Spelling suggestions: "subject:"discrete Element"" "subject:"iscrete Element""
21 |
Discrete Element Modeling of Granular Flows in Vibrationally-fluidized BedsEmami Naeini, Mohammad Saeid 30 August 2011 (has links)
The main objective of the project was to develop a model for the motion of granular media under vibration in a tub vibrator. For such a system, it was decided that a discrete element method (DEM) was the most appropriate tool to model bulk velocity and circulation of media. In the first phase of the work, a vibratory finisher was modified to introduce planar vibration into a single layer of particles. The motion of the tub was measured using accelerometers and the corresponding granular media behavior was determined by video recording. A discrete element model, based on Cundall’s approach to contact, was developed to model granular flow in different vibratory beds, and the results were compared with experimental measurements of bulk flow velocity and bed expansion for the tub finisher. The sensitivity of the model predictions to the contact parameters was considered and the parameters were optimized with respect to the experimental results. After optimization, the difference between the model predictions of the bulk flow velocity and the measurements was less than 20% at four locations in media beds of two depths. The average bulk density of the vibrating beds was also predicted to be within 20% of the measured values.
In the next phase, a two-dimensional discrete element model was developed to model single-cell circulation in vibratory beds that had both vertical and horizontal components of motion. The model predictions were compared with experimental measurements of the onset and growth of circulation in beds of steel and glass spheres as a function of bed depth, inter-particle and wall friction coefficients, and the amplitude of vibration. While the values from the DEM showed an error of up to 50% in the predicted circulation strength, depending on the type of the media and system conditions, the trends predicted by the model closely matched those in the experiments. Finally, a physical model was developed to describe the relationship between the onset and direction of circulation with the vibration of the container. A similar model was used to describe the experimental results as well as the transition in circulation patterns in terms of the resultant shear forces at the vibrating container walls and the interlocking of media close to the container walls. It was also demonstrated that a two-dimensional DEM could model a granular flow in which the media had three-dimensional contact and freedom of movement, but that was driven by vibrations in a plane.
In summary, it was found that the linear optimization procedure for the contact parameters is an efficient way to improve the results from DEM. Additionally, the circulation in a tub-vibrator increased with the depth of the particulate media in the container, and with the magnitude of the wall-particle and particle-particle friction coefficients. The strength of circulation also increased with the amplitude of vibration. A strong correlation existed between the total shear force along the vibrating container walls and the circulation behavior. Bulk circulation increased sharply when increasing bed depth increased the pressure and the shear forces at the walls and between particle layers. It was also concluded that dimensionless bed depth (the ratio of bed depth to particle diameter) was not a proper dimensionless group when discussing the circulation behavior and it should act in conjunction with other parameters.
|
22 |
Discrete Element Modeling of Granular Flows in Vibrationally-fluidized BedsEmami Naeini, Mohammad Saeid 30 August 2011 (has links)
The main objective of the project was to develop a model for the motion of granular media under vibration in a tub vibrator. For such a system, it was decided that a discrete element method (DEM) was the most appropriate tool to model bulk velocity and circulation of media. In the first phase of the work, a vibratory finisher was modified to introduce planar vibration into a single layer of particles. The motion of the tub was measured using accelerometers and the corresponding granular media behavior was determined by video recording. A discrete element model, based on Cundall’s approach to contact, was developed to model granular flow in different vibratory beds, and the results were compared with experimental measurements of bulk flow velocity and bed expansion for the tub finisher. The sensitivity of the model predictions to the contact parameters was considered and the parameters were optimized with respect to the experimental results. After optimization, the difference between the model predictions of the bulk flow velocity and the measurements was less than 20% at four locations in media beds of two depths. The average bulk density of the vibrating beds was also predicted to be within 20% of the measured values.
In the next phase, a two-dimensional discrete element model was developed to model single-cell circulation in vibratory beds that had both vertical and horizontal components of motion. The model predictions were compared with experimental measurements of the onset and growth of circulation in beds of steel and glass spheres as a function of bed depth, inter-particle and wall friction coefficients, and the amplitude of vibration. While the values from the DEM showed an error of up to 50% in the predicted circulation strength, depending on the type of the media and system conditions, the trends predicted by the model closely matched those in the experiments. Finally, a physical model was developed to describe the relationship between the onset and direction of circulation with the vibration of the container. A similar model was used to describe the experimental results as well as the transition in circulation patterns in terms of the resultant shear forces at the vibrating container walls and the interlocking of media close to the container walls. It was also demonstrated that a two-dimensional DEM could model a granular flow in which the media had three-dimensional contact and freedom of movement, but that was driven by vibrations in a plane.
In summary, it was found that the linear optimization procedure for the contact parameters is an efficient way to improve the results from DEM. Additionally, the circulation in a tub-vibrator increased with the depth of the particulate media in the container, and with the magnitude of the wall-particle and particle-particle friction coefficients. The strength of circulation also increased with the amplitude of vibration. A strong correlation existed between the total shear force along the vibrating container walls and the circulation behavior. Bulk circulation increased sharply when increasing bed depth increased the pressure and the shear forces at the walls and between particle layers. It was also concluded that dimensionless bed depth (the ratio of bed depth to particle diameter) was not a proper dimensionless group when discussing the circulation behavior and it should act in conjunction with other parameters.
|
23 |
Effective parameters on crack initiation stress in low porosity rocksNicksiar, Mohsen Unknown Date
No description available.
|
24 |
Modeling biofibre (hemp) processing using the discrete element method (DEM)Sadek, Mohammad 10 1900 (has links)
The main objective of the research was to understand hemp processing at different stages through numerical simulations. Processing of hemp materials involves breaking the hemp into different sizes of particles and separating those particles into fractions of different sizes. Numerical models were developed using the discrete element method (DEM) to simulate hemp processing using a hammermill and separations of different hemp particles using a 3D vibratory screen-type separator. The models were implemented using a commercial DE code, the Particle Flow Code in Three Dimension (PFC3D). In the models, virtual hemp, hemp fibre and core were defined using clusters of PFC3D basic spherical particles which are connected by the PFC3D parallel bonds. The microproperties (e.g. particle stiffness and friction coefficient, and bond stiffness and strength) of these particles were calibrated. For calibrations, virtual tests were performed using PFC3D for hemp stem, fibre, and core. Those virtual tests included direct shear tests of fibre and core particles, tensile tests of fibre, and compression tests of hemp stems. The microproperties of these particles were calibrated through comparing results from the virtual tests with results from laboratory tests or literature data. Those calibrated particle microproperties were used in the PFC3D models developed for simulating the hammermill for hemp processing and the 3D vibratory separator for particle separation. These two machines were constructed using various PFC3D walls and lines, and had the main features and operational conditions as the real machines. The hammermill model was able to predict the power requirement of hammermill and particle dynamic behaviours (kinetic and strain energies) within the hammermill. The separator model was capable of predicting the separation efficiency of the 3D vibratory separator for separations of different hemp particle mixtures. The behaviour of the models reflected the real behaviour observed experimentally. The model results were reasonably good as compared with literature data and the test results. The models developed have the potential to simulate many other dynamic attributes of hemp particles with the machines. This study has laid a solid foundation for future studies of biomaterial-machine interactions using the DEM.
|
25 |
Rolling tines – evaluation and simulation using discrete element methodMak, Jay 31 August 2011 (has links)
The objectives of the study were to evaluate the soil disturbances and manure dispersion created by the AerWay aerator in a silt loam soil; and to generate a calibrated and validated soil-tool model using Discrete Element Methods (DEM) that simulate the draft and vertical forces of the aerator. The experimental results showed that a trend indicated that the faster tractor speeds would disturb more soil. After one hour with the manure application rate of 42 000 L/ha, manure was spread to a depth of 250 mm, 200 mm in the forward direction and 100 mm in the lateral direction. The model draft forces had a relative error of 13.4-31.2% when compared to the literature data between 100-150 mm depth while the predicted vertical force was found to linearly increase until 150 mm depth at around 700 N per rolling tine and plateaus until the full insertion of 200 mm.
|
26 |
Mineral dissolution in sedimentsCha, Minsu 27 July 2012 (has links)
Mineral dissolution is an inherent chemo-hydro-mechanical coupled diagenetic process in sediments. This ubiquitous geological phenomenon affects all properties in sediments, however, its engineering impact remains largely unknown. This research centers on the effects of mineral dissolution on sediment behavior with emphasis on dissolution modes in nature and their engineering implications. Five different dissolution modes are identified: homogeneous, pressure-dependent, and localized dissolution, and the dissolution of shallow and deep dissolvable inclusions. The consequences of each dissolution mode are investigated through experiments and discrete element methods. While each dissolution mode triggers unique consequences, it is observed that in all cases 1) significant displacement takes places during dissolution, 2) there is a pronounced effect of internal friction and the extent of dissolution on the evolution of the sediment, 3) the sediment has higher compressibility and exhibits a more contractive tendency after dissolution, 4) a porous honeycomb-shaped internal fabric develops accompanied by contact force concentration along dissolved inclusions, and 5) horizontal stress reduction takes place during dissolution and shear localization may develop under zero lateral strain conditions. Mineral dissolution has important engineering implications, from soil characterization to slope stability and shallow foundations. Pre- and post-dissolution CPT studies show that dissolution decreases the tip resistance proportional to the extent of dissolution. Dissolution in sloping ground induces global settlement as the prevailing deformation pattern, and prominent lateral movements near the slope surface; sudden undrained shear failure may take place during otherwise quasi-static dissolution. While footings experience larger settlements during post-dissolution loading, subsequent dissolution beneath a previously loaded footing causes displacements that are greater than the sum of dissolution-induced and load-induced settlements.
|
27 |
Rolling tines – evaluation and simulation using discrete element methodMak, Jay 31 August 2011 (has links)
The objectives of the study were to evaluate the soil disturbances and manure dispersion created by the AerWay aerator in a silt loam soil; and to generate a calibrated and validated soil-tool model using Discrete Element Methods (DEM) that simulate the draft and vertical forces of the aerator. The experimental results showed that a trend indicated that the faster tractor speeds would disturb more soil. After one hour with the manure application rate of 42 000 L/ha, manure was spread to a depth of 250 mm, 200 mm in the forward direction and 100 mm in the lateral direction. The model draft forces had a relative error of 13.4-31.2% when compared to the literature data between 100-150 mm depth while the predicted vertical force was found to linearly increase until 150 mm depth at around 700 N per rolling tine and plateaus until the full insertion of 200 mm.
|
28 |
Modeling biofibre (hemp) processing using the discrete element method (DEM)Sadek, Mohammad 10 1900 (has links)
The main objective of the research was to understand hemp processing at different stages through numerical simulations. Processing of hemp materials involves breaking the hemp into different sizes of particles and separating those particles into fractions of different sizes. Numerical models were developed using the discrete element method (DEM) to simulate hemp processing using a hammermill and separations of different hemp particles using a 3D vibratory screen-type separator. The models were implemented using a commercial DE code, the Particle Flow Code in Three Dimension (PFC3D). In the models, virtual hemp, hemp fibre and core were defined using clusters of PFC3D basic spherical particles which are connected by the PFC3D parallel bonds. The microproperties (e.g. particle stiffness and friction coefficient, and bond stiffness and strength) of these particles were calibrated. For calibrations, virtual tests were performed using PFC3D for hemp stem, fibre, and core. Those virtual tests included direct shear tests of fibre and core particles, tensile tests of fibre, and compression tests of hemp stems. The microproperties of these particles were calibrated through comparing results from the virtual tests with results from laboratory tests or literature data. Those calibrated particle microproperties were used in the PFC3D models developed for simulating the hammermill for hemp processing and the 3D vibratory separator for particle separation. These two machines were constructed using various PFC3D walls and lines, and had the main features and operational conditions as the real machines. The hammermill model was able to predict the power requirement of hammermill and particle dynamic behaviours (kinetic and strain energies) within the hammermill. The separator model was capable of predicting the separation efficiency of the 3D vibratory separator for separations of different hemp particle mixtures. The behaviour of the models reflected the real behaviour observed experimentally. The model results were reasonably good as compared with literature data and the test results. The models developed have the potential to simulate many other dynamic attributes of hemp particles with the machines. This study has laid a solid foundation for future studies of biomaterial-machine interactions using the DEM.
|
29 |
Modélisation par éléments discrets des phases d’ ébauchage et de doucissage de la siliceAndré, Damien 15 March 2012 (has links)
Les composants optiques de silice traversés par des flux lasers de haut niveau d'énergie à des longueurs d'onde de 351 nm peuvent être soumis à des endommagements. Il est admis que la présence de microfissures en sous surface, induit par les procédés d'abrasion des composants optiques, joue un rôle clé dans l'initiation des dommages lasers. Cette thèse propose de simuler le procédé de surfaçage par la méthode des éléments discrets afin de caractériser la densité et la répartition des microfissures en fonction des paramètres d'usinage. / When fused silica optics are submitted to high-power laser (such as megajoule laser or National Ignition Facility) at the wavelength of 351 nm, fused silica optics can exhibit damage, induced by the high amount of energy traversing the part. Current researches have shown that this damage could be initiated on pre-existing sub-surface damages created during the polishing processes. The discrete element method (DEM) is proposed to simulate the polishing process and its impact on sub-surface damage creation.
|
30 |
Validation and applications of discrete element analysis in the hip jointTownsend, Kevin Charles 01 May 2015 (has links)
Osteoarthritis is a progressive degenerative joint disease which causes pain, inflammation, and eventual loss of joint function. This debilitating disease affects approximately 3% of U.S. adults over 30 years old, with direct medical costs of over $100 billion each year. Post-traumatic osteoarthritis is a sub-set of osteoarthritis initiated by injuries such as a fracture of the joint surface. When a surgeon reconstructs a fractured joint, there are often residual incongruities on the surface, which can lead to elevated contact stresses. Increased cartilage contact stress has been shown to be a major risk factor for developing post-traumatic osteoarthritis. Computational modeling offers a method of detecting elevated contact stresses and thereby assessing the associated risk of a patient developing post-traumatic osteoarthritis. Discrete element analysis (DEA) is a computational method capable of fast and reliable contact stress predictions that has been used successfully to predict knee and ankle osteoarthritis. The purpose of this study was to validate the accuracy of DEA models of both intact and fractured hips by directly comparing experimentally measured intra-articular contact stresses in human cadaveric hips to corresponding DEA predictions. Overall correlation was greater than 90% for both intact and fractured hips. The validated DEA algorithm was then applied to a series of 3 patients with a hip fracture and another series of 19 patients with surgical hip re-alignment. As anticipated, changes in contact stress correlated well with pain and function (p < 0.05). This validated DEA model appears to be a clinically useful tool for identifying patients who are at higher risk for developing osteoarthritis as a result of elevated joint contact stresses.
|
Page generated in 0.0515 seconds