• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Kinetics and mechanism of dispersion polymerization /

Jiang, Sheng, January 2005 (has links)
Thesis (Ph. D.)--Lehigh University, 2005. / Includes bibliographical references and vita.
2

Kinetics, Synthesis and Characterization of copolymers containing the bio-renewable monomer g-methyl-a-methylene-g-butyrolactone (MeMBL)

Cockburn, Robert A 26 April 2011 (has links)
The bio-renewable monomer γ-methyl-α-methylene-γ-butyrolactone (MeMBL) has been thoroughly investigated in this thesis. MeMBL is a relatively unstudied monomer that had received little attention since the early 1980’s but has become a subject of renewed interest since a process to produce it from biomass derivatives was developed in 2004. The principle interest with this monomer aside from the “green” potential associated with bio-renewables results from its structure being cyclically analogous to methyl methacrylate (MMA) as well as improved solvent resistance and a high (215oC+) glass transition temperature (Tg) compared to most petroleum sourced acrylics. There are three major areas of focus in this work, examining polymerization kinetics, synthesis and polymer characterization. The polymerization kinetics of MeMBL were investigated with a variety of petroleum sourced monomers. MeMBL is in all cases preferentially incorporated into copolymers, presenting challenges for composition control. Preliminary investigations of aqueous phase polymerizations of MeMBL were problematic and led to investigations of organic phase polymerizations. The dispersion polymerization method was used to produce copolymers of MeMBL and MMA; during the study we obtained new insight into the mechanisms of particle nucleation and growth. With the acquired knowledge of MeMBL polymerization kinetics, the dispersion technique was used to produce MeMBL/MMA copolymers of controlled composition by semibatch for characterization studies. The addition of MeMBL raises polymer Tg and lowers molecular weight, but due to unexpected difficulties in processing MeMBL copolymers, mechanical properties could not be investigated in this study. Future work may need to revisit other polymerization techniques in order to produce processable polymers to test whether or not MeMBL might be a suitable alternative to petroleum sourced monomers that is capable of extending the range and utility of acrylics. / Thesis (Master, Chemical Engineering) -- Queen's University, 2011-04-25 09:39:19.959
3

Lanthanide-encoded Poly(styrene-co-methacrylic Acid) Microspheres: Synthesis and Characterization

Liang, Yi 27 July 2012 (has links)
Lanthanide-encoded polystyrene-co-methacrylic acid (P(S-MAA)) microspheres with narrow size distributions were synthesized by two-stage dispersion polymerization. I examined how the amounts of methacrylic acid (MAA) and lanthanide (Ln) salts affect the composition of the particles formed in the reaction. Also, I performed a systematic study of Ln ion release into different aqueous solutions. In normal buffers, these particles were stable against ion leakage, even upon prolonged storage and stirring. When strong chelating agent ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) were present in buffer, the loss of Ln ions increased to 15 % after 8 weeks. A preliminary kinetic study of Ln ion incorporation was performed to help understand the particle formation mechanism.
4

Lanthanide-encoded Poly(styrene-co-methacrylic Acid) Microspheres: Synthesis and Characterization

Liang, Yi 27 July 2012 (has links)
Lanthanide-encoded polystyrene-co-methacrylic acid (P(S-MAA)) microspheres with narrow size distributions were synthesized by two-stage dispersion polymerization. I examined how the amounts of methacrylic acid (MAA) and lanthanide (Ln) salts affect the composition of the particles formed in the reaction. Also, I performed a systematic study of Ln ion release into different aqueous solutions. In normal buffers, these particles were stable against ion leakage, even upon prolonged storage and stirring. When strong chelating agent ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) were present in buffer, the loss of Ln ions increased to 15 % after 8 weeks. A preliminary kinetic study of Ln ion incorporation was performed to help understand the particle formation mechanism.
5

Lanthanide-encoded Polysterene Microspheres for Mass Cytometry-based Bioassays

Abdelrahman, Ahmed I. 05 January 2012 (has links)
This thesis describes the synthesis and characterization of metal-encoded polystyrene microspheres with a narrow size distribution designed for mass cytometry-based immuno- and oligonucleotide-assays. These particles were prepared by multiple stage dispersion polymerization techniques using polyvinylpyrrolidone (PVP) as a steric stabilizer. As a cytometeric technique, mass cytometry necessitated metal-encoded microspheres to perform the same roles of fluorescent microspheres used in conventional flow cytometry. The first role of the microsphere was to be able to act as a platform (classifier microspheres) for bioassays. Secondly, the microspheres should be suitable for mass cytometry machine calibration as standards. To perform these roles, metal-encoded microspheres were required to have certain size, functionality and metal content criteria. Lanthanide elements were chosen as the metals for encoding the microspheres for their low natural abundance in biological systems and for their similar chemistry. My goal was to employ two-stage dispersion polymerization, of styrene in ethanol, to introduce the lanthanide salts along with excess acrylic acid in the second stage, one hour after the initiation. Acrylic acid deemed to serve as a ligand for the lanthanide ions, through its carbonyl group, so the lanthanide ions get incorporated into the microsphere while acrylic acid is copolymerizing with styrene. Using two-stage dispersion polymerization, I could synthesize lanthanide encoded microspheres with narrow size distribution and high lanthanide content. However the lanthanide content distributions were unexpectedly much broader than the size distribution obtained. In addition, I could not attach biomolecules to the surface of such particles. In an attempt to improve the characteristics of these microspheres, I employed modified versions of multiple stage dispersion polymerization and seeded emulsion polymerization to grow functional polymer shell on the surface of the particles prepared by dispersion polymerization. Moreover, I coated the lanthanide encoded microspheres with silica shell which enabled me to grow another layer of functional-silica. Consequently, I could use these particles as classifier microspheres for mass cytometry-based immunoassays as well as fluorescence-based oligonucleotide-assays.
6

Lanthanide-encoded Polysterene Microspheres for Mass Cytometry-based Bioassays

Abdelrahman, Ahmed I. 05 January 2012 (has links)
This thesis describes the synthesis and characterization of metal-encoded polystyrene microspheres with a narrow size distribution designed for mass cytometry-based immuno- and oligonucleotide-assays. These particles were prepared by multiple stage dispersion polymerization techniques using polyvinylpyrrolidone (PVP) as a steric stabilizer. As a cytometeric technique, mass cytometry necessitated metal-encoded microspheres to perform the same roles of fluorescent microspheres used in conventional flow cytometry. The first role of the microsphere was to be able to act as a platform (classifier microspheres) for bioassays. Secondly, the microspheres should be suitable for mass cytometry machine calibration as standards. To perform these roles, metal-encoded microspheres were required to have certain size, functionality and metal content criteria. Lanthanide elements were chosen as the metals for encoding the microspheres for their low natural abundance in biological systems and for their similar chemistry. My goal was to employ two-stage dispersion polymerization, of styrene in ethanol, to introduce the lanthanide salts along with excess acrylic acid in the second stage, one hour after the initiation. Acrylic acid deemed to serve as a ligand for the lanthanide ions, through its carbonyl group, so the lanthanide ions get incorporated into the microsphere while acrylic acid is copolymerizing with styrene. Using two-stage dispersion polymerization, I could synthesize lanthanide encoded microspheres with narrow size distribution and high lanthanide content. However the lanthanide content distributions were unexpectedly much broader than the size distribution obtained. In addition, I could not attach biomolecules to the surface of such particles. In an attempt to improve the characteristics of these microspheres, I employed modified versions of multiple stage dispersion polymerization and seeded emulsion polymerization to grow functional polymer shell on the surface of the particles prepared by dispersion polymerization. Moreover, I coated the lanthanide encoded microspheres with silica shell which enabled me to grow another layer of functional-silica. Consequently, I could use these particles as classifier microspheres for mass cytometry-based immunoassays as well as fluorescence-based oligonucleotide-assays.
7

Příprava a charakterizace magnetických nosičů z hypersíťovaných polystyrenových mikročástic a jejich použití v biosenzoru / Preparation and Characterization of Magnetic Carriers from Hypercrosslinked Polystyrene Microspheres and their Application in a Biosensor.

Šálek, Petr January 2012 (has links)
With the aim to develop and characterize a functionalized highly magnetic polymer carrier of micrometer size and of a narrow particle size distribution that will be suitable for biological application, hypercrosslinked microspheres were prepared. Simultaneously, the relation between structure and properties of product was observed. Condition of dispersion polymerization were optimized to obtain starting monodisperse poly(styrene-co-divinylbenzene) [P(St-DVB)] microspheres. The P(St-DVB) microspheres of different degree of crosslinking were prepared and effect of some polymerization parameters such as type of solvent, initiator, concentration and mode of DVB addition on morphology, size and particle size distribution were investigated. The starting microspheres were hypercrosslinked to obtain microporous inner structure. Hyperosslinked particles had very large specific surface area (> 1000 m2/g) and a high content of micropores (ca. 0.6 ml/g). First, P(St-DVB) microspheres were chloromethylated using three different chloromethylation agents to regulate their porous properties. Hypercrosslinking was achieved by the addition of stannic chloride as a catalyst and by increasing a temperature. The hypercrosslinked microspheres were then functionalized with sulfo- or aminogroups. The functional groups captured precipitated iron oxide inside the porous structure of the microspheres and also served as a reactive site for intended immobilization of the protein. A solution of ferrous and ferric chloride was imbibed under vacuum into the porous structure and the iron oxide was precipitated by an aqueous ammonia solution. Finally, the magnetic functionalized hypercrosslinked micropsheres were integrated into a biosensor for qualitative detection of ovalbumin.
8

Élaboration de particules de polymère magnétiques multifonctionnelles pour la préparation d'échantillons biologiques / Elaboration of multifunctional magnetic latexes for the preparation of biological samples

Chong, Céline 17 December 2013 (has links)
Ce travail de thèse porte sur l'élaboration de particules de polymère magnétiques capables de capter et relarguer différents microorganismes par des interactions électrostatiques non spécifiques. Des nanoparticules d'oxyde de fer cationiques stabilisées par des contre-ions nitrate ont été synthétisées par coprécipitation de sels de fer. La surface de la maghémite obtenue a été modifiée par voie sol-gel avec un organosilane présentant une fonction méthacrylate pour permettre son incorporation covalente dans des particules de latex par des réactions de copolymérisation. Ces particules ont été obtenues par polymérisation radicalaire en dispersion, en émulsion ou en miniémulsion du méthacrylate de méthyle ou du styrène, conduite en présence de maghémite. Les interactions entre celle-ci et le stabilisant rendent difficile la formation de latex magnétiques par polymérisation en dispersion. En revanche, la polymérisation en (mini-)émulsion permet, selon la technique de dispersion des oxydes de fer utilisée avant polymérisation, l'obtention de particules de latex de 140 à 650 nm, dont la fraction magnétique varie entre 2 et 37 % et contient jusqu'à 91 % de maghémite. La distribution de taille est toutefois large. Les particules magnétiques ainsi obtenues ont été ensuite fonctionnalisées directement au cours de la polymérisation en émulsion par l'introduction de co-monomères chargés, de polyélectrolytes ou de polyamphotères réamorçables. Ces deux derniers types de polymère sont obtenus par polymérisation RAFT. Leur capacité de capture/relargage a été évaluée sur des systèmes modèles à base de silice. Les polyamphotères donnent de bons résultats sur de nombreux microorganismes / This thesis describes the synthesis of magnetic latexes which are able to capture and release various microorganisms via non-specific and electrostatic interactions. Cationic iron oxide nanoparticles stabilized by nitrate counterions were synthesized by the co-precipitation of iron salts in water. The surface of the asobtained maghemite was then modified by a sol-gel process using a methacrylate-functionalized organosilane, in order to incorporate the iron oxide nanoparticles into latex particles by copolymerization reactions. Magnetic particles were obtained by dispersion, emulsion or miniemulsion polymerization of styrene or methyl methacrylate, performed in the presence of iron oxide. Due to the interaction between the stabilizers and iron oxides, dispersion polymerization was not a suitable approach. On the other hand, (mini-)emulsion polymerization led to a large range of particle diameters (140 – 650 nm), according to the process used to disperse iron oxides prior to the polymerization. These latexes contained between 2 and 37 % of magnetic particles, incorporating up to 91% of iron oxide. But the size distribution remained quite broad in all cases. The functionalization of the as-prepared magnetic particles was then undertaken by the introduction of either a charged co-monomer or polyelectrolytes or polyampholytes reactivable during the polymerization process. These kinds of polymers were synthesized by RAFT polymerization. Their ability to capture and release microorganisms was tested on silica-based model systems. Polyampholytes displayed good results on several microorganisms
9

Synthèse de Poly(3,4-ethylènedioxythiophène) en milieux dispersants organiques

Charba, Abdulkarim 16 December 2011 (has links)
L’objectif de ce travail de thèse était de développer des encres organiques de polymères semi-conducteurs. Il s’est ainsi agi de synthétiser des latex de poly (3,4-éthylènedioxythiophène) (PEDOT) dispersibles en milieux organiques (cyclohexane ou toluène) par polymérisation oxydative de l’EDOT en présence de stabilisant stériques et/ou électrostatiques. Le stabilisant est un polymère fonctionnalisé par une unité ou plusieurs unités fonctionnelles qui peuvent réagir avec la chaîne de PEDOT en croissance assurant ainsi des liaisons covalentes ou électrostatiques entre celui-ci et le stabilisant. La taille des particules de PEDOT est contrôlée par la masse molaire, la concentration et par la fonctionnalité du stabilisant. Le PEDOT obtenu est caractérisé par diffusion de la lumière (DLS), par microscopie électronique à balayage (MEB) microscopie électronique à transmission (TEM) et par des mesures de conductivité. / Spherical poly(3,4-ethylenedioxythiophene) nano-particles with narrow size distribution were prepared in organic dispersant media in the presence of iron(III) chloride FeCl3 or iron(III) dodecylbenzenesulfonate {Fe(DBS)3} as oxidant and a functionalized polyisoprene (ω-R-PI) as a stabilizer. Two kinds of functionalized polyisoprene were used as stabilizers. Pyrrole, fluorene, Thiophene and methylthiophene end caped polyisoprenes were used as reactive stabilizers. Lithium sulfonate end caped polyisoprene was used as steric stabilizer. The effect of the nature of the solvent, the molar mass, the concentration, and the nature of the functional end unit of the stabilizer on the size and morphology of PEDOT particles were investigated. Polyisoprenes containing sulfonate groups were also used as steric/electrostatic stabilizers. By this way, the sulfonate groups act as counter ions for oxidized PEDOT leading to electrostatic attraction between it and the stabilizer, ensuring stabilization of the latex. Four kinds of polyisoprene-based steric electrostatic stabilizers having one or many sulfonate groups were prepared: sulfonate end-capped polyisoprene (PI-SO3Li), partially sulfonated polyisoprene (PIS), polyisoprene grafted to polystyrene sulfonate (PI-g-PSS) and polyisoprene grafted to polyisoprene sulfonate (PI-g-PIS). The effects of the molar mass of the stabilizer and the sulfonate group content on the PEDOT particle morphology were studied.PEDOT samples were characterized with transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning electron microscopy (SEM), dynamic light scattering (DLS) analysis and conductivity measurements.

Page generated in 0.1245 seconds