• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Localisation et fonction de CHK2 en mitose

Chouinard, Guillaume 10 1900 (has links)
Les centrosomes dont le rôle principal est d’organiser le cytosquelette de microtubules et le fuseau mitotique servent aussi de sites d’interaction pour plusieurs protéines régulatrices du cycle cellulaire et de la réponse aux dommages à l’ADN. Une de ces protéines est la kinase CHK2 et plusieurs publications montrent une sous-population de CHK2 localisée aux centrosomes dans les cellules en interphase et en mitose. Toutefois, la localisation de CHK2 aux centrosomes demeure controversée, car des doutes subsistent en ce qui concerne la spécificité des anticorps utilisés en immunocytochimie. En utilisant des lignées cellulaires du cancer du côlon, les cellules HCT116 sauvages et HCT116 CHK2-/- ainsi que différentes lignées d’ostéosarcome humain dans lesquelles l’expression de CHK2 a été inhibée par ARN interférence, nous montrons que les anticorps anti-CHK2 qui donnent un signal centrosomal sont non spécifiques et reconnaissent un antigène inconnu sur les centrosomes. Cependant, par des expériences d’immunofluorescence réalisées avec des cellules U2OS qui expriment les protéines de fusion GFP-CHK2 ou FLAG-CHK2, nous révélons une localisation centrosomale de CHK2 dans les cellules en mitose, mais pas en interphase. Ce résultat a été confirmé par vidéomicroscopie dans les cellules vivantes exprimant GFP-CHK2. Pour déterminer le ou les rôles potentiels de CHK2 en mitose nous avons réalisé des expériences pour explorer le rôle de CHK2 dans la progression de la mitose, la nucléation des microtubules aux centrosomes et la progression de la mitose en présence de problèmes d’attachement des chromosomes où de lésions génotoxiques. Nos données suggèrent que CHK2 n’est pas impliquée dans la régulation de la mitose dans les cellules U2OS. / Centrosomes function primarily as microtubule-organizing centres and play a crucial role during mitosis by organizing the bipolar spindle. In addition to this function, centrosomes act as reaction centers where numerous key regulators meet to control cell cycle progression. One of these factors involved in genome stability, the checkpoint kinase CHK2, was shown to localize at centrosomes throughout the cell cycle. Here, we clarify that CHK2 only localized at centrosomes during mitosis. Using wild-type and CHK2-/- HCT116 human colon cancer cells, or human osteosarcoma U2OS cells depleted for CHK2 with small hairpin RNAs, we show that several CHK2 antibodies are non-specific for immunofluorescence and cross-react with an unknown centrosomal protein(s). To analyse further CHK2 localization, we established cells expressing inducible GFP-CHK2 and Flag-CHK2 fusion proteins. We show that CHK2 localizes to the nucleus in interphase cells but that a fraction of CHK2 associates with centrosomes in mitotic cells, from early mitotic stages until cytokinesis. In contrast to previous data obtained by A. Stolz and colleagues with the human colon carcinoma HCT116 cell line, our experiments exploring the possible functions for CHK2 during mitosis did not support a role for CHK2 in the bipolar spindle formation and the timely progression of mitosis in human osteosarcoma U2OS cells.
2

Localisation et fonction de CHK2 en mitose

Chouinard, Guillaume 10 1900 (has links)
Les centrosomes dont le rôle principal est d’organiser le cytosquelette de microtubules et le fuseau mitotique servent aussi de sites d’interaction pour plusieurs protéines régulatrices du cycle cellulaire et de la réponse aux dommages à l’ADN. Une de ces protéines est la kinase CHK2 et plusieurs publications montrent une sous-population de CHK2 localisée aux centrosomes dans les cellules en interphase et en mitose. Toutefois, la localisation de CHK2 aux centrosomes demeure controversée, car des doutes subsistent en ce qui concerne la spécificité des anticorps utilisés en immunocytochimie. En utilisant des lignées cellulaires du cancer du côlon, les cellules HCT116 sauvages et HCT116 CHK2-/- ainsi que différentes lignées d’ostéosarcome humain dans lesquelles l’expression de CHK2 a été inhibée par ARN interférence, nous montrons que les anticorps anti-CHK2 qui donnent un signal centrosomal sont non spécifiques et reconnaissent un antigène inconnu sur les centrosomes. Cependant, par des expériences d’immunofluorescence réalisées avec des cellules U2OS qui expriment les protéines de fusion GFP-CHK2 ou FLAG-CHK2, nous révélons une localisation centrosomale de CHK2 dans les cellules en mitose, mais pas en interphase. Ce résultat a été confirmé par vidéomicroscopie dans les cellules vivantes exprimant GFP-CHK2. Pour déterminer le ou les rôles potentiels de CHK2 en mitose nous avons réalisé des expériences pour explorer le rôle de CHK2 dans la progression de la mitose, la nucléation des microtubules aux centrosomes et la progression de la mitose en présence de problèmes d’attachement des chromosomes où de lésions génotoxiques. Nos données suggèrent que CHK2 n’est pas impliquée dans la régulation de la mitose dans les cellules U2OS. / Centrosomes function primarily as microtubule-organizing centres and play a crucial role during mitosis by organizing the bipolar spindle. In addition to this function, centrosomes act as reaction centers where numerous key regulators meet to control cell cycle progression. One of these factors involved in genome stability, the checkpoint kinase CHK2, was shown to localize at centrosomes throughout the cell cycle. Here, we clarify that CHK2 only localized at centrosomes during mitosis. Using wild-type and CHK2-/- HCT116 human colon cancer cells, or human osteosarcoma U2OS cells depleted for CHK2 with small hairpin RNAs, we show that several CHK2 antibodies are non-specific for immunofluorescence and cross-react with an unknown centrosomal protein(s). To analyse further CHK2 localization, we established cells expressing inducible GFP-CHK2 and Flag-CHK2 fusion proteins. We show that CHK2 localizes to the nucleus in interphase cells but that a fraction of CHK2 associates with centrosomes in mitotic cells, from early mitotic stages until cytokinesis. In contrast to previous data obtained by A. Stolz and colleagues with the human colon carcinoma HCT116 cell line, our experiments exploring the possible functions for CHK2 during mitosis did not support a role for CHK2 in the bipolar spindle formation and the timely progression of mitosis in human osteosarcoma U2OS cells.
3

Génotoxicité et impact de nanoparticules de dioxyde de titane sur la réparation de l’ADN dans des cellules alvéolaires pulmonaires / Genotoxicity and impact of titanium dioxide nanoparticles on DNA repair in alveolar pulmonary cells

Biola-Clier, Mathilde 17 February 2016 (has links)
Le dioxyde de titane (TiO2) compte parmi les nanoparticules (NP) les plus produites dans le monde. Ce constat soulève la question de sa toxicité, en particulier par inhalation, voie d'exposition la plus probable en milieu professionnel. Il a été montré précédemment in vitro que ces NP induisent des dommages à l'ADN et réduisent l'activité de réparation de l'ADN. L'objectif est ici d'étudier les mécanismes de toxicité sous-jacents à l'aide de cellules épithéliales alvéolaires humaines A549 exposées à 1-100 µg/mL de NP de TiO2 pendant 4-48 h. L'expression de 40 gènes et de 6 protéines de réparation de l'ADN a été étudiée par RT-qPCR et western-blot. L'impact des NP de TiO2 sur des régulateurs amont comme la méthylation des promoteurs de certains de ces gènes, l'activité du protéasome et la signalisation cellulaire par phosphorylation a également été investigué. De plus les profils de cyto-/géno-toxicité et d'expression des gènes de réparation de l'ADN ont été comparés avec ceux des cellules épithéliales bronchiques BEAS-2B. Les résultats montrent une répression globale des gènes et des protéines dans l'ensemble des voies de réparation de l'ADN. Cette répression pourrait être due en partie à la répression de régulateurs transcriptionnels et à l'augmentation de la méthylation de certains promoteurs et de l'activité caspase du protéasome. Les NP de TiO2 engendrent par ailleurs une perturbation du phosphoprotéome. Invisible à l'échelle du phosphoprotéome entier, celle-ci impacte de nombreuses protéines impliquées dans divers processus cellulaires, reflétant les effets toxiques connus de ces NP. On note en particulier un impact sur le cycle cellulaire, mais pas sur la prolifération, ainsi que la dérégulation du niveau de phosphorylation de quelques protéines liées à la réparation de l'ADN. Enfin on relève des profils de cyto-/géno-toxicité et d'expression des gènes de réparation de l'ADN similaires dans les cellules A549 et BEAS-2B, ce qui renforce la pertinence de ces modèles dans le cadre de l'étude de la génotoxicité des nanomatériaux. Dans l'ensemble, ces données apportent de nouvelles pistes d'explication des mécanismes de toxicité des NP de TiO2, qui pourraient notamment expliquer la chute précédemment observée des capacités cellulaires de réparation de l'ADN. / Titanium dioxide (TiO2) belongs to the top nanoparticles (NPs) most produced worldwide. This raises the question of their impact on human health, especially through inhalation, which is the main exposure route in occupational settings. It was previously shown in vitro that these NPs induce DNA damage and impair DNA repair activity. The aim here is to study the underlying toxicity mechanisms, in human A549 epithelial alveolar cells exposed to 1-100 µg/ml TiO2 NPs during 4-48 h. The expression of 40 genes and 6 proteins involved in DNA repair was investigated by RT-qPCR and western-blotting. The impact of TiO2 NPs on upstream regulators such as the methylation rate of some corresponding gene promoters, proteasome activity and cellular signaling through phosphorylation was assayed as well. Moreover cyto-/geno-toxicity and DNA repair gene expression patterns were compared with those of BEAS-2B bronchial epithelial cells. Results show a global down-regulation of genes and proteins in all DNA repair pathways. This could be partly explained by the down-regulation of transcriptional regulators and increased gene promoter methylation and caspase-like proteasome activity. TiO2 NPs also scramble the phosphoproteome. While invisible on a global scale, this dysregulation affects numerous proteins involved in diverse cellular processes, which reflect the toxicity pathways reported for these NPs. Although cell proliferation is unaffected, a significant impact is observed on cell cycle, as well as on a few proteins involved in DNA repair. Finally cyto-/geno-toxicity and DNA repair gene expression profiles are similar in both A549 and BEAS-2B cells, thereby strengthening the relevance of using any of these cell lines in nanomaterial genotoxicity studies. On the whole these data bring novel insights into TiO2-NP toxicity mechanisms, which could especially explain the previously observed impairment of DNA repair activity.
4

Effets radiobiologiques des irradiations mammographiques sur l'épithélium mammaire : cassures double-brin de l'ADN, interactions avec les prédispositions génétiques au cancer du sein et impacts sur les modalités de dépistages / Radiobiological effects induced by mammographic irradiations in human mammary epithelial cells : DNA double-strand breaks, interactions with genetic predisposition to breast cancer and impact on screening procedures

Colin, Catherine 15 April 2011 (has links)
Le risque potentiel de cancer induit par les irradiations mammographiques est sujet de santé publique majeur, d’intérêt médical et scientifique. Le but de ce travail a été de quantifier les cassures double-brin (CDB) de l’ADN en conditions exactes d’irradiations mammographiques. Cette quantification a été effectuée sur des cellules épithéliales mammaires non transformées issues de biopsies échoguidées en tissu sain en utilisant l’immunofluorescence de la protéine histone H2AX phosphorylée (γH2AX), avant, 10 min et 24 h après irradiation . Deux populations de patientes ont été incluses dans l’étude 19 sans antécédent familial de cancer du sein et/ou de l’ovaire (faible risque, FR) et 11 à haut risque identifié par le généticien avec ou sans mutation (haut risque, HR). En effet, les gènes mutés suppresseurs de tumeurs (BRCA1, BRCA2, CHK2, ATM, p53, PTEN) sont également impliqués dans la signalisation et/ou réparation des CDB. Spontanément, les patientes HR ont montré significativement plus de CDB spontanées que les LR. Trois effets radiobiologiques majeurs ont été mis en évidence : 1) Un effet de la dose, plus important chez les HR ; 2) Une augmentation significative du nombre de foci γH2AX entre 10 min et 24 h après irradiation ; 3) Un effet de répétition de dose, plus marqué chez les HR. Ces constatations devraient conduire à la ré-évaluation des séquences de dépistages mammographiques dans les populations où le bénéfice en terme de mortalité n’a pas été prouvé, comme dans la tranche d’âge des 40-49 ans et dans la surveillance des patientes où sont recommandées de façon annuelle IRM et mammographie dès l’âge de 30 ans ou 35 ans, les hauts risques et les femmes aux antécédents d’irradiation thoracique dans l’enfance, l’adolescence ou jeune adulte. Une seule incidence mammographique en dépistage pourrait être préconisée en dépistage dans l’attente de travaux radiobiologiques complémentaires évaluant la carcinogenèse éventuelle des irradiations mammographiques / The potential risk of cancer induced by radiation mammography is a major public health issue, medical and scientific interest. The purpose of this study was to quantify the double-strand break (DSB) DNA in exact terms of mammographic radiation. This quantification was performed on untransformed mammary epithelial cells from ultrasound-guided biopsies in healthy tissue using fluorescent protein phosphorylated histone H2AX (γH2AX) before, 10 min and 24 h after irradiation. Two patient populations were included in the study : 19 with no family history of breast cancer and/or ovarian cancer (low risk, LR) and 11 high-risk identified by the geneticist with or without mutation (high risk, HR). Indeed, mutated tumor suppressor genes (BRCA1, BRCA2, CHK2, ATM, p53, PTEN) are also involved in signaling and/or repair of DSBs. Spontaneously, patients showed significantly higher HR of DSBs that spontaneous LR. Three major radiobiological effects were highlighted : 1) A dose low effect, higher in HR; 2) A significant increase in the number of γH2AX foci from 10 min to 24 h after irradiation; 3) An effect of repeated doses more pronounced in HR. These findings should lead to re-evaluate mammographics procedures in screnning in populations where the benefit in term of mortality has not been proved, as women with high familial risk, in the age of group of 40-49 years, and in women treated with chest radiation for childhood, adolescent, or young adult cancer. A single mammographic view could be indicated. Further works assessing the possible carcinogenesis effects of mammographic irradiations will be necessary
5

Deciphering the biological effects of ionizing radiations using charged particle microbeam : from molecular mechanisms to perspectives in emerging cancer therapies / Etude des effets biologiques radio-induits et micro-irradiation par particules chargées : Des mécanismes moléculaires aux thérapies émergeantes anti-cancéreuses

Muggiolu, Giovanna 18 May 2017 (has links)
Ces dernières années, le paradigme de la radiobiologie selon lequel les effets biologiques des rayonnements ionisants ne concernent strictement que les dommages à l'ADN et les conséquences liées à leur non réparation ou à leur réparation défectueuse, a été remis en question. Ainsi, plusieurs études suggèrent que des mécanismes «non centrés » sur l'ADN ont une importance significative dans les réponses radio-induites. Ces effets doivent donc être identifiés et caractérisés afin d’évaluer leurs contributions respectives dans des phénomènes tels que la radiorésistance, les risques associés au développement de cancers radio-induits, les conséquences des expositions aux faibles doses. Pour ce faire, il est nécessaire : (i) d'analyser la contribution de ces différentes voies de signalisation et réparation induites en fonction de la dose et de la zone d’irradiation; (ii) d’’étudier les réponses radio-induites suite à l’irradiation exclusive de compartiments subcellulaires spécifiques (exclure les dommages spécifiques à l'ADN nucléaire); (iii) d’améliorer la connaissance des mécanismes moléculaires impliqués dans les phénomènes de radiosensibilité/radiorésistance dans la perspective d’optimiser les protocoles de radiothérapie et d’évaluer in vitro de nouvelles thérapies associant par exemple les effets des rayonnements ionisants et de nanoparticules d’oxydes métalliques. Les microfaisceaux de particules chargées offrent des caractéristiques uniques pour répondre à ces questions en permettant (i) des irradiations sélectives et en dose contrôlée de populations cellulaires et donc l’étude in vitro des effets « ciblés » et « non ciblés » à l'échelle cellulaire et subcellulaire, (ii) de caractériser l’homéostasie de cultures cellulaires en réponses à des expositions aux rayonnements ionisants et/ou aux nanoparticules d’oxydes métalliques (micro-analyse chimique multi-élémentaire). Ainsi, au cours de ma thèse, j'ai validé et exploité des méthodes d’évaluation qualitatives et quantitatives (i) in cellulo et en temps réel de la réponse radio-induite de compartiments biologiques spécifiques (ADN, mitochondrie, …) ; (ii) in vitro de la radiosensibilité de lignées sarcomateuses issues de patients; et (iii) in vitro des effets induits par des expositions à des nanoparticules d'oxydes métalliques afin d’évaluer leur potentiel thérapeutique et anti-cancéreux. / Few years ago, the paradigm of radiation biology was that the biological effects of ionizing radiations occurred only if cell nuclei were hit, and that cell death/dysfunction was strictly due to unrepaired/misrepaired DNA. Now, next this “DNA-centric” view several results have shown the importance of “non-DNA centered” effects. Both non-targeted effects and DNA-targeted effects induced by ionizing radiations need to be clarified for the evaluation of the associated radiation resistance phenomena and cancer risks. A complete overview on radiation induced effects requires the study of several points: (i) analyzing the contribution of different signaling and repair pathways activated in response to radiation-induced injuries; (ii) elucidating non-targeted effects to explain cellular mechanisms induced in cellular compartments different from DNA; and (iii) improving the knowledge of sensitivity/resistance molecular mechanisms to adapt, improve and optimize the radiation treatment protocols combining ionizing radiations and nanoparticles. Charged particle microbeams provide unique features to answer these challenge questions by (i) studying in vitro both targeted and non-targeted radiation responses at the cellular scale, (ii) performing dose-controlled irradiations on a cellular populations and (iii) quantifying the chemical element distribution in single cells after exposure to ionizing radiations or nanoparticles. By using this tool, I had the opportunity to (i) use an original micro-irradiation setup based on charged particles microbeam (AIFIRA) with which the delivered particles are controlled in time, amount and space to validate in vitro methodological approaches for assessing the radiation sensitivity of different biological compartments (DNA and cytoplasm); (ii) assess the radiation sensitivity of a collection of cancerous cell lines derived from patients in the context of radiation therapy; (iii) study metal oxide nanoparticles effects in cells in order to understand the potential of nanoparticles in emerging cancer therapeutic approaches.
6

Micro-irradiation ciblée par faisceau d'ions pour la radiobiologie in vitro et in vivo / In vitro and in vivo ion beam targeted micro-irradiation for radiobiology

Vianna, François 26 March 2014 (has links)
Les microfaisceaux d’ions ont, au cours de ces dernières décennies, montré leur efficacité dansl’étude des effets des rayonnements ionisants sur le vivant notamment concernant les effets des faiblesdoses ou l’étude de l’effet de proximité. Le CENBG dispose depuis 2003 d’un dispositif permettant la micro-irradiation ciblée d’échantillons biologiques vivants. Les applications des microfaisceaux dans ce domainese sont récemment diversifiées et des études plus fines sur les mécanismes de réparation desdommages ADN radio-induits aux échelles cellulaire et multicellulaire sont devenues possibles via lesévolutions en imagerie par fluorescence et en biologie cellulaire. Ces approches ont nécessité une évolutionimportante de l'instrumentation de la ligne de micro-irradiation du CENBG qui a été entièrementredessinée et reconstruite dans un souci d’optimisation d’apport de nouvelles fonctionnalités. Les objectifsde mes travaux ont été i) la mise en service du dispositif, ii) la caractérisation des performances dusystème, iii) la mise en place de protocoles pour l’irradiation ciblée à dose contrôlée aux échelles cellulaireet multicellulaire, in vitro et in vivo, et le suivi en ligne des conséquences précoces de cette irradiation,iv) la modélisation des irradiations afin d’interpréter les observables biologiques au regard des donnéesphysiques calculées.Ces travaux ont permis i) de caractériser les performances du dispositif : une taille de faisceau d’environ2 μm sur cible et une précision de tir de ± 2 μm, de développer des systèmes de détection d’ions pour uncontrôle absolu de la dose délivrée, ii) d’induire des dommages ADN fortement localisés in vitro, et devisualiser en ligne le recrutement de protéines impliquées dans la réparation de ces dommages,iii) d’appliquer ces protocoles pour générer des dommages ADN in vivo au sein d’un organisme multicellulaireau stade embryonnaire, Caenorhabditis elegans.Ces résultats ouvrent la voie vers des expériences plus fines sur la ligne de micro-irradiation ciblée duCENBG pour étudier les effets de l’interaction des rayonnements ionisants avec le vivant, aux échellescellulaire et multicellulaire, in vitro et in vivo. / The main goal of radiobiology is to understand the effects of ionizing radiations on the living.These past decades, ion microbeams have shown to be important tools to study for example the effects oflow dose exposure, or the bystander effect. Since 2003, the CENBG has been equipped with a system toperform targeted micro-irradiation of living samples. Recently, microbeams applications on this subjecthave diversified and the study of DNA repair mechanisms at the cellular and multicellular scales, in vitroand in vivo, has become possible thanks to important evolutions of fluorescence imaging techniques andcellular biology. To take into account these new approaches, the CENBG micro-irradiation beamline hasbeen entirely redesigned and rebuilt to implement new features and to improve the existing ones. My PhDobjectives were i) commissioning the facility, ii) characterizing the system on track etch detectors, and onliving samples, iii) implementing protocols to perform targeted irradiations of living samples with a controlleddelivered dose, at the cellular and multicellular scales, and to visualize the early consequencesonline, iv) modelling these irradiations to explain the biological results using the calculated physical data.The work of these past years has allowed us i) to measure the performances of our system: a beam spotsize of about 2 μm and a targeting accuracy of ± 2 μm, and to develop ion detection systems for an absolutedelivered dose control, ii) to create highly localized radiation-induced DNA damages and to see onlinethe recruitment of DNA repair proteins, iii) to apply these protocols to generate radiation-induced DNAdamages in vivo inside a multicellular organism at the embryonic stage: Caenorhabditis elegans.These results have opened up many perspectives on the study of the interaction between ionizing radiationsand the living, at the cellular and multicellular scales, in vitro and in vivo.

Page generated in 0.0279 seconds