• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fonctions de distribution de vitesses non-maxwelliennes dans le plasma ionosphérique et application à la mesure par diffusion incohérente

Gaimard, Patricia 18 January 1996 (has links) (PDF)
En période magnétiquement perturbée il est nécessaire de considérer une fonction de distribution des vitesses ioniques non-Maxwellienne, si l'on veut pouvoir estimer correctement les paramètres ionosphériques de l'ionosphère aurorale, mesurés par diffusion incohérente. Nous avons comparé deux modèles de fonction de distribution non-Maxwellienne : l'approximation polynomiale généralisée qui est une solution analytique de l'équation de Boltzmann et une distribution numérique basée sur une méthode Monte Carlo. Ces deux approches conduisent, pour les deux espèces ioniques 0+ et NO+, à des résultats semblables lors de champs électriques inférieurs à 100 m V lm. La fonction analytique a été introduite dans l'analyse des spectres EISCAT afin d'étudier l'ionosphère sous des champs électriques pouvant atteindre 100 m V /m. Cette nouvelle analyse a, dans un premier temps, été testée sur plusieurs jeux de simulations avec notamment des études de sensibilité aux modèles utilisés. Dans une seconde étape, nous avons étudié des spectres présentant des caractéristiques non-Maxwelliennes et avons ainsi déterminé la composition de l'ionosphère sous forts champs électriques. Enfin avec une dernière série de données réelles nous avons estimé quantitativement l'erreur commise lors d'une interprétation "Maxwellienne" de spectres non-Maxwelliens dans le cas d'une ionosphère composée d'ions moléculaires.
2

Structure des ondes de choc dans les gaz granulaires / Shock wave structure in granular gases

Vilquin, Alexandre 17 December 2015 (has links)
Dans des milieux tels que les gaz, les plasmas et les milieux granulaires, un objet se déplaçant à des vitessessupersoniques, compresse et chauffe le fluide devant lui, formant ainsi une onde de choc. La zone hors-équilibreappelée front d’onde, où ont lieu de brusques variations de température, pression et densité, présente unestructure particulière, avec notamment des distributions des vitesses des particules fortement non-gaussienneset difficiles à visualiser. Dans une avancée importante en 1951, Mott-Smith décrit le front d’onde comme lasuperposition des deux états que sont le gaz supersonique initial et le gaz subsonique compressé et chauffé,impliquant ainsi l’existence de distributions des vitesses bimodales. Des expériences à grands nombres de Machont confirmé cette structure globalement bimodale. Ce modèle n’explique cependant pas la présence d’un surplusde particules à des vitesses intermédiaires, entre le gaz supersonique et le gaz subsonique.Ce travail de thèse porte sur l’étude des ondes de choc dans les gaz granulaires, où les particules interagissentuniquement par des collisions binaires inélastiques. Dans ces gaz dissipatifs, la température granulaire, traduisantl’agitation des particules, permet de définir l’équivalent d’une vitesse du son par analogie aux gaz moléculaires.Les basses valeurs de ces vitesses du son dans les gaz granulaires, permettent de générer facilement des ondes dechoc dans lesquelles chaque particule peut être suivie, contrairement aux gaz moléculaires. La première partie decette étude porte sur l’effet de la dissipation d’énergie, due aux collisions inélastiques, sur la structure des ondesde choc dans les gaz granulaires. Les modifications induites sur la température, la densité et la vitesse moyennemesurées, sont interprétées à l’aide d’un modèle basé sur l’hypothèse bimodale de Mott-Smith et intégrant ladissipation d’énergie. La deuxième partie est consacrée à l’interprétation des distributions des vitesses dans lefront d’onde. À partir des expériences réalisées dans les gaz granulaires, une description trimodale, incluant unétat intermédiaire supplémentaire, est proposée et étendue avec succès aux distributions des vitesses dans lesgaz moléculaires. / In different materials such as gases, plasmas and granular material, an object, moving at supersonic speed,compresses and heats the fluid ahead. The shock front is the out-of-equilibrium area, where violent changesin temperature, pressure and density occur. It has a particular structure with notably strongly non-Gaussianparticle velocity distributions, which are difficult to observe. In an important breakthrough in 1951, Mott-Smithdescribes the shock front as a superposition of two states: the initial supersonic gas and the compressed andheated subsonic gas, implying existence of bimodal velocity distributions. Several experiences at high Machnumbers show this overall bimodal structure. However this model does not explain the existence of a surplusof particles with intermediate velocities, between the supersonic and the subsonic gas.This thesis focuses on shock waves in granular gases, where particles undergo only inelastic binary collisions.In these dissipative gases, the granular temperature, reflecting the particle random motion, allows to definethe equivalent to the speed of sound by analogy with molecular gases. The low values of this speed of soundpermit to generate easily shock waves in which each particle can be tracked, unlike molecular gases. The firstpart of this work focuses on the effect of the energy dissipation, due to inelastic collisions, on the shock frontstructure in granular gases. Modifications induced on temperature, density and mean velocity, are captured bya model based on the bimodal hypothesis of Mott-Smith and including energy dissipation. The second part isdevoted to the study of velocity distributions in the shock front. From experiences in granular gases, a trimodaldescription, including an additional intermediate state, is proposed and successfully extended to the velocitydistributions in molecular gases.
3

Thermalisation dans une nanogoutte d’eau / Thermalisation in water nanodroplets

Berthias, Francis 22 September 2016 (has links)
L'évaporation d'une molécule d'eau se traduit par la rupture d'une ou plusieurs liaisons hydrogène. Ces liaisons hydrogène sont à l'origine de nombreuses propriétés remarquables de l'eau. A l'échelle macroscopique, l'eau est connue pour son efficacité à thermaliser un système, tandis qu'au niveau microscopique, un transfert ultrarapide d'énergie vibrationnelle par l'intermédiaire des liaisons hydrogène a été observé. Qu'en est-il à l'échelle d'une nanogoutte lorsque qu'un nombre limité de molécules entre en jeu? Dans l'expérience réalisée auprès du dispositif DIAM de l'IPN Lyon, la relaxation d'une nanogoutte d'eau protonée est observée après excitation électronique d'une de ses molécules. La mise en œuvre d'une méthode d'imagerie de vecteur vitesse associée à la technique COINTOF (COrrelated Ion and Neutral Time-Of-Flight) a permis la mesure de la distribution de vitesse de molécules évaporées d'agrégats d'eau protonés, préalablement sélectionnés en masse et en énergie. La forme des distributions de vitesse mesurées montre que, même pour des nanogouttes composées de quelques molécules d'eau, l'énergie est redistribuée dans la goutte avant évaporation. Pour des nanogouttes contenant moins d'une dizaine de molécules d'eau, les distributions de vitesse mesurées sont proches de celles attendues pour des gouttes macroscopiques. La redistribution statistique de l'énergie apparaît comme un processus de relaxation dominant. Cependant, la mesure de la distribution des vitesses met aussi en évidence une contribution distincte à haute vitesse correspondant à l'éjection d'une molécule avant redistribution complète de l'énergie. Les distributions de vitesse mesurées pour des nanogouttes d'eau lourdes deutérées mettent en évidence une proportion d'événements non ergodiques plus importante que pour l'eau normale. Les mesures réalisées avec différents atomes cibles montrent que la proportion d'événements non ergodique diminue avec la diminution de l'énergie déposée dans la nanogoutte / The evaporation of a water molecule resulting in the rupture of one or more hydrogen bonds. These hydrogen bonds are responsible for many remarkable properties of water. At the macroscopic scale, water is well known for its ability to thermalize a system, while at the microscopic level, a high-speed transfer of vibrational energy through hydrogen bonding was observed. What scale of nanogoutte when a limited number of molecules come into play? In the experiment carried out with the device DIAM IPN Lyon, the relaxation of a nanogoutte of protonated water is observed after electronic excitation of one of its molecules. The implementation of a velocity vector imaging method associated with the technical COINTOF (Correlated Ion and Neutral Time-Of-Flight) allowed the measurement of the velocity distribution of molecules of evaporated protonated water clusters, mass and energy preselected. The shape of the measured velocity distributions shows that even for some nanodroplets composed of few water molecules, the energy is redistributed in the drop before evaporation. For nanodroplets containing less than ten water molecules, the measured velocity distributions are closed to those expected for macroscopic droplets. The statistical redistribution of energy appears as a dominant relaxation process. However, the measurement of the velocity distribution also highlights a distinct contribution at high velocity corresponding to the ejection of a molecule before complete redistribution of energy. The measured velocity distributions for heavy water nanodroplets deuterated show a proportion of non-ergodic most important events that for normal water. The measurements carried out with different target atoms show that the proportion of non-ergodic events decreases with decreasing the energy deposited in the nanogoutte
4

Mise au point de la fluorescence induite par diode laser résolue en temps : application à l'étude du transport des atomes de tungstène pulvérisés en procédé magnétron continu ou pulsé haute puissance / Development of time resolved diode laser induced fluorescence : Application for study of W atoms transport in direct current and pulsed magnetron discharge

Désécures, Mikaël 20 November 2015 (has links)
La pulvérisation cathodique magnétron est un procédé plasma très répandu dans l'industrie pour le dépôt de couches minces. Néanmoins, les exigences des nouvelles applications nécessitent de mieux comprendre, contrôler et maîtriser les processus fondamentaux gouvernant le transport de la matière pour optimiser le procédé. Ce travail de thèse porte sur l'étude du transport des atomes pulvérisés de tungstène (W) en décharge magnétron continu (DC direct current) et pulsée haute puissance (HiPIMS_high power impulse magnétron sputtering). La fluorescence induite par diode laser (TD-LIF) a été mise au point afin de mesurer les fonctions de distribution en vitesse des atomes W pulvérisés. Les mesures ont été calibrées par absorption laser et validées en corrélant avec les vitesses de dépôt. En procédé DC, l'étude de l’influence des paramètres de la décharge (puissance, tension, mélange gazeux Ar/He, distance par rapport à la cible, etc.) a mis en évidence l'évolution spatiale des régimes de transport balistique (atomes énergétiques), diffusif (atomes thermalisés), et mixte (balistique+diffusif). Pour l'étude du procédé HiPIMS, le plasma pulsé a nécessité de développer la TD-LIF résolue en temps (TR-TDLIF). Le degré de liberté supplémentaire qu'offre la dimension temporelle du plasma HiPIMS a permis de mieux comprendre le transport mixte qui représente le cas le plus compliqué. En effet, cela a permis de mesurer la cinétique du transport des atomes pulvérisés en ayant la possibilité de séparer les temps caractéristiques des différents processus / Magnetron sputter deposition is an established and widely used method for the growth of thin films. Nevertheless, the high level of expectations regarding new applications require a better understanding, controlling, mastering of basic processes governing atoms transport in the view of process optimization. This work consist in the study of transport of sputtered W atoms in direct current and high power impulse magnetron discharges (DC and HiPIMS). A tunable diode laser induced fluorescence technique (TD-LIF) has been developed, in order to measure W sputtered atom velocity distribution function. Measurements were calibrated using laser absorption and were corroborated by deposition rate. In DC, the study of the influence of discharge parameters (power, voltage, Ar/He gas mixture, and distance from target, etc.) highlighted spatial evolution of different regimes of transport: ballistic (energetic atoms), diffusive (thermalized atoms), and mixed (ballistic + diffusive). In HiPIMS, pulsed plasma required to develop a time resolved TD-LIF technique (TR-TDLIF). The additional degree of freedom, given by time dimension allowed for a better understanding of mixed transport which represents the most complicated situation. This technique allowed to measure the kinetic of sputtered W atoms while at the same time providing the possibility to separate characteristic time scales of different processes

Page generated in 0.5691 seconds