Spelling suggestions: "subject:"discrete groups"" "subject:"iscrete groups""
1 |
Quasi-isometric rigidity of higher rank S-arithmetic lattices /Wortman, Kevin. January 2003 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Mathematics, June 2003. / Includes bibliographical references. Also available on the Internet.
|
2 |
A description of discrete spectrum of (spin(10,2) x SL(2, R)) and singular theta correspondence /Du, Zhe. January 2009 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2009. / Includes bibliographical references (p. 85-89).
|
3 |
Quantification of product color preference in a utility functionTurner, Hannah L. January 2010 (has links) (PDF)
Thesis (M.S.)--Missouri University of Science and Technology, 2010. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed April 21, 2010) Includes bibliographical references (p. 38-39).
|
4 |
Hybrid Subgroups of Complex Hyperbolic LatticesJanuary 2019 (has links)
abstract: In the 1980's, Gromov and Piatetski-Shapiro introduced a technique called "hybridization'' which allowed them to produce non-arithmetic hyperbolic lattices from two non-commensurable arithmetic lattices. It has been asked whether an analogous hybridization technique exists for complex hyperbolic lattices, because certain geometric obstructions make it unclear how to adapt this technique. This thesis explores one possible construction (originally due to Hunt) in depth and uses it to produce arithmetic lattices, non-arithmetic lattices, and thin subgroups in SU(2,1). / Dissertation/Thesis / Doctoral Dissertation Mathematics 2019
|
5 |
Factorization of isometries of hyperbolic 4-space and a discreteness conditionPuri, Karan Mohan, January 2009 (has links)
Thesis (Ph. D.)--Rutgers University, 2009. / "Graduate Program in Mathematical Sciences." Includes bibliographical references (p. 52-53).
|
6 |
A study of the lower moments of order statistics of discrete uniform distributionsBombara, Elwood L. 08 September 2012 (has links)
Throughout this thesis, we will talk about samples taken with replacement from the discrete uniform population f(x) -1/N where x = l, 2, 3,..., N. All samples will be of size n except in the case of the median, where the sample size will be 2n + l, an odd number. / Master of Science
|
7 |
[en] REPRESENTATIONS OF TRIANGLE GROUPS IN COMPLEX HYPERBOLIC / [pt] REPRESENTAÇÕES DE GRUPOS TRIANGULARES EM GEOMETRIA HIPERBÓLICA COMPLEXALUIS FERNANDO CROCCO AFONSO 13 November 2003 (has links)
[pt] O principal objetivo deste trabalho é o estudo de
representações que preservam tipo rho:Gamma - PU(2,1) de
grupos triangulares Gamma no grupo de isometrias
holomorfas
do espaço hiperbólico complexo de dimensão dois H2C. O
grupo triangular Gamma(p,q,r) é o grupo gerado por
reflexões nos lados de um triângulo geodésico, com
ângulos pi/p, pi/q e pi/r, no plano hiperbólico. Neste trabalho,
nossas atenções são voltadas para os grupos Gamma
(4,4,infinito) e Gamma(4,infinito,infinito).
Demonstramos,
entre outros resultados: Para cada caso, existe um
caminho
contínuo de representações rho_t que contém todas as
representações que preservam tipo de Gamma em PU(2,1).
Portanto, isto nos dá, em cada caso, uma descrição
completa
do espaço de representações de Gamma em PU(2,1). Para
cada
caso, existe um intervalo fechado J tal que rho_t é uma
representação discreta e fiel se, e somente se, t
pertence a
J. Em cada caso, existe, na fronteira do espaço de
deformações, uma representação com elementos parabólicos
acidentais. Para demonstrar estes resultados, construímos
parametrizações especiais de triângulos em H2C.
Construímos poliedros fundamentais para os grupos e
utilizamos uma variante do Teorema do Poliedro de
Poincaré. / [en] The main aim of this work is to study type-preserving
representations p: gamma PU(2, 1) of triangle groups _ in
the group of holomorphic isometries of the twodimensional
complex hyperbolic space H2C. The triangle group gamma(p,
q, r)
is the group generated by reflections in the sides of a
geodesic triangle having angles pi/p, pi/q and pi/r. We
focus
our attention on the groups gamma(4,4, infinit) and gamma
(4,infinit, infinit).
Among other results, we prove that for each case:
1. There is a continuous path of representations pt which
contains all type-preserving representations of gamma in PU
(2,1) up to conjugation by isometries. This gives us a
complete description of the representation space of gamma
in PU(2,1). 2. There is a closed interval J such that pt is
a
discrete and faithful representation if and only if t
belongs J.
3. On the boundary of the representation space there is a
representation with accidental parabolic elements. To prove
these results we give special parametrizations of triangles
in H2C. We also build fundamental polyhedra for the groups
and use a kind of Poincares Polyhedron Theorem.
|
8 |
Propriedades homologicas de mergulho de grupos discretos metabelianos / Embedding homological properties of metabelian discrete groupsSilva, Flavia Souza Machado da 16 May 2006 (has links)
Orientador: Dessislava H. Kochloukova / Tese (doutorado) - Universidade Estadual de Campinas. Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-06T15:28:56Z (GMT). No. of bitstreams: 1
Silva_FlaviaSouzaMachadoda_D.pdf: 1082384 bytes, checksum: 3f3ae60f2e4ab201df78d9bb624249ef (MD5)
Previous issue date: 2006 / Resumo: Estudamos propriedades homológicas de mergulho de grupos metabelianos finitamente gerados e estendemos um trabalho recente [19] em que foi mostrado que para m, um número natural fixo, todo grupo G metabelianofinitamente gerado mergulha num quociente de um grupo metabeliano de tipo F.P m e ainda que G mergulha em um grupo metabeliano de tipo FP4. Mais precisamente, mostramos que para m, um número natural fixo, todo grupo metabeliano finitamente gerado mergulha num grupo metabeliano de tipo FPm. Para isto usamos idéias de álgebra comutativa, tais como o Teorema de normalização de Noether e propriedades de mergulho de módulos finitamente gerados sobre anéis comutativos através de localização. No caso de grupos metabelianos obtemos mergulhos em extensões HNN metabelianas. Um passo importante na nossa demonstração é o uso do método de Áberg para garantir que num caso muito particular a FPm-Conjectura para grupos metabelianos é verdadeira. A FPm-Conjectura para grupos metabelianos sugere quando um grupo metabeliano tem tipo FPm, mas ela ainda está em aberto. É interessante observar que o método de Áberg mistura idéias de álgebra comutativa e topologia algébrica (ação de grupo sobre um subcomplexo de um produto finito de árvores) / Abstract: We study embedding homological properties of finitely generated metabelian groups and we extend an earlier work in [19] where it was shown that for a fixed m every finitely generated metabelian group G embeds in a quotient of a metabelian group of homological type FPm and furthermore that G embeds in a metabelian group of type FP4. More precisely we show that for a fixed m every finitely generated metabelian group G embeds in a metabelian group of type FPm. This is proved using ideas of commutative algebra, such as Noether normalization theorem and properties of embedding of finitely generated modules over commutative rings via localization. In the case of metabelian groups this gives embedding into a metabelian HNN extensions. An important step in the proof is the use of the Áberg method to guarantee that the FPm-conjecture in a very particular case is true. The FPm-conjecture for metabelian groups suggests when a metabelian group has a homological type FPm, but it is still open. It is interesting to note that the Áberg method mixes ideas from commutative algebra and algebraic topology (action of group on a subcomplex af a finite product of trees) / Doutorado / Matematica / Doutor em Matemática
|
9 |
Ferramentas elementares para geometrias classicas e hiperbolica complexa / Elementary tools for classic and complex hyperbolic geometriesFerreira, Carlos Henrique Grossi 15 September 2006 (has links)
Orientador: Alexandre Ananin / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatisitca e Computação Cientifica / Made available in DSpace on 2018-08-07T02:11:51Z (GMT). No. of bitstreams: 1
Ferreira_CarlosHenriqueGrossi_D.pdf: 2079010 bytes, checksum: d2897485f4c4ad44b6ca3016ebc4a4f6 (MD5)
Previous issue date: 2006 / Resumo: Esta tese possui quatro partes. A primeira parte apresenta uma construção que permite abordar todas as geometrias clássicas sob um mesmo ponto de vista. Utilizando tal abordagem, expressamos e caracterizamos, de modo simples e isento de coordenadas, vários aspectos destas geometrias, tais como geodésicas distâncias, transporte paralelo, tensores de curvatura e curvaturas seccionais. Esperamos, assim, unificar e facilitar o estudo das geometrias clássicas, evitando a introdução de vários ¿modelos¿ para uma mesma geometria (como é o caso dos modelos de Poincaré, de Siegel e de Klein para as geometrias hiperbólicas) bem como evitando a descrição de métricas através de sistemas de coordenadas específicos. A segunda parte consiste em aplicar as ferramentas desenvolvidas anteriormente para o caso específico da geometria hiperbólica complexa. O foco central é o estudo de configurações de um número pequeno de pontos. Deste modo estudamos propriedades básicas de objetos elementares tais como linhas projetivas, geodésicas e bissetores. Estas propriedades provaram-se essenciais com relação ao nosso principal objetivo, o estudo de grupos discretos de isometrias do plano hiperbólico complexo. A terceira parte consiste em uma versão do Teorema Poliedral de Poincaré em que as exigências sobre a tesselação são suficientemente locais. Além disso, buscamos para o referido Teorema condições simples e verificáveis na prática. A versão apresentada pode ser aplicada em geometrias de curvatura não-constante, nas quais n¿ao podemos explorar, por exemplo, os conceitos de convexidade. Por fim, a quarta parte é um artigo produzido em colaboração com os professores Alexandre Ananin e Nikolai Goussevskii. Neste artigo, novos exemplos de variedades com estrutura hiperbólica complexa s¿ao apresentados, resolvendo alguns problemas da área / Abstract: This thesis consists of four parts. The first part consists of a construction interpreting all classic geometries in the same way. With this construction, we express and characterize various aspects of these geometries, such as geodesics, distances, parallel displacement, curvature tensors, and sectional curvatures, in a simple coordinate-free way. We believe that this approach can unify and simplify the study of classic geometries escaping the use of several ¿models¿ for the same geometry (as Poincaré¿s, Siegel¿s, and Klein¿s models of hyperbolic geometry) as well as avoiding descriptions of metrics in specific coordinates. In the second part we apply the previously developed tools to the case of complex hyperbolic geometry. The guideline is the study of finite configurations of points. From this point of view, we study basic properties of elementary geometric objects such as projective lines, geodesics, and bisectors. These properties turned out to be crucial for our central purpose, the study of discrete groups of isometries of the complex hyperbolic plane. The third part consists of a version of Poincaré¿s Polyhedron Theorem where the conditions concerning the tessellation are sufficiently local. Also, we consider conditions that are simple and verifiable in practice. The proposed theorem can be applied in the case of geometries of non-constant curvature when some concepts, as those of convexity, are not applicable. Finally, the fourth part is an article written in collaboration with professor Alexandre Ananin and professor Nikolai Goussevskii. In this article, new series of examples of complex hyperbolic manifolds are constructed, solving some problems in the area / Doutorado / Geometria / Doutor em Matemática
|
10 |
Groupes discrets en géométrie hyperbolique : aspects effectifs / Discrete groups in hyperbolic geometry : effective aspectsGranier, Jordane 08 December 2015 (has links)
Cette thèse traite de deux problèmes en géométrie hyperbolique réelle et complexe. On étudie dans un premier temps des structures géométriques sur des espaces de modules de métriques plates à singularités coniques sur la sphère. D'après des travaux de W. Thurston, l'espace de modules des métriques plates sur S^2 à n singularités coniques d'angles donnés admet une structure de variété hyperbolique complexe non complète, dont le complété métrique est une variété conique hyperbolique complexe. On étudie dans cette thèse des formes réelles de ces espaces complexes en se restreignant à des métriques invariantes par une involution. On décrit une structure hyperbolique réelle sur les espaces de modules de métriques plates symétriques à 6 (respectivement 8) singularités d'angles égaux. On décrit les composantes connexes de ces espaces comme ouverts denses d'orbifolds hyperboliques arithmétiques. On montre que les complétés métriques de ces composantes connexes admettent un recollement naturel, dont on étudie la structure.La deuxième partie de cette thèse traite des ensembles limites de groupes discrets d'isométries du plan hyperbolique complexe. On construit le premier exemple explicite de sous-groupe discret de PU(2,1) dont l'ensemble limite est homéomorphe à l'éponge de Menger / This thesis is concerned with two problems in real and complex hyperbolic geometry. The first problem is the study of geometric structures on moduli spaces of flat metrics on the sphere with cone singularities. W. Thurston proved that the moduli space of flat metrics on S^2 with n singularities of given angles forms a non complete complex hyperbolic manifold, and that its metric completion is a complex hyperbolic cone-manifold. In this thesis we study real forms of these complex spaces by restricting our attention to metrics that are invariant under an involution. We describe a real hyperbolic structure on moduli spaces of flat symmetric metrics of 6 (respectively 8) singularities of same angle. We describe explicitly the connected components of these spaces as dense open subsets of arithmetic hyperbolic orbifolds. We show that the metric completions of these components admit a natural gluing, and we study the structure of the glued space. The second part of this thesis is devoted to the study of limit sets of discrete subgroups of the isometry group of complex hyperbolic plane. We construct the first known explicit example of a discrete subgroup of PU(2,1) which admits a limit set homeomorphic to the Menger curve
|
Page generated in 0.0546 seconds