• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 26
  • 8
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 84
  • 84
  • 24
  • 23
  • 20
  • 19
  • 16
  • 15
  • 14
  • 13
  • 12
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Sobre hipersuperfÃcies com curvatura e bordo prescritos em variedades riemannianas / On hypersurfaces with prescribed curvature and boundary in riemannian manifolds

FlÃvio FranÃa Cruz 07 October 2011 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / We investigate the existence of hypersurfaces with prescribed curvature in a wide context. First we study the Dirichlet problem for a class of fully nonlinear elliptic equations of curvature type on a Riemannian manifold, which are closely related with the existence of hypersurfaces with prescribed curvature and boundary. In this setting we prove some existence results which extend to a Riemannian manifold previous results by Caffarelli, Nirenberg,Spruck and Bo Guan for the Euclidean space. We also study the existence of hypersurfaces with prescribed anisotropic mean curvature. We prove existence results for the Dirichlet problem related to the anisotropic mean curvature equation. This ensures the existence of Killing graphs with prescribed anisotropic mean curvature and boundary in a Riemannian manifold endowed with a nonsingular Killing vector field. Finally, we prove the existence of hyperspheres with prescribed anisotropic mean curvature in the Euclidean space, extending a previous result of Treibergs and Wei. / Neste trabalhamos investigamos a existÃncia de hipersuperfÃcies com curvatura prescrista num contexto amplo. Inicialmente estudamos o problema de Dirichlet para uma equaÃÃo totalmente nÃo-linear do tipo curvatura, definida em uma variedade Riemanniana. Este problema està intimamente relacionado a existÃncia de hipersuperfÃcies com curvatura e bordo prescritos. Neste contexto obtemos alguns resultados que estendem para uma variedade Riemanniana resultados obtidos anteriormente por Caffarelli, Nirenberg, Spruck e Bo Guan para o espaÃo Euclideano. Investigamos tambÃm a existÃncia de hipersuperfÃcies com curvatura mÃdia anisotrÃpica prescrita. Estabelecemos a solubilidade do problema de Dirichlet relacionado a equaÃÃo da curvatura mÃdia anisotrÃpica prescrita. Este resultado assegura a existncia de grÃficos de Killing com curvatura mÃdia anisotrÃpica e bordo prescritos numa variedade Riemanniana dotada com um campo de Killing sem singularidades. Finalmente, provamos a existÃncia de hiperesferas com curvatura mÃdia anisotrÃpica prescrita no espaÃo Euclideano, estendendo o resultado obtido Treibergs e Wei para a curvatura mÃdia usual.
32

Uma extensÃo do teorema de Barta e aplicaÃÃes geomÃtricas / An extension of Barta's theorem and geometric aplications

Josà Deibsom da Silva 22 July 2010 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Apresentamos uma extensÃo do Teorema de Barta devido a G. P. Bessa and J. F. Montenegro e fazemos algumas aplicaÃÃes geomÃtricas do resultado obtido. A primeira aplicaÃÃo geomÃtrica da extensÃo do Teorema de Barta à uma extensÃo do Teorema de Cheng sobre estimativas inferiores de autovalores do Laplaciano em bolas geodÃsicas normais. A segunda aplicaÃÃo geomÃtrica à uma generalizaÃÃo do Teorema de Cheng-Li-Yau de estimativas de autovalores para uma subvariedade mÃnima do espaÃo forma. / We present an extension to Barta's Theorem due to G. P. Bessa and J. F. Montenegro and we show some geometric applications of the obtained result. As first application, we extend Chang's lower eigenvalue estimates of the Laplacian in normal geodesic balls. As second application, we generalize Cheng-Li-Yau's eigenvalue estimates to a minimal submanifold of the space forms.
33

Prime End Boundaries of Domains in Metric Spaces and the Dirichlet Problem

Estep, Dewey 19 October 2015 (has links)
No description available.
34

Uniqueness of Positive Solutions for Elliptic Dirichlet Problems

Ali, Ismail, 1961- 12 1900 (has links)
In this paper we consider the question of uniqueness of positive solutions for Dirichlet problems of the form - Δ u(x)= g(λ,u(x)) in B, u(x) = 0 on ϑB, where A is the Laplace operator, B is the unit ball in RˆN, and A>0. We show that if g(λ,u)=uˆ(N+2)/(N-2) + λ, that is g has "critical growth", then large positive solutions are unique. We also prove uniqueness of large solutions when g(λ,u)=A f(u) with f(0) < 0, f "superlinear" and monotone. We use a number of methods from nonlinear functional analysis such as variational identities, Sturm comparison theorems and methods of order. We also present a regularity result on linear elliptic equation where a coefficient has critical growth.
35

Penalized Least Squares Methoden mit stückweise polynomialen Funktionen zur Lösung von partiellen Differentialgleichungen / Penalized least squares methods with piecewise polynomial functions for solving partial differential equations

Pechmann, Patrick R. January 2008 (has links) (PDF)
Das Hauptgebiet der Arbeit stellt die Approximation der Lösungen partieller Differentialgleichungen mit Dirichlet-Randbedingungen durch Splinefunktionen dar. Partielle Differentialgleichungen finden ihre Anwendung beispielsweise in Bereichen der Elektrostatik, der Elastizitätstheorie, der Strömungslehre sowie bei der Untersuchung der Ausbreitung von Wärme und Schall. Manche Approximationsaufgaben besitzen keine eindeutige Lösung. Durch Anwendung der Penalized Least Squares Methode wurde gezeigt, dass die Eindeutigkeit der gesuchten Lösung von gewissen Minimierungsaufgaben sichergestellt werden kann. Unter Umständen lässt sich sogar eine höhere Stabilität des numerischen Verfahrens gewinnen. Für die numerischen Betrachtungen wurde ein umfangreiches, effizientes C-Programm erstellt, welches die Grundlage zur Bestätigung der theoretischen Voraussagen mit den praktischen Anwendungen bildete. / This work focuses on approximating solutions of partial differential equations with Dirichlet boundary conditions by means of spline functions. The application of partial differential equations concerns the fields of electrostatics, elasticity, fluid flow as well as the analysis of the propagation of heat and sound. Some approximation problems do not have a unique solution. By applying the penalized least squares method it has been shown that uniqueness of the solution of a certain class of minimizing problems can be guaranteed. In some cases it is even possible to reach higher stability of the numerical method. For the numerical analysis we have developed an extensive and efficient C code. It serves as the basis to confirm theoretical predictions with practical applications.
36

Smooth and Robust Solutions for Dirichlet Boundary Control of Fluid-Solid Conjugate Heat Transfer Problems

Yan, Yan January 2015 (has links)
This work offers new computational methods for the optimal control of the conjugate heat transfer (CHT) problem in thermal science. Conjugate heat transfer has many important industrial applications, such as heat exchange processes in power plants and cooling in electronic packaging industry, and has been a staple of computational methods in thermal science for many years. This work considers the Dirichlet boundary control of fluid-solid CHT problems. The CHT system falls into the category of multi-physics problems. Its domain typically consists of two parts, namely, a solid region subject to thermal heating or cooling and a conjugate fluid region responsible for thermal convection transport. These two different physical systems are strongly coupled through the thermal boundary condition at the fluid-solid interface. The objective in the CHT boundary control problem is to select optimally the fluid inflow profile that minimizes an objective function that involves the sum of the mismatch between the temperature distribution in the system and a prescribed temperature profile and the cost of the control. This objective is realized by minimizing a nonlinear objective function of the boundary control and the fluid temperature variables, subject to partial differential equations (PDE) constraints governed by the coupled heat diffusion equation in the solid region and mass, momentum and energy conservation equations in the fluid region. Although CHT has received extensive attention as a forward problem, the optimal Dirichlet velocity boundary control for the coupled CHT process to our knowledge is only very sparsely studied analytically or computationally in the literature [131]. Therefore, in Part I, we describe the formulation of the optimal control problem and introduce the building blocks for the finite element modeling of the CHT problem, namely, the diffusion equation for the solid temperature, the convection-diffusion equation for the fluid temperature, the incompressible viscous Navier-Stokes equations for the fluid velocity and pressure, and the model verification of CHT simulations. In Part II, we provide theoretical analysis to explain the nonsmoothness issue which has been observed in this study and in Dirichlet boundary control of Navier-Stokes flows by other scientists. Based on these findings, we use either explicit or implicit numerical smoothing to resolve the nonsmoothness issue. Moreover, we use the numerical continuation on regularization parameters to alleviate the difficulty of locating the global minimum in one shot for highly nonlinear optimization problems even when the initial guess is far from optimal. Two suites of numerical experiments have been provided to demonstrate the feasibility, effectiveness and robustness of the optimization scheme. In Part III, we demonstrate the strategy of achieving parallel scalable algorithms for CHT models in Simulations of Reactor Thermal Hydraulics. Our motivation originates from the observation that parallel processing is necessary for optimal control problems of very large scale, when the simulation of the underlying physics (or PDE constraints) involves millions or billions of degrees of freedom. To achieve the overall scalability of optimal control problems governed by PDE constraints, scalable components that resolve the PDE constraints and their adjoints are the key. In this Part, first we provide the strategy of designing parallel scalable solvers for each building blocks of the CHT modeling, namely, for the discrete diffusive operator, the discrete convection-diffusion operator, and the discrete Navier-Stokes operator. Second, we demonstrate a pair of effective, robust, parallel, and scalable solvers built with collaborators for simulations of reactor thermal hydraulics. Finally, in the the section of future work, we outline the roadmap of parallel and scalable solutions for Dirichlet boundary control of fluid-solid conjugate heat transfer processes.
37

Dirichlet's problem in Pluripotential Theory

Phạm, Hoàng Hiệp January 2008 (has links)
In this thesis we focus on Dirichlet's problem for the complex Monge-Ampère equation. That is, for a given non-negative Radon measure µ we are interested in the conditions under which there exists a plurisubharmonic function u such that (ddcu)n=µ, where (ddc)n is the complex Monge-Ampère operator. If this function u exists, then can it be chosen with given boundary values? Is this solution uniquely determined within a given class of functions?
38

Penalized Least Squares Methoden mit stückweise polynomialen Funktionen zur Lösung von partiellen Differentialgleichungen

Pechmann, Patrick R. January 2008 (has links)
Würzburg, Univ., Diss., 2008
39

Transient tunnel effect and Sommerfeld problem waves in semi-infinite structures /

Ali Mehmeti, Felix, January 1996 (has links)
Darmstadt, Techn. Hochsch., Habil.-Schr., 1995. / Includes bibliographical references (p. [199]-210.
40

Kritische spezifische Wärme in begrenzten Systemen mit Dirichlet-Oberflächen

Mohr, Ulf. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2000--Aachen.

Page generated in 0.0297 seconds