Spelling suggestions: "subject:"direction Of arrival"" "subject:"direction Of surrival""
61 |
Exploiting Prior Information in Parametric Estimation Problems for Multi-Channel Signal Processing ApplicationsWirfält, Petter January 2013 (has links)
This thesis addresses a number of problems all related to parameter estimation in sensor array processing. The unifying theme is that some of these parameters are known before the measurements are acquired. We thus study how to improve the estimation of the unknown parameters by incorporating the knowledge of the known parameters; exploiting this knowledge successfully has the potential to dramatically improve the accuracy of the estimates. For covariance matrix estimation, we exploit that the true covariance matrix is Kronecker and Toeplitz structured. We then devise a method to ascertain that the estimates possess this structure. Additionally, we can show that our proposed estimator has better performance than the state-of-art when the number of samples is low, and that it is also efficient in the sense that the estimates have Cram\'er-Rao lower Bound (CRB) equivalent variance. In the direction of arrival (DOA) scenario, there are different types of prior information; first, we study the case when the location of some of the emitters in the scene is known. We then turn to cases with additional prior information, i.e.~when it is known that some (or all) of the source signals are uncorrelated. As it turns out, knowledge of some DOA combined with this latter form of prior knowledge is especially beneficial, giving estimators that are dramatically more accurate than the state-of-art. We also derive the corresponding CRBs, and show that under quite mild assumptions, the estimators are efficient. Finally, we also investigate the frequency estimation scenario, where the data is a one-dimensional temporal sequence which we model as a spatial multi-sensor response. The line-frequency estimation problem is studied when some of the frequencies are known; through experimental data we show that our approach can be beneficial. The second frequency estimation paper explores the analysis of pulse spin-locking data sequences, which are encountered in nuclear resonance experiments. By introducing a novel modeling technique for such data, we develop a method for estimating the interesting parameters of the model. The technique is significantly faster than previously available methods, and provides accurate estimation results. / Denna doktorsavhandling behandlar parameterestimeringsproblem inom flerkanals-signalbehandling. Den gemensamma förutsättningen för dessa problem är att det finns information om de sökta parametrarna redan innan data analyseras; tanken är att på ett så finurligt sätt som möjligt använda denna kunskap för att förbättra skattningarna av de okända parametrarna. I en uppsats studeras kovariansmatrisskattning när det är känt att den sanna kovariansmatrisen har Kronecker- och Toeplitz-struktur. Baserat på denna kunskap utvecklar vi en metod som säkerställer att även skattningarna har denna struktur, och vi kan visa att den föreslagna skattaren har bättre prestanda än existerande metoder. Vi kan också visa att skattarens varians når Cram\'er-Rao-gränsen (CRB). Vi studerar vidare olika sorters förhandskunskap i riktningsbestämningsscenariot: först i det fall då riktningarna till ett antal av sändarna är kända. Sedan undersöker vi fallet då vi även vet något om kovariansen mellan de mottagna signalerna, nämligen att vissa (eller alla) signaler är okorrelerade. Det visar sig att just kombinationen av förkunskap om både korrelation och riktning är speciellt betydelsefull, och genom att utnyttja denna kunskap på rätt sätt kan vi skapa skattare som är mycket noggrannare än tidigare möjligt. Vi härleder även CRB för fall med denna förhandskunskap, och vi kan visa att de föreslagna skattarna är effektiva. Slutligen behandlar vi även frekvensskattning. I detta problem är data en en-dimensionell temporal sekvens som vi modellerar som en spatiell fler-kanalssignal. Fördelen med denna modelleringsstrategi är att vi kan använda liknande metoder i estimatorerna som vid sensor-signalbehandlingsproblemen. Vi utnyttjar återigen förhandskunskap om källsignalerna: i ett av bidragen är antagandet att vissa frekvenser är kända, och vi modifierar en existerande metod för att ta hänsyn till denna kunskap. Genom att tillämpa den föreslagna metoden på experimentell data visar vi metodens användbarhet. Det andra bidraget inom detta område studerar data som erhålls från exempelvis experiment inom kärnmagnetisk resonans. Vi introducerar en ny modelleringsmetod för sådan data och utvecklar en algoritm för att skatta de önskade parametrarna i denna modell. Vår algoritm är betydligt snabbare än existerande metoder, och skattningarna är tillräckligt noggranna för typiska tillämpningar. / <p>QC 20131115</p>
|
62 |
Contributions à la localisation et à la séparation de sources / Contributions to source localization and separationBoudjellal, Abdelouahab 17 September 2015 (has links)
Les premières recherches en détection, localisation et séparation de signaux remontent au début du 20ème siècle. Ces recherches sont d’actualité encore aujourd’hui, notamment du fait de la croissance rapide des systèmes de communications constatée ces deux dernières décennies. Par ailleurs, la littérature du domaine consacre très peu d’études relatives à certains contextes jugés difficiles dont certains sont traités dans cette thèse. Ce travail porte sur la localisation de signaux par détection des temps d’arrivée ou estimation des directions d’arrivée et sur la séparation de sources dépendantes ou à module constant. L’idée principale est de tirer profit de certaines informations a priori disponibles sur les signaux sources telles que la parcimonie, la cyclostationarité, la non-circularité, le module constant, la structure autoregressive et les séquences pilote dans un contexte coopératif. Une première partie détaille trois contributions : (i) un nouveau détecteur pour l’estimation des temps d’arrivée basé sur la minimisation de la probabilité d’erreur ; (ii) une estimation améliorée de la puissance du bruit, basée sur les statistiques d’ordre ; (iii) une quantification de la précision et de la résolution de l’estimation des directions d’arrivée au regard de certains a priori considérés sur les sources. Une deuxième partie est consacrée à la séparation de sources exploitant différentes informations sur celles-ci : (i) la séparation de signaux de communication à module constant ; (ii) la séparation de sources dépendantes connaissant la nature de la dépendance et (iii) la séparation de sources autorégressives dépendantes connaissant la structure autorégressive. / Signal detection, localization, and separation problems date back to the beginning of the twentieth century. Nowadays, this subject is still a hot topic receiving more and more attention, notably with the rapid growth of wireless communication systems that arose in the last two decades and it turns out that many challenging aspects remain poorly addressed by the available literature relative to this subject. This thesis deals with signal detection, localization using temporal or directional measurements, and separation of dependent source signals. The main objective is to make use of some available priors about the source signals such as sparsity, cyclo-stationarity, non-circularity, constant modulus, autoregressive structure or training sequences in a cooperative framework. The first part is devoted to the analysis of (i) signal’s time-of-arrival estimation using a new minimum error rate based detector, (ii) noise power estimation using an improved order-statistics estimator and (iii) side information impact on direction-of-arrival estimation accuracy and resolution. In the second part, the source separation problem is investigated at the light of different priors about the original sources. Three kinds of prior have been considered : (i) separation of constant modulus communication signals, (ii) separation of dependent source signals knowing their dependency structure and (iii) separation of dependent autoregressive sources knowing their autoregressive structure.
|
63 |
Direction of arrival estimation algorithms for leaky-wave antennas and antenna arraysPaaso, H. (Henna) 19 November 2018 (has links)
Abstract
The focus of this thesis is to study direction of arrival (DoA) estimation algorithms for reconfigurable leaky-wave antennas and advanced antenna arrays. Directional antennas can greatly improve the spectrum reuse, interference avoidance, and object and people localization. DoA estimation algorithms have also been shown to be useful for applications such as positioning for user tracking and location-based services in wireless local area networks (WLANs).
The main goal is to develop novel DoA estimation algorithms for both advanced antenna arrays and composite right/left-handed (CRLH) leaky-wave antennas (LWAs). The thesis introduces novel modifications to existing DoA estimation algorithms and shows how these can be modified for real-time DoA estimation using both antenna types. Three modified DoA estimation algorithms for CRLH-LWAs are presented: 1) modified multiple signal classification (MUSIC), 2) power pattern cross-correlation (PPCC), and 3) adjacent power pattern ratio (APPR). Additionally, the APPR algorithm is also applied to advanced antenna arrays.
The thesis also presents improvements to the modified MUSIC and APPR algorithms. The complexity of the algorithms is reduced by selecting a smaller number of received signals from different directions. The results show that the selection of the radiation patterns is very important and that the proposed algorithms can successfully estimate the DoA, even in a real-world environment. Based on the results, this thesis provides a good starting point for future research of DoA estimation algorithms to enhance the performance of future-generation wireless networks and the accuracy of localization. / Tiivistelmä
Tässä väitöskirjassa tutkitaan suunnanestimointialgoritmeja uudelleen konfiguroituville vuotoaaltoantenneille (LWA, leaky wave antenna) ja kehittyneille antenniryhmille. Suuntaavilla antenneilla voidaan parantaa huomattavasti spektrin uudelleen käyttöä ja esineiden ja ihmisten sijaintipaikannusta sekä pienentää häiriöitä. Suunnanestimointialgoritmit ovat myös osoittautuneet hyödylliseksi esimerkiksi seuranta- ja sijaintipaikannuspalvelusovelluksille langattomissa lähiverkoissa.
Työn päätavoite on kehittää uusia suunnanestimointialgoritmeja sekä kehittyneille antenniryhmille että vuotoaaltoantenneille (composite right/left-handed (CRLH) LWA). Työssä osoitetaan, miten olemassa olevia suunnanestimointialgoritmeja voidaan muokata uudella tavalla, jotta ne soveltuisivat molemmille antennityypeille reaaliaikaiseen suunnanestimointiin. Vuotoaaltoantennille on kehitetty kolme erilaista suunnanestimointialgoritmia: 1) muunneltu MUSIC- (multiple signal classification), 2) säteilykyvioiden tehojen ristikorrelaatio- (PPCC, power pattern cross correlation) ja 3) vierekkäisten säteilykuvioiden tehosuhdealgoritmi (APPR, adjacent power pattern ratio). APPR-algoritmia on myös käytetty kehittyneelle antenniryhmälle.
Työssä esitetään myös parannuksia muunnelluille MUSIC- ja APPR-algoritmeille. Algoritmien kompleksisuutta voidaan pienentää valitsemalla vähemmän vastaanotettuja signaaleja. Tulokset osoittavat, että signaalien valinta on hyvin tärkeää ja ehdotetut algoritmit estimoivat onnistuneesti saapuvan signaalin suunnan todellisessa mittausympäristössä. Yhteenvetona voidaan sanoa, että tämä väitöstyö on hyvä lähtökohta suunnanestimointialgoritmitutkimukselle, jonka tavoitteena on parantaa tulevien sukupolvien langattomien verkkojen suorituskykyä ja paikannuksen tarkkuutta.
|
64 |
Sparse Processing Methodologies Based on Compressive Sensing for Directions of Arrival EstimationHannan, Mohammad Abdul 29 October 2020 (has links)
In this dissertation, sparse processing of signals for directions-of-arrival (DoAs) estimation is addressed in the framework of Compressive Sensing (CS). In particular, DoAs estimation problem for different types of sources, systems, and applications are formulated in the CS paradigm. In addition, the fundamental conditions related to the ``Sparsity'' and ``Linearity'' are carefully exploited in order to apply confidently the CS-based methodologies. Moreover, innovative strategies for various systems and applications are developed, validated numerically, and analyzed extensively for different scenarios including signal to noise ratio (SNR), mutual coupling, and polarization loss. The more realistic data from electromagnetic (EM) simulators are often considered for various analysis to validate the potentialities of the proposed approaches. The performances of the proposed estimators are analyzed in terms of standard root-mean-square error (RMSE) with respect to different degrees-of-freedom (DoFs) of DoAs estimation problem including number of elements, number of signals, and signal properties. The outcomes reported in this thesis suggest that the proposed estimators are computationally efficient (i.e., appropriate for real time estimations), robust (i.e., appropriate for different heterogeneous scenarios), and versatile (i.e., easily adaptable for different systems).
|
65 |
Nullspace MUSIC and Improved Radio Frequency Emitter Geolocation from a Mobile Antenna ArrayKintz, Andrew Lane January 2016 (has links)
No description available.
|
66 |
Mikrofonní pole malých rozměrů pro odhad směru přicházejícího zvuku / Small-Size Microphone Array for Estimation of Direction of Arrival of SoundKubišta, Ladislav January 2020 (has links)
This thesis describe detection of direction receiving sound with small–size microphone array. Work is based on analyzing methods of time delay estimation, energy decay or phase difference signal. Work focus mainly on finding of angle of arrival in small time difference. Results of measuring, as programming sound, so sound recorded in laboratory conditions and real enviroment, are mentioned in conclusion. All calculations were done by platform Matlab
|
67 |
Channel Probing for an Indoor Wireless Communications ChannelHunter, Brandon 13 March 2003 (has links) (PDF)
The statistics of the amplitude, time and angle of arrival of multipaths in an indoor environment are all necessary components of multipath models used to simulate the performance of spatial diversity in receive antenna configurations. The model presented by Saleh and Valenzuela, was added to by Spencer et. al., and included all three of these parameters for a 7 GHz channel. A system was built to measure these multipath parameters at 2.4 GHz for multiple locations in an indoor environment. Another system was built to measure the angle of transmission for a 6 GHz channel. The addition of this parameter allows spatial diversity at the transmitter along with the receiver to be simulated. The process of going from raw measurement data to discrete arrivals and then to clustered arrivals is analyzed. Many possible errors associated with discrete arrival processing are discussed along with possible solutions. Four clustering methods are compared and their relative strengths and weaknesses are pointed out. The effects that errors in the clustering process have on parameter estimation and model performance are also simulated.
|
Page generated in 0.0676 seconds