• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 37
  • 7
  • 3
  • Tagged with
  • 87
  • 87
  • 23
  • 15
  • 15
  • 9
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Strukturelle Ansätze für die Stereorekonstruktion

Shlezinger, Dmytro 18 July 2005 (has links)
Die Dissertation beschäftigt sich mit Labeling Problemen. Dieses Forschungsgebiet bildet einen wichtigen Teil der strukturellen Mustererkennung, in der die Struktur des zu erkennenden Objektes explizit berücksichtigt wird. Die entwickelte Theorie wird auf die Aufgabe der Stereorekonstruktion angewendet. / The thesis studies the class of labeling problems. This theory contributes to the new stream in pattern recognition in which structure is explicitly taken into account. The developed theory is applied to practical problem of stereo reconstruction.
82

Advanced visualization and modeling of tetrahedral meshes

Frank, Tobias 07 April 2006 (has links)
Tetrahedral meshes are becoming more and more important for geo-modeling applications. The presented work introduces new algorithms for efficient visualization and modeling of tetrahedral meshes. Visualization consists of a generic framework that includes the extraction of geological information like stratigraphic columns, fault block boundaries, simultaneous co-rendering of different attributes and boolean operations of Constructive Solid Geometry with constant complexity. Modeling can be classified into geometric and implicit modeling. Geometric modeling addresses local mesh refinement to increase the numerical resolution of a given mesh. Implicit modeling covers the definition and manipulation of implicitly defined models. A new surface reconstruction method was developed to reconstruct complex, multi-valued surfaces from noisy and sparse data sets as they occur in geological applications. The surface can be bounded and may have discontinuities. Further, this work proposes a new and innovative algorithm for rapid editing of implicitly defined shapes like horizons based on the GeoChron parametrization. The editing is performed interactively on the 3d-volumetric model and geological constraints are respected automatically.
83

An Approach to 3D Building Model Reconstruction from Airborne Laser Scanner Data Using Parameter Space Analysis and Fusion of Primitives

Hofmann, Alexandra 23 June 2005 (has links)
Within this work an approach was developed, which utilises airborne laser scanner data in order to generate 3D building models. These 3D building models may be used for technical and environmental planning. The approach has to follow certain requirements such as working automatically and robust and being flexible in use but still practicable. The approach starts with small point clouds containing one building at the time extracted from laser scanner data set by applying a pre-segmentation scheme. The laser scanner point cloud of each building is analysed separately. A 2.5D-Delaunay triangle mesh structure (TIN) is calculated into the laser scanner point cloud. For each triangle the orientation parameters in space (orientation, slope and perpendicular distance to the barycentre of the laser scanner point cloud) are determined and mapped into a parameter space. As buildings are composed of planar features, primitives, triangles representing these features should group in parameter space. A cluster analysis technique is utilised to find and outline these groups/clusters. The clusters found in parameter space represent plane objects in object space. Grouping adjacent triangles in object space - which represent points in parameter space - enables the interpolation of planes in the ALS points that form the triangles. In each cluster point group a plane in object space is interpolated. All planes derived from the data set are intersected with their appropriate neighbours. From this, a roof topology is established, which describes the shape of the roof. This ensures that each plane has knowledge on its direct adjacent neighbours. Walls are added to the intersected roof planes and the virtual 3D building model is presented in a file written in VRML (Virtual Reality Macro Language). Besides developing the 3D building model reconstruction scheme, this research focuses on the geometric reconstruction and the derivation of attributes of 3D building models. The developed method was tested on different data sets obtained from different laser scanner systems. This study will also show, which potential and limits the developed method has when applied to these different data sets. / In der vorliegenden Arbeit wird eine neue Methode zur automatischen Rekonstruktion von 3D Gebäudemodellen aus Flugzeuglaserscannerdaten vorgestellt. Diese 3D Gebäudemodelle können in technischer und landschaftsplanerischer Hinsicht genutzt werden. Bezüglich der zu entwickelnden Methode wurden Regelungen und Bedingungen erstellt, die eine voll automatische und robuste Arbeitsweise sowie eine flexible und praktikable Nutzung gewährleisten sollten. Die entwickelte Methode verwendet Punktwolken, welche mittels einer Vorsegmentierung aus dem gesamten Laserscannerdatensatz extrahiert wurden und jeweils nur ein Gebäude beinhalten. Diese Laserscannerdatenpunktwolken werden separat analysiert. Eine 2,5D-Delaunay-Dreiecksvermaschung (TIN) wird in jede Punktwolke gerechnet. Für jedes Dreieck dieser Vermaschung werden die Lageparameter im Raum (Ausrichtung, Neigungsgrad und senkrechter Abstand der Ebene des Dreiecks zum Schwerpunkt der Punktwolke) bestimmt und in einen Parameterraum aufgetragen. Im Parameterraum bilden diejenigen Dreiecke Gruppen, welche sich im Objektraum auf ebenen Flächen befinden. Mit der Annahme, dass sich ein Gebäude aus ebenen Flächen zusammensetzt, dient die Identifizierung von Clustern im Parameterraum der Detektierung dieser Flächen. Um diese Gruppen/Cluster aufzufinden wurde eine Clusteranalysetechnik genutzt. Über die detektierten Cluster können jene Laserscannerpunkte im Objektraum bestimmt werden, die eine Dachfläche formen. In die Laserscannerpunkte der somit gefundenen Dachflächen werden Ebenen interpoliert. Alle abgeleiteten Ebenen gehen in den entwickelten Rekonstruktionsalgorithmus ein, der eine Topologie zwischen den einzelnen Ebenen aufbaut. Anhand dieser Topologie erhalten die Ebenen ?Kenntnis? über ihre jeweiligen Nachbarn und können miteinander verschnitten werden. Der fertigen Dachgestalt werden Wände zugefügt und das komplette 3D Gebäudemodell wird mittels VRML (Virtual Reality Macro Language) visualisiert. Diese Studie bezieht sich neben der Entwicklung eines Schemas zu automatischen Gebäuderekonstruktion auch auf die Ableitung von Attributen der 3D Gebäudemodellen. Die entwickelte Methode wurde an verschiedenen Flugzeuglaserscannerdatensätzen getestet. Es wird gezeigt, welche Potentiale und Grenzen die entwickelte Methode bei der Bearbeitung dieser verschiedenen Laserscannerdatensätze hat.
84

Improvement of signal analysis for the ultrasonic microscopy / Verbesserung der Signalauswertung für die Ultraschallmikroskopie

Gust, Norbert 30 June 2011 (has links) (PDF)
This dissertation describes the improvement of signal analysis in ultrasonic microscopy for nondestructive testing. Specimens with many thin layers, like modern electronic components, pose a particular challenge for identifying and localizing defects. In this thesis, new evaluation algorithms have been developed which enable analysis of highly complex layer-stacks. This is achieved by a specific evaluation of multiple reflections, a newly developed iterative reconstruction and deconvolution algorithm, and the use of classification algorithms with a highly optimized simulation algorithm. Deep delaminations inside a 19-layer component can now not only be detected, but also localized. The new analysis methods also enable precise determination of elastic material parameters, sound velocities, thicknesses, and densities of multiple layers. The highly improved precision of determined reflections parameters with deconvolution also provides better and more conclusive results with common analysis methods. / Die vorgelegte Dissertation befasst sich mit der Verbesserung der Signalauswertung für die Ultraschallmikroskopie in der zerstörungsfreien Prüfung. Insbesondere bei Proben mit vielen dünnen Schichten, wie bei modernen Halbleiterbauelementen, ist das Auffinden und die Bestimmung der Lage von Fehlstellen eine große Herausforderung. In dieser Arbeit wurden neue Auswertealgorithmen entwickelt, die eine Analyse hochkomplexer Schichtabfolgen ermöglichen. Erreicht wird dies durch die gezielte Auswertung von Mehrfachreflexionen, einen neu entwickelten iterativen Rekonstruktions- und Entfaltungsalgorithmus und die Nutzung von Klassifikationsalgorithmen im Zusammenspiel mit einem hoch optimierten neu entwickelten Simulationsalgorithmus. Dadurch ist es erstmals möglich, tief liegende Delaminationen in einem 19-schichtigem Halbleiterbauelement nicht nur zu detektieren, sondern auch zu lokalisieren. Die neuen Analysemethoden ermöglichen des Weiteren eine genaue Bestimmung von elastischen Materialparametern, Schallgeschwindigkeiten, Dicken und Dichten mehrschichtiger Proben. Durch die stark verbesserte Genauigkeit der Reflexionsparameterbestimmung mittels Signalentfaltung lassen sich auch mit klassischen Analysemethoden deutlich bessere und aussagekräftigere Ergebnisse erzielen. Aus den Erkenntnissen dieser Dissertation wurde ein Ultraschall-Analyseprogramm entwickelt, das diese komplexen Funktionen auf einer gut bedienbaren Oberfläche bereitstellt und bereits praktisch genutzt wird.
85

Improvement of signal analysis for the ultrasonic microscopy

Gust, Norbert 21 September 2010 (has links)
This dissertation describes the improvement of signal analysis in ultrasonic microscopy for nondestructive testing. Specimens with many thin layers, like modern electronic components, pose a particular challenge for identifying and localizing defects. In this thesis, new evaluation algorithms have been developed which enable analysis of highly complex layer-stacks. This is achieved by a specific evaluation of multiple reflections, a newly developed iterative reconstruction and deconvolution algorithm, and the use of classification algorithms with a highly optimized simulation algorithm. Deep delaminations inside a 19-layer component can now not only be detected, but also localized. The new analysis methods also enable precise determination of elastic material parameters, sound velocities, thicknesses, and densities of multiple layers. The highly improved precision of determined reflections parameters with deconvolution also provides better and more conclusive results with common analysis methods.:Kurzfassung......................................................................................................................II Abstract.............................................................................................................................V List ob abbreviations........................................................................................................X 1 Introduction.......................................................................................................................1 1.1 Motivation.....................................................................................................................2 1.2 System theoretical description.....................................................................................3 1.3 Structure of the thesis..................................................................................................6 2 Sound field.........................................................................................................................8 2.1 Sound field measurement............................................................................................8 2.2 Sound field modeling..................................................................................................11 2.2.1 Reflection and transmission coefficients.........................................................11 2.2.2 Sound field modeling with plane waves..........................................................13 2.2.3 Generalized sound field position.....................................................................19 2.3 Receiving transducer signal.......................................................................................20 2.3.1 Calculation of the transducer signal from the sound field...............................20 2.3.2 Received signal amplitude..............................................................................21 2.3.3 Measurement of reference signals..................................................................24 3 Ultrasonic Simulation......................................................................................................27 3.1 State of the art............................................................................................................27 3.2 Simulation approach..................................................................................................28 3.2.1 Sound field measurement based simulation...................................................28 3.2.2 Reference signal based simulation.................................................................30 3.3 Determination of the impulse response.....................................................................31 3.3.1 1D ray-trace algorithm....................................................................................31 3.3.2 2D ray-trace algorithm....................................................................................33 3.3.3 Complexity reduction – optimizations.............................................................35 4 Deconvolution – Determination of reflection parameters............................................38 4.1 State of the art............................................................................................................39 4.1.1 Decomposition techniques..............................................................................39 4.1.2 Deconvolution.................................................................................................41 4.2 Analytic signal investigations for deconvolution.........................................................42 4.3 Single reference pulse deconvolution........................................................................44 4.4 Multi-pulse deconvolution..........................................................................................47 4.4.1 Homogeneous multi-pulse deconvolution.......................................................48 4.4.2 Multi-pulse deconvolution with simulated GSP profile....................................49 5 Reconstruction.................................................................................................................50 5.1 State of the art............................................................................................................50 5.2 Reconstruction approach...........................................................................................51 5.3 Direct material parameter estimation.........................................................................52 5.3.1 Sound velocities and layer thickness..............................................................52 5.3.2 Density, elastic modules and acoustic attenuation.........................................54 5.4 Iterative material parameter determination of a single layer......................................56 5.5 Reconstruction of complex specimens......................................................................60 5.5.1 Material characterization of multiple layers ....................................................60 5.5.2 Iterative simulation parameter optimization with correlation...........................62 5.5.3 Pattern recognition reconstruction of specimens with known base structure. 66 6 Applications and results.................................................................................................71 6.1 Analysis of stacked components................................................................................71 6.2 Time-of-flight and material analysis...........................................................................74 7 Conclusions and perspectives.......................................................................................78 References.......................................................................................................................82 Figures.............................................................................................................................86 Tables...............................................................................................................................88 Appendix..........................................................................................................................89 Acknowledgments.........................................................................................................100 Danksagung...................................................................................................................101 / Die vorgelegte Dissertation befasst sich mit der Verbesserung der Signalauswertung für die Ultraschallmikroskopie in der zerstörungsfreien Prüfung. Insbesondere bei Proben mit vielen dünnen Schichten, wie bei modernen Halbleiterbauelementen, ist das Auffinden und die Bestimmung der Lage von Fehlstellen eine große Herausforderung. In dieser Arbeit wurden neue Auswertealgorithmen entwickelt, die eine Analyse hochkomplexer Schichtabfolgen ermöglichen. Erreicht wird dies durch die gezielte Auswertung von Mehrfachreflexionen, einen neu entwickelten iterativen Rekonstruktions- und Entfaltungsalgorithmus und die Nutzung von Klassifikationsalgorithmen im Zusammenspiel mit einem hoch optimierten neu entwickelten Simulationsalgorithmus. Dadurch ist es erstmals möglich, tief liegende Delaminationen in einem 19-schichtigem Halbleiterbauelement nicht nur zu detektieren, sondern auch zu lokalisieren. Die neuen Analysemethoden ermöglichen des Weiteren eine genaue Bestimmung von elastischen Materialparametern, Schallgeschwindigkeiten, Dicken und Dichten mehrschichtiger Proben. Durch die stark verbesserte Genauigkeit der Reflexionsparameterbestimmung mittels Signalentfaltung lassen sich auch mit klassischen Analysemethoden deutlich bessere und aussagekräftigere Ergebnisse erzielen. Aus den Erkenntnissen dieser Dissertation wurde ein Ultraschall-Analyseprogramm entwickelt, das diese komplexen Funktionen auf einer gut bedienbaren Oberfläche bereitstellt und bereits praktisch genutzt wird.:Kurzfassung......................................................................................................................II Abstract.............................................................................................................................V List ob abbreviations........................................................................................................X 1 Introduction.......................................................................................................................1 1.1 Motivation.....................................................................................................................2 1.2 System theoretical description.....................................................................................3 1.3 Structure of the thesis..................................................................................................6 2 Sound field.........................................................................................................................8 2.1 Sound field measurement............................................................................................8 2.2 Sound field modeling..................................................................................................11 2.2.1 Reflection and transmission coefficients.........................................................11 2.2.2 Sound field modeling with plane waves..........................................................13 2.2.3 Generalized sound field position.....................................................................19 2.3 Receiving transducer signal.......................................................................................20 2.3.1 Calculation of the transducer signal from the sound field...............................20 2.3.2 Received signal amplitude..............................................................................21 2.3.3 Measurement of reference signals..................................................................24 3 Ultrasonic Simulation......................................................................................................27 3.1 State of the art............................................................................................................27 3.2 Simulation approach..................................................................................................28 3.2.1 Sound field measurement based simulation...................................................28 3.2.2 Reference signal based simulation.................................................................30 3.3 Determination of the impulse response.....................................................................31 3.3.1 1D ray-trace algorithm....................................................................................31 3.3.2 2D ray-trace algorithm....................................................................................33 3.3.3 Complexity reduction – optimizations.............................................................35 4 Deconvolution – Determination of reflection parameters............................................38 4.1 State of the art............................................................................................................39 4.1.1 Decomposition techniques..............................................................................39 4.1.2 Deconvolution.................................................................................................41 4.2 Analytic signal investigations for deconvolution.........................................................42 4.3 Single reference pulse deconvolution........................................................................44 4.4 Multi-pulse deconvolution..........................................................................................47 4.4.1 Homogeneous multi-pulse deconvolution.......................................................48 4.4.2 Multi-pulse deconvolution with simulated GSP profile....................................49 5 Reconstruction.................................................................................................................50 5.1 State of the art............................................................................................................50 5.2 Reconstruction approach...........................................................................................51 5.3 Direct material parameter estimation.........................................................................52 5.3.1 Sound velocities and layer thickness..............................................................52 5.3.2 Density, elastic modules and acoustic attenuation.........................................54 5.4 Iterative material parameter determination of a single layer......................................56 5.5 Reconstruction of complex specimens......................................................................60 5.5.1 Material characterization of multiple layers ....................................................60 5.5.2 Iterative simulation parameter optimization with correlation...........................62 5.5.3 Pattern recognition reconstruction of specimens with known base structure. 66 6 Applications and results.................................................................................................71 6.1 Analysis of stacked components................................................................................71 6.2 Time-of-flight and material analysis...........................................................................74 7 Conclusions and perspectives.......................................................................................78 References.......................................................................................................................82 Figures.............................................................................................................................86 Tables...............................................................................................................................88 Appendix..........................................................................................................................89 Acknowledgments.........................................................................................................100 Danksagung...................................................................................................................101
86

Zurück in die Zukunft - Die Visualisierung planungs- und baugeschichtlicher Aspekte des Dresdner Zwingers

Jahn, Peter Heinrich, Welich, Dirk 03 February 2020 (has links)
Ein Forschungsprojekt von SBG und TU Dresden erarbeitete ab 2007 eine Visualisierung der Planungs- und Baugeschichte des Dresdner Zwingers. Viele Bauphasen wurden virtuell dreidimensional modelliert und verdeutlichen die Ideen der einst weitaus größer geplanten Anlage. Die Ergebnisse sollen Teil der neuen Baugeschichtsausstellung in der Bogengalerie des Zwingers sein.
87

Structureless Camera Motion Estimation of Unordered Omnidirectional Images

Sastuba, Mark 08 August 2022 (has links)
This work aims at providing a novel camera motion estimation pipeline from large collections of unordered omnidirectional images. In oder to keep the pipeline as general and flexible as possible, cameras are modelled as unit spheres, allowing to incorporate any central camera type. For each camera an unprojection lookup is generated from intrinsics, which is called P2S-map (Pixel-to-Sphere-map), mapping pixels to their corresponding positions on the unit sphere. Consequently the camera geometry becomes independent of the underlying projection model. The pipeline also generates P2S-maps from world map projections with less distortion effects as they are known from cartography. Using P2S-maps from camera calibration and world map projection allows to convert omnidirectional camera images to an appropriate world map projection in oder to apply standard feature extraction and matching algorithms for data association. The proposed estimation pipeline combines the flexibility of SfM (Structure from Motion) - which handles unordered image collections - with the efficiency of PGO (Pose Graph Optimization), which is used as back-end in graph-based Visual SLAM (Simultaneous Localization and Mapping) approaches to optimize camera poses from large image sequences. SfM uses BA (Bundle Adjustment) to jointly optimize camera poses (motion) and 3d feature locations (structure), which becomes computationally expensive for large-scale scenarios. On the contrary PGO solves for camera poses (motion) from measured transformations between cameras, maintaining optimization managable. The proposed estimation algorithm combines both worlds. It obtains up-to-scale transformations between image pairs using two-view constraints, which are jointly scaled using trifocal constraints. A pose graph is generated from scaled two-view transformations and solved by PGO to obtain camera motion efficiently even for large image collections. Obtained results can be used as input data to provide initial pose estimates for further 3d reconstruction purposes e.g. to build a sparse structure from feature correspondences in an SfM or SLAM framework with further refinement via BA. The pipeline also incorporates fixed extrinsic constraints from multi-camera setups as well as depth information provided by RGBD sensors. The entire camera motion estimation pipeline does not need to generate a sparse 3d structure of the captured environment and thus is called SCME (Structureless Camera Motion Estimation).:1 Introduction 1.1 Motivation 1.1.1 Increasing Interest of Image-Based 3D Reconstruction 1.1.2 Underground Environments as Challenging Scenario 1.1.3 Improved Mobile Camera Systems for Full Omnidirectional Imaging 1.2 Issues 1.2.1 Directional versus Omnidirectional Image Acquisition 1.2.2 Structure from Motion versus Visual Simultaneous Localization and Mapping 1.3 Contribution 1.4 Structure of this Work 2 Related Work 2.1 Visual Simultaneous Localization and Mapping 2.1.1 Visual Odometry 2.1.2 Pose Graph Optimization 2.2 Structure from Motion 2.2.1 Bundle Adjustment 2.2.2 Structureless Bundle Adjustment 2.3 Corresponding Issues 2.4 Proposed Reconstruction Pipeline 3 Cameras and Pixel-to-Sphere Mappings with P2S-Maps 3.1 Types 3.2 Models 3.2.1 Unified Camera Model 3.2.2 Polynomal Camera Model 3.2.3 Spherical Camera Model 3.3 P2S-Maps - Mapping onto Unit Sphere via Lookup Table 3.3.1 Lookup Table as Color Image 3.3.2 Lookup Interpolation 3.3.3 Depth Data Conversion 4 Calibration 4.1 Overview of Proposed Calibration Pipeline 4.2 Target Detection 4.3 Intrinsic Calibration 4.3.1 Selected Examples 4.4 Extrinsic Calibration 4.4.1 3D-2D Pose Estimation 4.4.2 2D-2D Pose Estimation 4.4.3 Pose Optimization 4.4.4 Uncertainty Estimation 4.4.5 PoseGraph Representation 4.4.6 Bundle Adjustment 4.4.7 Selected Examples 5 Full Omnidirectional Image Projections 5.1 Panoramic Image Stitching 5.2 World Map Projections 5.3 World Map Projection Generator for P2S-Maps 5.4 Conversion between Projections based on P2S-Maps 5.4.1 Proposed Workflow 5.4.2 Data Storage Format 5.4.3 Real World Example 6 Relations between Two Camera Spheres 6.1 Forward and Backward Projection 6.2 Triangulation 6.2.1 Linear Least Squares Method 6.2.2 Alternative Midpoint Method 6.3 Epipolar Geometry 6.4 Transformation Recovery from Essential Matrix 6.4.1 Cheirality 6.4.2 Standard Procedure 6.4.3 Simplified Procedure 6.4.4 Improved Procedure 6.5 Two-View Estimation 6.5.1 Evaluation Strategy 6.5.2 Error Metric 6.5.3 Evaluation of Estimation Algorithms 6.5.4 Concluding Remarks 6.6 Two-View Optimization 6.6.1 Epipolar-Based Error Distances 6.6.2 Projection-Based Error Distances 6.6.3 Comparison between Error Distances 6.7 Two-View Translation Scaling 6.7.1 Linear Least Squares Estimation 6.7.2 Non-Linear Least Squares Optimization 6.7.3 Comparison between Initial and Optimized Scaling Factor 6.8 Homography to Identify Degeneracies 6.8.1 Homography for Spherical Cameras 6.8.2 Homography Estimation 6.8.3 Homography Optimization 6.8.4 Homography and Pure Rotation 6.8.5 Homography in Epipolar Geometry 7 Relations between Three Camera Spheres 7.1 Three View Geometry 7.2 Crossing Epipolar Planes Geometry 7.3 Trifocal Geometry 7.4 Relation between Trifocal, Three-View and Crossing Epipolar Planes 7.5 Translation Ratio between Up-To-Scale Two-View Transformations 7.5.1 Structureless Determination Approaches 7.5.2 Structure-Based Determination Approaches 7.5.3 Comparison between Proposed Approaches 8 Pose Graphs 8.1 Optimization Principle 8.2 Solvers 8.2.1 Additional Graph Solvers 8.2.2 False Loop Closure Detection 8.3 Pose Graph Generation 8.3.1 Generation of Synthetic Pose Graph Data 8.3.2 Optimization of Synthetic Pose Graph Data 9 Structureless Camera Motion Estimation 9.1 SCME Pipeline 9.2 Determination of Two-View Translation Scale Factors 9.3 Integration of Depth Data 9.4 Integration of Extrinsic Camera Constraints 10 Camera Motion Estimation Results 10.1 Directional Camera Images 10.2 Omnidirectional Camera Images 11 Conclusion 11.1 Summary 11.2 Outlook and Future Work Appendices A.1 Additional Extrinsic Calibration Results A.2 Linear Least Squares Scaling A.3 Proof Rank Deficiency A.4 Alternative Derivation Midpoint Method A.5 Simplification of Depth Calculation A.6 Relation between Epipolar and Circumferential Constraint A.7 Covariance Estimation A.8 Uncertainty Estimation from Epipolar Geometry A.9 Two-View Scaling Factor Estimation: Uncertainty Estimation A.10 Two-View Scaling Factor Optimization: Uncertainty Estimation A.11 Depth from Adjoining Two-View Geometries A.12 Alternative Three-View Derivation A.12.1 Second Derivation Approach A.12.2 Third Derivation Approach A.13 Relation between Trifocal Geometry and Alternative Midpoint Method A.14 Additional Pose Graph Generation Examples A.15 Pose Graph Solver Settings A.16 Additional Pose Graph Optimization Examples Bibliography

Page generated in 0.3779 seconds