlich verringert werden. Die Verhältnisse sind in dieser Ausführung vergleichbar mit Wastegate- Zwillingsstromturbinen, was die Effektivität der Flutentrennung anbelangt. Das volle Potential dieser optimierten Flutentrennung kann durch eine geänderte Applikation der Nockenwellenverstellungen im Motorkennfeld ausgeschöpft werden. Es ist damit möglich, längere Ventilüberschneidungen im unteren Motordrehzahlbereich zu realisieren und damit den Spülluftanteil in diesem Kennfeldbereich wesentlich zu steigern. Diese Maßnahme hat einen sehr positiven Einfluss auf die Motorbetriebswerte aufgrund: • Verringerter Klopfempfindlichkeit durch Reduktion des Restgasanteiles. • Absenkung der mittleren Abgastemperatur vor Turbine und damit der Möglichkeit, das Verbrennungsluftverhältnis anzuheben. • Verringerung der notwendigen Durchsatzspanne für Verdichter und Turbine und damit der Möglichkeit den Lader bei besseren Wirkungsgraden zu betreiben. Aufgrund des mit der Doppelstromanordnung begrenzten Zuströmquerschnittes über den Umfang der Turbine (180° pro Turbinenstrang) stellt sich allerdings ein geringerer Maximaldurchsatz für die Turbine ein. Die Simulationsergebnisse haben gezeigt, dass dadurch der mittlere Abgasdruck vor Turbine im oberen Volllastdrehzahlbereich ansteigt. Um dies zu verhindern, kann die Doppelstromturbine mit einer so genannten Stau–Stoß–Umschaltung versehen werden, mit der die beiden Turbinenstränge bei hohen Motordrehzahlen verbunden werden. Bei geöffnetem Umschaltventil kann sich das Abgas auf beide Turbinenstränge verteilen, und die Pulsation wird zusätzlich reduziert. Beide Effekte bewirken ein Absinken der Turbinenleistung und damit die gewünschte Begrenzung des Ladedruckes. Gleichzeitig ist es auch möglich, das Stoß–Stau–Umschaltventil als zusätzliches Wastegate zu betreiben, wodurch der Durchsatzbereich der Turbine noch weiter gesteigert werden kann. Die Kombination der geschilderten Maßnahmen: • VTG mit Doppelstromturbine • Stoß-Stau-Umschaltung • Vergrößerte Ventilüberschneidung hat bei den durchgeführten Untersuchungen zu einer Steigerung des stationären Volllastdrehmomentes von 40 % bei nM = 1500 1/min geführt, bei gleichzeitiger Verbesserung des Spüldruckgefälles um ca. 400 mbar im Nennleistungspunkt gegenüber dem 1-flutigen Wastegate-Basislader. Im Instationärbetrieb konnte am Beispiel eines Lastsprunges bei nM = 1800 1/min eine Verkürzung der Zeit bis zum Erreichen von 90 % des Nennmomentes um ca. 50 % festgestellt werden. Obgleich auf Basis der untersuchten Varianten bezüglich der aerodynamischen Auslegung der Einzelkomponenten, der Regelbarkeit der VTG und der mechanischen Haltbarkeit noch weitere Entwicklungsaktivitäten notwendig sein werden, kann aufgrund der sehr positiven Untersuchungsergebnisse von einem großen Potential für die Aufladung von DI-Ottomotoren mit variabler Turbinengeometrie ausgegangen werden.
59

Computational Modeling and Analysis of Heavy Fuel Feasibility in Direct Injection Spark Ignition Engine

Moda, Sunil Udaya Simha 18 March 2011 (has links)
No description available.
60

Computational Study on Micro-Pilot Flame Ignition Strategy for a Direct Injection Stratified Charge Rotary Engine

Votaw, Zachary Steven 24 September 2012 (has links)
No description available.

Page generated in 0.0971 seconds