• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evolution de l'excentricité et de l'inclinaison orbitale due aux interactions planètes-disque / Evolution of the eccentricity and orbital inclination caused by planet-disc interactions

Teyssandier, Jean 16 September 2014 (has links)
Depuis la découverte de la première planète orbitant une étoile de la séquence principale autre que le Soleil en 1995, ce champ de recherche a connu une croissance vertigineuse, tant au niveau des observations, que des modèles théoriques développés en parallèle. Même si la formation et l’évolution des systèmes planétaires restent encore mal comprises dans leur globalité, Il est à peu près certain que les planètes se forment dans des disques protoplanétaires et interagissent avec ces derniers durant la phase primordiale de leur évolution. Cette thèse s’attache à décrire certains aspects de ces interactions. Parmi les problèmes soulevés par les nombreuses observations d’exoplanètes, on peut citer l’existence des Jupiter chaudes, géantes gazeuses dont la révolution autour de leur étoile s’effectue en quelques jours à peine. Il est communément admis qu’elles se sont formées dans les parties externes du disque, pour ensuite migrer vers l’intérieur. Cependant , les processus de migration restent encore débattus. On pourra aussi noter qu’un nombre important de planètes détectées, notamment par la méthode des vitesses radiales, présentent de fortes excentricités. Cette observation contraste avec celle de notre propre Système Solaire, où les planètes géantes ont des orbites quasi-circulaires. Cette distribution d’excentricités témoigne probablement d’une certaine richesse dans les interactions dynamiques entre les planètes d’un même système. Un autre résultat majeur des quelques dernières années est l’observation de planètes à faible période orbitale dont l’orbite n’est pas alignée avec l’axe de rotation de leur étoile. Cette observation pourrait potentiellement remettre en question l’idée selon laquelle ces planètes acquièrent leur faible période par le biais de la migration au sein du disque. Par conséquent, il est important de pouvoir différencier quelles sont les caractéristiques observationelles des exoplanètes qui sont le fruit de leurs interactions mutuelles, et celles qui peuvent être expliquées lors de la phase d’interaction avec le disque protoplanétaire. D’une part, cela permet d’imposer des contraintes sur la physique des disques protoplanétaires. D’autre part, il est intéressant de savoir à quoi ressemble le système de planètes une fois que le disque se dissipe, et à quelles conditions intiales peut-on s’attendre lorsque les planètes commencent à interagir entre elles sans la présence du disque. Par exemple, est-il possible pour une ou des planètes d’acquérir de l’excentricité et de l’inclinaison au sein du disque, et de les maintenir par la suite. De plus, il est certain que le disque domine l’évolution des planètes au stage primordial de leur vie, mais jusqu’à quel point cela limite-t-il les interactions entre les planètes ? / Since the discovery of the first planet orbiting a main-sequence star outside the solar system in 1995, the field of exoplanet studies has grown rapidly, both from the observational and theoretical sides. Despite the fact that we are still lacking a global picture for the formation and evolution of planetary systems, it is now commonly accepted that planets form in protoplanetary discs and interact with them in the early stages of their evolution. This thesis aims at studying some of these interactions. The observations of extrasolar planets have brought several puzzling results to the attention of the community. One of them is the existence of hot Jupiters, giant gaseous planets which orbit their parent star with a period of a few days only. The commonly accepted scenario is that they formed in the outer parts of the disc and migrated inward. Furthermore, a significant number of planets detected so far, especially by the method of radial velocities, have high eccentricities. This is in contrast with our own solar system where giant planets have quasi-circular orbits. Such a distribution of eccentricities may be the signature of strong dynamical interactions between the different components of a same planetary system. Finally, there are short-period planets whose orbits is misaligned with the axis of rotation of their host star, which could possibly argue against the smooth migration of planets in their disc. Therefore, it is important to disentangle between the orbital characteristics that planets acquired through mutual dynamical interactions, and the ones they acquired when they interacted with the disc. Firstly, it gives constraints on the physical parameters of protoplanetary discs. Secondly, it is interesting to know the properties of the system of planets after the disc has dissipated, and what sort of initial conditions one can expect when planets start to interact freely one with each other. For instance, one can ask if it is possible for planets to reach large eccentricities and inclinations when the disc was still present, and whether they could maintain them or not.
2

Thermodynamique du bord interne de la zone morte dans les disques protoplanétaires / Thermodynamics of the dead zone inner edge in protoplanetary disks

Faure, Julien 25 September 2014 (has links)
La zone morte, région laminaire confinée au coeur des disques protoplanétaires dont la turbulence de l'écoulement à petite échelle explique l'accrétion de matière sur l'étoile en formation, semble être un lieu propice à la formation planétaire. En effet, au bord interne de la zone morte la différence d'accrétion entraîne le développement d'une sur-densité capable de piéger les grains de poussière qui dérivent vers l'étoile. L'écoulement à cet endroit est de plus potentiellement instable. Le cas échéant, il s'organise en structures tourbillonnaires appelées ''vortex'' qui collectent efficacement la poussière. La position du bord interne est toutefois très incertaine et dépend en particulier de la thermodynamique du modèle de disque considéré. Récemment, le déplacement du bord interne a été envisagé pour expliquer la variabilité de l'accrétion des étoiles jeunes. Cette thèse aborde le problème posé par l'influence de la thermodynamique sur la dynamique du bord interne de la zone morte. Des simulations MHD qui incluent le couplage entre les processus thermodynamiques avec la dynamique de l'écoulement ont tout d'abord permis de confirmer le comportement dynamique du bord interne ainsi que de réaliser la mesure inédite de sa vitesse typique de déplacement. La comparaison de ces résultats avec les prédictions données par un modèle de champ moyen a révélé le rôle du transport d'énergie par des ondes excitées au bord interne de la zone morte. Ces simulations présentent de plus un phénomène nouveau: les vortex formés à l'interface suivent un cycle de formation-migration-destruction. Cette découverte est susceptible de modifier notre vision du scénario de formation planétaire. En résumé, cette thèse met en évidence le fait que les processus thermodynamiques sont au coeur du fonctionnement de la région du bord interne de la zone morte dans les disques protoplanétaires. / The dead zone, a quiescent region enclosed in the turbulent flow of a protoplanetary disk, seems to be a promising site for planet formation. Indeed, the development of a density maximum at the dead zone inner edge, that has the property to trap the infalling dust, is a natural outcome of the accretion mismatch at this interface. Moreover, the flow here may be unstable and organize itself into vortical structures that efficiently collect dust grains. The inner edge location is however loosely constrained. In particular, it depends on the thermodynamical prescriptions of the disk model that is considered. It has been recently proposed that the inner edge is not static and that the variations of young stars accretion luminosity are the signature of this interface displacements. This thesis address the question of the impact of the gas thermodynamics onto its dynamics around the dead zone inner edge. MHD simulations including the complex interplay between thermodynamical processes and the dynamics confirmed the dynamical behaviour of the inner edge. A first measure of the interface velocity has been realised. This result has been compared to the predictions of a mean field model. It revealed the crucial role of the energy transport by density waves excited at the interface. These simulations also exhibit a new intriguing phenomenon: vortices forming at the interface follow a cycle of formation-migration-destruction. This vortex cycle may compromise the formation of planetesimals at the inner edge. This thesis claims that thermodynamical processes are at the heart of how the region around the dead zone inner edge in protoplanetary disks works.
3

Nano-poussières carbonées dans les disques protoplanétaires / Carbonaceous nano-dust in protoplanetary disks

Boutéraon, Thomas 19 September 2019 (has links)
Cette thèse s’intéresse aux signatures spectroscopiques des nano-particules carbonées dans l’infrarouge proche et moyen dans les disques protoplanétaires. Ces signatures sont largement observées dans le milieu interstellaire et les galaxies et représentent ainsi un outil essentiel pour étudier les conditions physiques qui y règnent. Notamment, leur étude dans les environnements circumstellaires d’étoiles de type Herbig contribue à notre connaissance de la formation des systèmes planétaires et du cycle de la matière dans la Voie lactée. Même si la poussière ne représente qu’un faible pourcentage de la matière galactique, elle est essentielle dans la formation d’espèces chimiques complexes, le chauffage photo-électrique du gaz, la balance énergétique ou ladynamique des structures. Ainsi, elle participe directement à l’évolution des disques protoplanétaires.Ce travail s’appuie notamment sur les données d’observations spectroscopiques résolues spatialement obtenues avec l’instrument NaCo au VLT dans l’infrarouge proche entre 3 et 4 μm. Le modèle THEMIS fournit un cadre d’interprétation pour les observations en proposant un modèle physique de la poussière dans lequel les propriétés optiques sont calculées en considérant la composition, la structureet la taille de populations de grains. THEMIS propose un scénario d’évolution de celle-ci au travers des différentes phases du milieu interstellaire.Les résultats obtenus montrent que des particules carbonées sub-nanométriques ayant une forte aromaticité sont présentes de manière étendue et structuréeà la surface des disques protoplanétaires. Leur degré d’aromaticité augmente avec l’intensité du champ de rayonnement de l’étoile. De plus, l’observation de ces particules près de l’étoile suggère leur renouvellement continu. La odélisation de l’émission de la poussière dans les conditions des disques met enévidence les contributions des différentes populations selon la longueur d’onde et les conditions d’irradiation.Ce travail s’inscrit dans la préparation de la mission du James Webb Space Telescope qui permettra d’observer notamment les disques ptrotoplanétaires surune large gamme infrarouge (0.6-28 μm). Ce travail a également conduit à la production de deux articles, un publié et l’autre soumis dans la revue Astronomy & Astrophysics. / This thesis focuses on spectroscopic signatures of carbon nanoparticles in the near and mid-infrared in protoplanetary disks. These signatures are widely observed in the interstellar medium and galaxies and thus represent an essential tool for studying their physical conditions. In particular, their study in the circumstellar environments of Herbig stars contributes to our knowledge of the formation of planetary systems and the dust cycle in the MilkyWay. Even if dust represents only a small percentage of galactic matter, it is key to the formation of complex chemical species, photoelectric gas heating, energy balance or structural dynamics. Thus, it participates directly in the evolution of protoplanetary disks.This work is based in particular on spatially resolved spectroscopic observation data obtained with the NaCo instrument at the VLT in the near infrared between 3 and 4 μm. The THEMIS model provides an interpretative framework for observations by proposing a physical dust model in which optical properties are calculated by considering the composition, structure and size of grain populations. THEMIS proposes a scenario of its evolution through the different phasesof the interstellar medium.The results obtained show that carbon sub-nanoparticles with high aromaticity are present in a widespread and structured manner at the surface ofprotoplanetary disks. Their degree of aromaticity increases with the intensity of the stellar radiation field. Moreover, the observation of these particles close to the star suggests their continuous replenishment. Modelling the dust emission under disk conditions highlights the contributions of dust populations according to the wavelength and the radiation field.This work is related to the preparation of the James Webb Space Telescope mission which will allow to observe protoplanetary disks over a wide infrared range (0.6-28 μm) with a resolution of 0.1”. This work also led to the production of two articles, one published and the other submitted to the journal Astronomy & Astrophysics.
4

Modeling the chemical trapping processes in the outer solar system / Simulations de processus de séquestration chimique dans le système solaire externe

Ozgurel, Ozge 25 October 2017 (has links)
Ce projet a pour but de répondre à quelques questions pendantes de planétologie en utilisant des méthodes de chimie quantique. Il recouvre principalement deux études.La première étude modélise les processus chimiques susceptibles d’expliquer la déplétion en gaz rares observée dans l’atmosphère de Titan par la mission Huygens ; l’étude considère la formation par association radiative, des complexes stables entre Ar, Kr, Xe et H3+ ou les ions protonés, ceci dans la nébuleuse proto-planétaire, avant la formation de Titan en tant qu’objet.La seconde étude analyse les mécanismes piégeant les volatiles dans les glaces, mécanismes à l’œuvre dans les comètes comme dans la lune Europe. Les scénarios d’une origine primordiale commune de O2 et S2 observés dans la comète 67P/C-G lors de la mission ROSETTA, ont pu être validés, donnant des rapports d’abondance avec l’eau proches des observations, et proposant une explication pour la corrélation/non corrélation avec l’eau pour les deux espèces. De même, un scénario pour l’origine des éléments mineurs Na et K détectés dans l’exosphère d’Europe, satellite pour lequel l’intérêt a ressurgi en raison des missions à venir, Juice de l’ESA et Europa Clipper de la NASA, a été étudié et s’est révélé valable également pour Mg et Ca pour lesquels des prédictions d’abondance ont été faites. Du point de vue des simulations numériques, ce travail combine deux approches ab-initio, une approche moléculaire pour la phase gazeuse du premier cas et une approche périodique du solide pour les autres cas. / This project aims at answering some questions in planetology by means of ab-inito quantum chemistry. It can be divided into two main studies. One models the chemical processes likely to explain the noble gases deficiency observed by the Huygens probe in the atmosphere of Titan; it investigates the formation of stable complexes between Ar, Kr, Xe and H3+ or protonated ions by radiative association, in the proto-solar nebula, prior to the formation of Titan. The other analyzes the trapping mechanisms of volatiles in the ice at work in comets as well as in Europa. Scenarios of primordial origin for O2 and S2, observed in comet 67P/C-G by the ROSETTA probe, were thus validated, giving abundance ratios with H2O close to those observed and proposing an explanation for the respective correlation/non-correlation with water of the two species. Also, a scenario for the origin of trace elements Na, K detected in the exosphere of Europa whose interest is revived by anticipating the missions Juice and Europa Clipper, was argumented and found available for Mg and Ca to predict relative abundancies to be observed. The computational work combines two ab-inito approaches, molecular calculations in gaseous phase in the first case and periodic solid state calculations in the second.
5

Caractérisation physico-chimique des premières phases de formation des disques protoplanétaires / Chemical and physical characterization of the first stages of protoplanetary disk formation

Hincelin, Ugo 24 October 2012 (has links)
Les étoiles de type solaire se forment par l'effondrement d'un nuage moléculaire, durant lequel la matière s'organise autour de l'étoile en formation sous la forme d'un disque, appelé disque protoplanétaire. Dans ce disque se forment les planètes, comètes et autres objets du système stellaire. La nature de ces objets peut donc avoir un lien avec l'histoire de la matière du disque.J'ai étudié l'évolution chimique et physique de cette matière, du nuage au disque, à l'aide du code de chimie gaz-grain Nautilus.Une étude de sensibilité à divers paramètres du modèle (comme les abondances élémentaires et les paramètres de chimie de surface) a été réalisée. Notamment, la mise à jour des constantes de vitesse et des rapports de branchement des réactions de notre réseau chimique s'est avérée influente sur de nombreux points, comme les abondances de certaines espèces chimiques, et la sensibilité du modèle à ses autres paramètres.Plusieurs modèles physiques d'effondrement ont également été considérés. L'approche la plus complexe et la plus consistante a été d'interfacer notre code de chimie avec le code radiatif magnétohydrodynamique de formation stellaire RAMSES, pour modéliser en trois dimensions l'évolution physique et chimique de la formation d'un jeune disque. Notre étude a démontré que le disque garde une trace de l'histoire passée de la matière, et sa composition chimique est donc sensible aux conditions initiales. / Low mass stars, like our Sun, are born from the collapse of a molecular cloud. The matter falls in the center of the cloud, creating a protoplanetary disk surrounding a protostar. Planets and other solar system bodies will be formed in the disk.The chemical composition of the interstellar matter and its evolution during the formation of the disk are important to better understand the formation process of these objects.I studied the chemical and physical evolution of this matter, from the cloud to the disk, using the chemical gas-grain code Nautilus.A sensitivity study to some parameters of the code (such as elemental abundances and parameters of grain surface chemistry) has been done. More particularly, the updates of rate coefficients and branching ratios of the reactions of our chemical network showed their importance, such as on the abundances of some chemical species, and on the code sensitivity to others parameters.Several physical models of collapsing dense core have also been considered. The more complex and solid approach has been to interface our chemical code with the radiation-magneto-hydrodynamic model of stellar formation RAMSES, in order to model in three dimensions the physical and chemical evolution of a young disk formation. Our study showed that the disk keeps imprints of the past history of the matter, and so its chemical composition is sensitive to the initial conditions.
6

Photoevaporation des disques protoplanétaires par les photons UV d’étoiles massives proches : observation de proplyds et modélisation / Photoevaporation of protoplanetary disks by UV photons from nearby massive stars : observations of proplyfs and modelling

Champion, Jason 25 September 2017 (has links)
Les disques protoplanétaires entourant les jeunes étoiles sont les embryons des systèmes planétaires. A différentes phases de leur évolution, ils peuvent subir d'importantes pertes de masse par photoévaporation : des photons énergétiques, issus de l'étoile centrale ou d'une étoile voisine, chauffe le disque qui perd en masse sous l'échappement des particules. Cependant, ce mécanisme et la physique sous-jacente n'ont que peu été contraints par les observations. Les objectifs de cette thèse sont d'étudier la photoévaporation dans le cas particulier où elle est due à des photons FUV, d'identifier les principaux paramètres physiques (densité, température) et processus (chauffage et refroidissement) impliqués, et d'estimer son impact sur l'évolution dynamique des disques. L'étude repose sur le couplage observations - modélisations des disques photoévaporés par les photons UV en provenance d'étoiles massives proches. Ces objets, appelés "proplyds", ont leur disque entouré d'une large enveloppe nourrie des flots de photoévaporation. A l'aide d'un modèle 1D d'une région de photodissociation, j'ai développé un modèle pour l'émission dans l'infrarouge lointain des proplyds. Ce modèle a été utilisé pour interpréter les observations, issues principalement de Herschel, pour quatre proplyds. Il apparait que les conditions physiques en surface de leur disque sont similaires: une densité de l'ordre de 10 6 par cm cube et une température d'environ 1000 K. Cette température est maintenue par un équilibre dynamique : si la surface se refroidit, la perte de masse diminue et l'enveloppe se réduit. L'atténuation UV produite par l'enveloppe diminue alors et le disque, recevant plus de photons UV, chauffe. La majorité du disque peut s'échapper sous forme de flots de photoévaporation avec des taux de perte de masse de quelques 10 -7 masse solaire par an ou plus, en accord avec les observations précédentes des traceurs du gaz ionisé. A la suite de ce travail, j'ai développé un modèle hydrodynamique 1D pour étudier l'évolution dynamique d'un disque en photoévaporation par un champ de rayonnement externe. [...] / Protoplanetary disks are found around young stars, and represent the embryonic stage of planetary systems. At different phases of their evolution, disks may undergo substantial mass-loss by photoevaporation: energetic photons from the central or a nearby star heat the disk, hence particles can escape the gravitational potential and the disk loses mass. However, this mechanism, and the underlying physics regulating photoevaporation, have not been well constrained by observations so far. The aims of this thesis are to study photoevaporation, in the specific case when it is driven by far-UV photons, to identify the main physical parameters (density, temperature) and processes (gas heating and cooling mechanisms) that are involved, and to estimate its impact on the disk dynamical evolution. The study relies on coupling observations and models of disks being photoevaporated by UV photons coming from neighbouring massive star(s). Those objects, also known as "proplyds", appear as disks surrounded by a large cometary shaped envelope fed by the photoevaporation flows. Using a 1D code of the photodissociation region, I developed a model for the far-IR emission of proplyds. This model was used to interpret observations, mainly obtained with the Herschel Space Observatory, of four proplyds. We found similar physical conditions at their disk surface: a density of the order of 10 6 cm and a temperature about 1000 K. We found that this temperature is maintained by a dynamical equilibrium: if the disk surface cools, its mass-loss rate declines and the surrounding envelope is reduced. Consequently, the attenuation of the UV radiation field by the envelope decreases and the disk surface, receiving more UV photons, heats up. Most of the disk is thus able to escape through photoevaporation flows leading to mass-loss rates of the order of 10 -7 solar mass per year or more, in good agreement with earlier spectroscopic observations of ionised gas tracers. Following this work, I developed a 1D hydrodynamical code to study the dynamical evolution of an externally illuminated protoplanetary disk. [...]
7

Caractérisation physico-chimique des premières phases de formation des disques protoplanétaires

Hincelin, U. 24 October 2012 (has links) (PDF)
Les étoiles de type solaire se forment par l'effondrement d'un nuage moléculaire, durant lequel la matière s'organise autour de l'étoile en formation sous la forme d'un disque, appelé disque protoplanétaire. Dans ce disque se forment les planètes, comètes et autres objets du système stellaire. La nature de ces objets peut donc avoir un lien avec l'histoire de la matière du disque.J'ai étudié l'évolution chimique et physique de cette matière, du nuage au disque, à l'aide du code de chimie gaz-grain Nautilus.Une étude de sensibilité à divers paramètres du modèle (comme les abondances élémentaires et les paramètres de chimie de surface) a été réalisée. Notamment, la mise à jour des constantes de vitesse et des rapports de branchement des réactions de notre réseau chimique s'est avérée influente sur de nombreux points, comme les abondances de certaines espèces chimiques, et la sensibilité du modèle à ses autres paramètres.Plusieurs modèles physiques d'effondrement ont également été considérés. L'approche la plus complexe et la plus consistante a été d'interfacer notre code de chimie avec le code radiatif magnétohydrodynamique de formation stellaire RAMSES, pour modéliser en trois dimensions l'évolution physique et chimique de la formation d'un jeune disque. Notre étude a démontré que le disque garde une trace de l'histoire passée de la matière, et sa composition chimique est donc sensible aux conditions initiales.

Page generated in 0.0672 seconds