• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 19
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 52
  • 52
  • 51
  • 17
  • 13
  • 10
  • 10
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Identification and Biophysical Characterization of Small Molecules Modulating Protein Disulfide Isomerase in Neurodegenerative Diseases

Kaplan, Anna January 2015 (has links)
Neurodegenerative disorders constitute a class of diseases that express characteristic misfolded proteins that aggregate and induce neuronal toxicity and death. Huntington’s disease is one such fatal protein misfolding disease. Currently no therapeutic avenue can delay or stop the progression of the disease. In this context, there is a need to identify therapeutic pathways and drug targets that can prevent or delay pathogenesis in neurodegenerative diseases involving protein misfolding. This dissertation describes how our search for new drug targets have led us to identify protein disulfide isomerase and three unique small molecules that modulate its activity as a means to protect neuronal cells from neurodegenerative protein misfolding diseases, such as Huntington’s disease. Protein disulfide isomerase is a thiol-oxidoreductase in the endoplasmic reticulum that has garnered increased attention because of its implicated role in numerous human diseases, including cancer, human immunodeficiency virus pathogenesis, and thrombosis. Validating protein disulfide isomerase as target for neurodegenerative disorders may open up new therapeutic strategies to understand and treat these diseases. First, I describe the identification and validation of protein disulfide isomerase as a target of the neuroprotective small molecule, 16F16. I show that 16F16 is an irreversible inhibitor of protein disulfide isomerase that binds covalently to both cysteines in the active site. This inhibition is protective in cell and brain-slice models of Huntington’s disease, as well as in the brain-slice model of Alzheimer’s disease. Next, I describe the neuroprotective small molecule IBS141 that was originally incorrectly annotated with a chemical structure. I elucidate the correct structure of the active compound using analytical chemistry, revealing it to be the natural product securinine. Furthermore, I identify the binding site of securinine to protein disulfide isomerase and show that the inhibition of the protein is protective in cell and brain-slice models of neurodegenerative diseases. In addition to finding this unexpected activity of securinine, I provide a systematic roadmap to those who encounter compounds with incorrect structural annotation in the course of screening campaigns. Last, I describe the discovery of LOC14, a nanomolar, reversible, modulator of protein disulfide isomerase that protects cells and medium spiny neurons from the toxic mutant huntingtin protein. I find that this protection results from LOC14 binding adjacent to the active site and inducing protein disulfide isomerase to adopt an oxidized conformation. LOC14, has dramatically improved potency for protein disulfide isomerase over previously identified inhibitors and displays favorable pharmaceutical properties, making it an idea compound to evaluate the therapeutic potential of modulating protein disulfide isomerase in in vivo models of neurodegenerative diseases.
12

The Anaplasma phagocytophilum adhesin Asp14 directs PDI-mediated disulfide reduction to promote infection

Green, Ryan S 01 January 2019 (has links)
Obligate intracellular pathogens must invade host cells to survive and pose a global health risk. As such, internalization is a critical life stage and represents an excellent therapeutic target. Oxidoreductase exploitation is a thematic invasion strategy among obligate intracellular pathogens. Delineating the mechanisms and proteins mediating this exploitation could identify novel therapeutic targets for many important pathogens. Anaplasma phagocytophilum infects neutrophils by an incompletely defined mechanism, resulting in the emerging potentially fatal disease, human granulocytic anaplasmosis. The bacterial adhesin, Asp14, contributes to invasion by virtue of its C-terminus engaging an unknown receptor. Yeast two-hybrid analysis identified protein disulfide isomerase (PDI) as a putative Asp14 binding partner. Co-immunoprecipitation confirmed this interaction and identified the Asp14 C-terminus as critical to it. PDI reductase activity inhibition impaired bacterial infection of, but not binding to, host cells. A. phagocytophilum failed to productively infect myeloid-specific PDI conditional knock-out mice. This is the first demonstration of microbial PDI exploitation in vivo. Infection of PDI inhibited cells was rescued when bacterial, but not host surfaces were reduced with the reducing agent tris(2-carboxyethyl)phosphine (TCEP). Furthermore, TCEP restored bacterial infectivity after Asp14 inhibition using an antibody that reduces infection. Mutational analyses identified Asp14 residues critical for binding PDI. These data demonstrate that Asp14 binds and brings PDI to disulfide bonds within A. phagocytophilum surface protein(s) that it reduces, enabling infection. Targeting the Asp14 C-terminus could benefit approaches to prevent/treat granulocytic anaplasmosis. A similar approach would identify proteins from other obligate intracellular pathogens that could prove to be protective targets.
13

Disulfide Bond Formation: Identifying Roles of PDI Family Thiol Oxidoreductases and ER Oxidant Pathways

Rutkevich, Lori Ann 19 December 2012 (has links)
Protein disulfide isomerases (PDIs) catalyze the oxidation and isomerization of disulfide bonds in proteins passing through the endoplasmic reticulum (ER). Although as many as 20 enzymes are classified as PDI family members, their relative contributions to protein folding have remained an open question. Additionally, Ero1 has been characterized as the ER oxidase that transfers oxidizing equivalents from oxygen to PDI enzymes. However, knockout mice lacking the mammalian Ero1 isoforms, Ero1Lα and Ero1Lβ, are viable, and the role of other potential ER oxidases in maintaining an oxidative ER environment is now an important issue. By systematic depletion of ER PDI family members and potential ER oxidases and assessment of disulfide bond formation of secreted endogenous substrates, I have outlined the functional relationships among some of these enzymes. PDI family member depletion revealed that PDI, although not essential for complete disulfide bond formation in client proteins, is the most significant catalyst of oxidative folding. In comparison, ERp57 acts preferentially on glycosylated substrates, ERp72 functions in a more supplementary capacity, and P5 has no detectable role in formation of disulfide bonds for the substrates assayed. Initially, no impact of depletion of Ero1 was observed under steady state conditions, suggesting that other oxidase systems are working in parallel to support normal disulfide bond formation. Subsequent experiments incorporating a reductive challenge revealed that Ero1 depletion produces the strongest delay in re-oxidation of the ER and oxidation of substrate. Depletion of two other potential ER oxidases, peroxiredoxin 4 (PRDX4) and Vitamin K epoxide reductase (VKOR), showed more modest effects. Upon co-depletion of Ero1 and other oxidases, additive effects were observed, culminating in cell death following combined removal of Ero1, PRDX4, and VKOR activities. These studies affirm the predominant roles of Ero1 in ER oxidation processes and, for the first time, establish VKOR as a significant contributor to disulfide bond formation.
14

Disulfide Bond Formation: Identifying Roles of PDI Family Thiol Oxidoreductases and ER Oxidant Pathways

Rutkevich, Lori Ann 19 December 2012 (has links)
Protein disulfide isomerases (PDIs) catalyze the oxidation and isomerization of disulfide bonds in proteins passing through the endoplasmic reticulum (ER). Although as many as 20 enzymes are classified as PDI family members, their relative contributions to protein folding have remained an open question. Additionally, Ero1 has been characterized as the ER oxidase that transfers oxidizing equivalents from oxygen to PDI enzymes. However, knockout mice lacking the mammalian Ero1 isoforms, Ero1Lα and Ero1Lβ, are viable, and the role of other potential ER oxidases in maintaining an oxidative ER environment is now an important issue. By systematic depletion of ER PDI family members and potential ER oxidases and assessment of disulfide bond formation of secreted endogenous substrates, I have outlined the functional relationships among some of these enzymes. PDI family member depletion revealed that PDI, although not essential for complete disulfide bond formation in client proteins, is the most significant catalyst of oxidative folding. In comparison, ERp57 acts preferentially on glycosylated substrates, ERp72 functions in a more supplementary capacity, and P5 has no detectable role in formation of disulfide bonds for the substrates assayed. Initially, no impact of depletion of Ero1 was observed under steady state conditions, suggesting that other oxidase systems are working in parallel to support normal disulfide bond formation. Subsequent experiments incorporating a reductive challenge revealed that Ero1 depletion produces the strongest delay in re-oxidation of the ER and oxidation of substrate. Depletion of two other potential ER oxidases, peroxiredoxin 4 (PRDX4) and Vitamin K epoxide reductase (VKOR), showed more modest effects. Upon co-depletion of Ero1 and other oxidases, additive effects were observed, culminating in cell death following combined removal of Ero1, PRDX4, and VKOR activities. These studies affirm the predominant roles of Ero1 in ER oxidation processes and, for the first time, establish VKOR as a significant contributor to disulfide bond formation.
15

Medidas das atividades da Dissulfeto Isomerase Proteica: uma análise crítica / Methods for measuring Protein Disulfide Isomerase activities: a critical overview

Monica Massako Watanabe 09 October 2014 (has links)
A Dissulfeto Isomerase Proteína (PDI) é uma chaperona redox essencial responsável pela inserção correta das ligações dissulfeto em proteínas nascentes no retículo endoplasmático. Nesta localização celular, bem como em outras regiões, como na superfície celular, a PDI atua na manutenção da homeostase redox e sinalização. Houve substanciosa evolução no conhecimento sobre a estrutura e funções da PDI, graças a estudos in vitro que utilizam a PDI purificada, quimeras ou seus domínios isolados. Nestas abordagens experimentais, as medidas das atividades redutase e chaperona da PDI são realizadas de forma relativamente simples. Entretanto, medir a atividade isomerase, que é a atividade autêntica da família das PDIs, é tecnicamente bastante complexo. Em células e tecidos, o papel da PDI tem sido descrito com base principalmente em estratégias experimentais de ganho e perda de função. Todavia, ainda há pouca informação na correlação entre os resultados funcionais com a medida das atividades da PDI. Este trabalho compila os principais métodos descritos para medir as quatro atividades da PDI: tiol redutase, tiol oxidase, tiol isomerase e chaperona, com ênfase na descrição de controles e interferentes críticos, como os tampões que contém surfactantes. Ainda, discutir-se-á criticamente os resultados obtidos quando da transposição destes métodos para amostras de homogenatos (celular ou tecidual) / Protein disulfide isomerase is an essential redox chaperone from endoplasmic reticulum, responsible for correct disulfide bond insertion in nascent proteins. At the endoplasmic reticulum and other locations including the cell surface, PDI accounts for redox homeostasis and signaling. Knowledge about PDI structure and function evolved substantially from in vitro studies using purified PDI and chimeras. In these experimental scenarios, PDI reductase and chaperone are readily approachable. However, isomerase activity, the hallmark of PDI family, is significantly complex. Assessment of PDI roles in cells and tissues mainly relies on gain- or loss-of-function experiments. However, there is limited information regarding correlation of these results with PDI activities. In this manuscript, we put together the main methods described for measuring the four PDI activities: thiol reductase, thiol oxidase, thiol isomerase and chaperone, with emphasis on controls and critical interferents, such as detergent-containing buffers. We also discuss the transposition of these methods from purified PDI to cellular or in vivo samples, with critical thoughts about the interpretation of results
16

Molecular Mechanism of Oxidative Protein Folding by Soybean Protein Thiol Disulfide Oxidoreductases/ERO1 Pathway / ダイズにおけるプロテインチオールジスルフィド酸化還元酵素とERO1によるタンパク質の酸化的フォールディングの分子機構

Matsusaki, Motonori 23 September 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第20008号 / 農博第2192号 / 新制||農||1045(附属図書館) / 学位論文||H28||N5017(農学部図書室) / 33104 / 京都大学大学院農学研究科農学専攻 / (主査)教授 裏出 令子, 教授 松村 康生, 教授 三上 文三 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
17

Novel Soybean Enzymes Involved in the Oxidative Protein Folding in the Endoplasmic Reticulum / ダイズ小胞体におけるタンパク質の酸化的フォールディングに関わる新規酵素

Okuda, Aya 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第20431号 / 農博第2216号 / 新制||農||1048(附属図書館) / 学位論文||H29||N5052(農学部図書室) / 京都大学大学院農学研究科農学専攻 / (主査)教授 裏出 令子, 教授 松村 康生, 教授 三上 文三 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
18

Inhibitors of Amyloid Beta Oligomerization and Toxicity

Zabala Rodriguez, Maria C 01 January 2024 (has links) (PDF)
Neurotoxic aggregates of amyloid beta (Aβ) peptide contribute to the etiology of Alzheimer's disease (AD). Aβ1-42 forms oligomeric structures that undergo further aggregation into protofibrils and fibrils. Oligomeric Aβ1-42 is more toxic than monomers or mature fibrils. In this work, we used two distinct approaches to inhibit Aβ1-42 oligomerization and toxicity. First, seven distinct but overlapping Aβ fragments were used to identify their individual aggregation propensities and their effects on Aβ1-42 oligomerization and cytotoxicity. Studies on suppression of Aβ1-42 cytotoxicity by peptides, including those derived from Aβ1-42, have been conducted before, but peptides encompassing the whole Aβ1-42 sequence have not been systematically analyzed. Aβ1-42 was allowed to aggregate and form oligomeric assemblies in aqueous buffer for 4 h in the absence or presence of 2-fold molar excess of an Aβ fragment. Cytotoxicity analysis then recorded the impact of each fragment on Aβ1-42 cytotoxicity as well as the toxicity of the fragments themselves. An enzyme-linked immunosorbent assay that detects oligomeric Aβwas used to determine the effect of each fragment on Aβ1-42 oligomerization after 4 h of aggregation. Four fragments of Aβ1-42 inhibited the toxicity of oligomeric Aβ1-42 to various degrees, while two others conferred no cellular protection against Aβ1-42 toxicity. Interestingly, one fragment enhanced Aβ1-42 toxicity after 4 h of aggregation. Three of the four fragments that blocked Aβ1-42 toxicity partially disrupted oligomer formation, showing correlation between the inhibition of Aβ1-42 aggregation and the inhibition of cellular toxicity. Second, we examined whether protein disulfide isomerase (PDI), a chaperone mainly found in the endoplasmic reticulum, could reverse the oligomeric state of aggregated Aβ1-42 and thus its toxicity. Previous work has demonstrated that PDI inhibits Aβ1-42 aggregation at sub-stoichiometric concentrations. To assess PDI's effect on Aβ1-42 toxicity, Aβ1-42 was allowed to aggregate for 2 h before the addition of PDI at a 1:10 molar ratio of PDI to Aβ1-42 and then allowed to aggregate for another 2 h. MTS cytotoxicity assays using PC-12 cells showed that adding PDI 2 h after the start of aggregation improves cell survival. Through a differential centrifugation assay followed by Western blot, we qualitatively illustrated that PDI can reverse a 2 h aggregate of Aβ1-42 to the monomeric state. Overall, in this project we have learned that inhibiting the oligomeric assembly of Aβ1-42 directly decreases the effect of Aβ1-42 toxicity. Inhibition of Aβ1-42 toxicity was seen with both fragments derived from Aβ1-42 and PDI, shedding light into two novel approaches as possible therapeutics for AD.
19

Oxidação da proteína dissulfeto isomerase pelo hidroperóxido de urato e as implicações sobre o endotélio vascular / Oxidation of protein disulfide isomerase by urate hydroperoxide and implications in vascular endothelium

Mineiro, Marcela Franco 29 April 2019 (has links)
Em condições inflamatórias do sistema vascular, altas concentrações de mieloperoxidase somada à presença do ácido úrico, sugerem a formação local do oxidante hidroperóxido de urato. A ação desse peróxido já foi demonstrada sobre glutationa e peroxirredoxinas, tornando plausível a possibilidade de que outras proteínas tiólicas também pudessem ser alvo de oxidação. A proteína dissulfeto isomerase é uma ditiol-dissulfeto oxidoredutase e chaperona, localizada principalmente no retículo endoplasmático, onde participa do enovelamento de proteínas nascentes. Além disso, um pool dessas enzimas foi identificado na superfície da célula e no meio extracelular (secretada) e parece ser especialmente importante em eventos vasculares como ativação e agregação de plaquetas, trombose e remodelamento vascular. Primeiramente, foi investigado se o hidroperóxido de urato era capaz de oxidar a PDI. Pelo ensaio do DTNB foi verificado que os tióis livres da proteína eram consumidos após reação com o peróxido e, em seguida, por nLC-MS/MS os resíduos de cisteínas dos sítios catalíticos foram identificados como os principais alvos de oxidação. Embora não tenham sido verificadas outras modificações além de dissulfetos, foi observado que o tratamento com hidroperóxido promoveu agregação e inativação da proteína. Os estudos subsequentes envolveram uma linhagem de células endoteliais (HUVECs). Análises preliminares de citotoxicidade (detecção da atividade da enzima lactato desidrogenase no sobrenadante e incorporação de sondas fluorescentes ao DNA) mostraram que tratamentos com concentrações de até 400 µM de hidroperóxido de urato não são letais às células em cultura. Usando alquilantes impermeáveis à membrana celular foi mostrado que o hidroperóxido de urato oxida não só a proteína dissulfeto isomerase, mas também proteínas tiólicas totais expressas na superfície das HUVECs. Experimentos de wound healing foram feitos para avaliação da capacidade de migração das células mediante o tratamento com hidroperóxido de urato, mas nenhuma diferença foi observada. Contudo, a incubação das células com os agentes oxidantes hidroperóxido de urato e diamida, inibidores de PDI e integrina e um alquilante de tiol, resultaram, pelo menos nos trinta primeiros minutos, em menor capacidade de adesão das células à fibronectina. Além disso, as células tratadas com hidroperóxido de urato se tornaram mais sensíveis ao destacamento da placa de cultura e apresentaram alteração na morfologia. O tratamento com o peróxido também afetou a homeostase redox das HUVECs, observado pela diminuição da razão GSH/GSSG. Finalmente foram apresentadas evidênciasindiretas de que o ácido úrico é substrato da peroxidasina, uma heme peroxidase abundantemente expressa no sistema vascular. Primeiro, pelo ensaio do Amplex Red foi observado que a presença de ácido úrico na mistura reacional resultou em menor taxa de oxidação do reagente. Depois, por LC-MS/MS, também em amostra na qual o ácido úrico estava presente, foi identificado o hidroxiisourato, álcool resultante da decomposição do hidroperóxido de urato. Todo o conjunto de dados deverá contribuir para o maior entendimento da participação do hidroperóxido de urato em processos oxidativos vasculares − especialmente a oxidação de proteínas − que pode ser um dos mecanismos responsáveis pela alteração da função endotelial e da homeostase vascular. / During vascular inflammatory conditions, high amounts of myeloperoxidase added to the presence of uric acid, suggest the local formation of urate hydroperoxide. Its oxidative action has already been demonstrated on glutathione and peroxiredoxins, making plausible the possibility that other thiol proteins could also be a target for oxidation. The protein disulfide isomerase is a dithiol-disulfide oxidoreductase and chaperone, located mainly in the endoplasmic reticulum, where it is involved in the correct folding of nascent proteins. Also, a pool of these enzymes has been identified in cell surface and the extracellular (secreted) milieu and appears to be important in vascular events, such as platelet activation and aggregation, thrombosis and vascular remodeling. First, it was investigated whether urate hydroperoxide was capable of oxidizing PDI. By the DTNB assay, it was found that the free thiols of the protein were consumed after reaction with the peroxide and then, by nLC-MS / MS, the active redox cysteine residues were identified as the main oxidation targets. Although no modifications other than disulfides have been found, hydroperoxide treatment has been shown to promote protein aggregation and inactivation. Subsequent studies involved an endothelial cell line (HUVECs). Preliminary cytotoxicity analyzes (detection of lactate dehydrogenase enzyme activity in the supernatant and incorporation of fluorescent probes into DNA) have shown that treatments with concentrations up to 400 µM are not lethal to cells in culture. Then, using alkylating agents impermeable to the cell membrane, urate hydroperoxide was shown to oxidize not only PDI but also total thiol proteins expressed on HUVECs surface. Wound healing experiments were performed to evaluate cell migration after treatment with urate hydroperoxide, but no difference was observed. However, incubation of the cells with the oxidizing agents urate hydroperoxide and diamide, inhibitors of both PDI and integrin and a thiol alkylator, resulted, at least for the first thirty minutes, in reduced cell adhesion to fibronectin. In addition, cells treated with urate hydroperoxide became more sensitive to detachment from the culture dish and exhibited alterations in morphology. Treatment with the peroxide also affected the redox homeostasis of the HUVECs, observed by a decrease in the GSH / GSSG ratio. Finally, indirect evidence was presented that uric acid is a substrate of peroxidasin, a heme peroxidase abundantly expressed in the vascular system. First, with the Amplex Red assay it was observed that the presence of uric acid in the reaction mixture resulted in lower oxidation rates of the reagent. Then, by LC-MS / MS, hydroxyisourate, which is the alcohol derived from urate hydroperoxide decomposition, was also identified in samples containing uric acid. Taken together, the data presented should contribute to a better understanding of the involvement of urate hydroperoxide in vascular oxidative processes − especially protein oxidation − that may be one mechanism associated to disturbances in endothelial function and vascular homeostasis.
20

Inibição do proteasoma aumenta o estresse oxidativo e bloqueia a resposta da NADPH oxidase a estímulos em células musculares lisas vasculares / Proteasome Inhibiton increases oxidative stress and disrupts NADPH oxidase response to stimuli in vascular smooth muscle cells

Amanso, Angelica Mastandréa 24 June 2009 (has links)
Processos celulares que governam as NADPH oxidases vasculares em condições patológicas não estão claros ainda. Como os processos redox são parte intrínseca da resposta da célula ao estresse, temos investigado se o estresse oxidativo pode convergir com outros tipos de estresse via Nox(es). No presente estudo, focamos na inibição do proteasoma como uma condição relevante de estresse. A incubação de células musculares lisas com concentrações não apoptóticas de inibidores do proteasoma, MG132 e lactacistina, promoveu aumento na produção basal de superóxido e na atividade da NADPH oxidase, diminuição da atividade da SOD e da razão GSH/GSSG. Por outro lado, a inibição do proteasoma diminui a atividade da Nox após estímulo com Angiotensina II ou Tunicamicina, conhecido estressor do retículo endoplasmático. Em condições basais, MG132 induz a expressão de mRNA da Nox1, entretanto o aumento de Nox1 induzido por Angiotensina II foi diminuído na presença de MG132. O mesmo efeito ocorre com a indução de Nox4 pela Tunicamicina, que nesse caso foi drasticamente reduzida na presença de MG132. Além disso, tanto Angiotensina II quanto Tunicamicina induziram a atividade lítica do proteasoma 20S. A seguir, investigamos as conseqüências fisiológicas do MG132 na sinalização do estresse do RE, uma conhecida resposta mediada por Nox4. Células vasculares incubadas com MG132 induzem a expressão de marcadores do estresse do RE, GRP78 e XBP1, e também os marcadores mais tardios ATF4 e o próapoptótico CHOP/GADD153. Resultados similares ocorrem também com a Tunicamicina. Entretanto, a co-incubação de Tunicamicina e MG132 diminui e a sinalização do estresse do RE. AKT e p38 MAPK foram ativados por MG132, possivelmente como resposta ao estresse induzido pela inibição do proteasoma. Assim, a inibição do proteasoma bloqueia a NADPH oxidase, com aumento da atividade basal e expressão da Nox1 versus forte inibição da ativação e expressão da Nox4 frente ao estímulo. A inibição da Nox4 associa-se e pode contribuir para a inibição pelo MG132 da sinalização do estresse do RE. Portanto, o proteasoma parece exercer papel na integração de estresses celulares envolvendo a NADPH oxidase. A inibição do proteasoma pode ter papel na terapia de doenças associadas a estresse do RE. / Cellular processes governing vascular Nox family NADPH oxidases in disease conditions are unclear. Since redox processes are intrinsic to cell stress response, we asked whether oxidative stress merges with other types of stress via Nox(es). We focused on proteasome inhibition as a relevant stress condition. Vascular smooth muscle cells (VSMC) incubation with non-apoptotic concentrations of proteasome inhibitors MG132 or lactacystin promoted increased baseline superoxide generation (HPLC/DHE products) and NADPH oxidase activity, decreased SOD activity and GSH/GSSG ratio. Conversely, proteasome inhibitors decreased by Nox response to Angiotensin II (AngII) and abrogated Nox response to endoplasmic reticulum (ER) stressor tunicamycin. With MG132, basal Nox1 mRNA levels were increased, while Nox1 response to AngII was blunted. Moreover, MG132 abolished Nox4 mRNA levels TN-induced. Both AngII and TN (at 2 and 4 hs) promoted increased 20S proteasome lytic activity. We next assessed physiological consequences of MG132 in ER stress signaling, a known Nox4- mediated response. VSMC incubation with MG132 alone enhanced expression of the ER stress markers Grp78 and XBP1 and late markers such as ATF4 and proapoptotic CHOP/GADD153. Similar results occurred with the known ER stressor TN. However, co-incubation of TN and MG132 decreased Grp78, Grp94 and CHOP/GADD153, indicating that proteasome inhibition interrupts ER stress. AKT and p38 are activated by MG132 as response to stress and recover to survival. Thus, proteasome inhibition disrupts NADPH oxidase, with increased baseline activity and Nox1 expression vs. strong inhibition of stimulated Nox1 and Nox4 activation/expression. The later effect may underlie MG132-mediated inhibition of ER stress signaling. (Support: FAPESP, CNPq Milênio Redoxoma)

Page generated in 0.0394 seconds