• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modellierung und Erkennung von Fahrsituationen und Fahrmanövern für sicherheitsrelevante Fahrerassistenzsysteme / Modeling and identifying of driving situations and driving maneuvers for safety-relevant driving assistance systems

Schneider, Jörg Henning 01 November 2010 (has links) (PDF)
Die vorliegende Arbeit beschreibt ein generisches Verfahren zur wahrscheinlichkeitsbasierten Erkennung von Fahrsituationen und Fahrmanövern für sicherheitsrelevante Fahrerassistenzsysteme. Fahrsituationen und Manöver unterliegen einer gewissen Unsicherheit basierend auf der unterschiedlichen Situationswahrnehmung bzw. Manöverdurchführung der Fahrzeugführer. Diese Unsicherheitskomponente wird in den Ansatz zur Situations- und Manövererkennung mit einbezogen. Ein weiterer Unsicherheitsaspekt beruht auf den ungenauen Umgebungsinformationen auf denen die Situations- und Manövererkennung basiert. Beide Unsicherheitsursachen sind völlig unabhängig voneinander und werden aus diesem Grund separat betrachtet und modelliert. Zur Modellierung dieser beiden Unsicherheitsaspekte bedient sich der vorgestellte Ansatz der Fuzzy-Theorie, der Theorie der probabilistischen Netzen sowie Verfahren zur Fehlerfortpflanzung und Sensitivitätsanalyse. Nach der theoretischen Vorstellung dieser Methodiken wird in der Arbeit detailliert auf den Einsatz und das Zusammenspiel der einzelnen Verfahren zur Erkennung der Fahrsituationen und Fahrmanöver eingegangen. Die Umsetzbarkeit des vorgestellten Verfahrens wird am Beispiel der Notbremssituation gezeigt. Die Notbremssituation setzt sich aus unterschiedlichen Teilsituationen und Manövern zusammen. Die Erkennung der einzelnen Situationen und Manöver sowie die Zusammenführung zur übergeordneten Notbremssituation wurden mit Hilfe des vorgestellten Verfahrens realisiert. Zur Evaluierung der Erkennungsgüte wurden sowohl Messdaten aus dem Straßenverkehr als auch realitätsnahe Daten, aufgezeichnet auf Versuchsstrecken, herangezogen. / The present work describes a generic method for the probabilistic identification of driving situations and driving manoeuvres for safety relevant driver assistance systems. Driving situations and driving manoeuvres underlie a certain uncertainty based on the different situation perception and manoeuvre execution of the driver. This uncertainty component is considered in the approach for the situation and manoeuvre identification. An additional uncertainty aspect is based on the inaccurate environment information, the identification of driving situations and manoeuvres depend on. Both uncertainty aspects are completely independent and are considered and modelled separately for this reason. For modelling both of these uncertainty aspects the present approach is using the fuzzy theory, probabilistic networks, as well as methods for error propagation and sensitivity analysis. After introducing these techniques theoretically, the application and the interaction of the single methods to identify the driving situations and manoeuvres is described in detail. The practicability of the introduced proceeding is shown exemplarily on the emergency brake situation. The emergency brake situation consists of several situation and manoeuvre components. The identification of the single situations and manoeuvres as well as the combination to the higher emergency brake situation is realised with the introduced proceeding. Measuring data gathered on road traffic and close to reality data measured on a test track were used to evaluate the identification quality.
2

Analýza chování řidiče při řešení situací spojených s přecházením chodců přes vozovku / Analysis of driver’s conduct during solving of situations associated with pedestrians crossing the road

Maxera, Pavel January 2021 (has links)
The doctoral thesis analyses driver’s conduct while solving situations associated with crossing of pedestrians across the road in cases of various design of pedestrian crossings and at different conditions. The thesis deepens the knowledge of the human factor impact on the occurrence of a traffic accident involved vehicle and pedestrian and thesis also complements knowledge for the needs of the analysis of traffic accidents, especially in solving the pre collision phase and at assessment of possibilities for collision prevention by involved participants. The thesis deals with driver’s conduct, various models of the conduct as well as the thesis focuses on the visual perception, the process of information processing, the driver’s conduct and the reaction time. In terms of the solution suitable types of experiments were designed and implemented. Based on performed measurements a method of processing and evaluating data on drivers’ conduct was found as well as more significant data set was obtained for a detailed analysis of drivers' conduct in different driving situations. The assessed quantities of drivers' conduct were analysed with respect to the dangerousness of driving situations. For these purposes, the categories of the dangerousness of driving situations were defined (situations completely safe, with increased danger, dangerous and critical), into which the analysed driving situations were subsequently included. To enable the quantification of this classification of situations into the categories of the dangerousness, the coefficient of the dangerousness (so called K) was defined. From the detailed analysis of the obtained data, the limit values of this coefficient were determined, and these were subsequently verified using data from the solution of real traffic accidents. Concurrently the analysis verified the suitability of using this hazard coefficient in the analysis of traffic accidents, especially for a detailed assessment of the possibilities of collision prevention.
3

Modellierung und Erkennung von Fahrsituationen und Fahrmanövern für sicherheitsrelevante Fahrerassistenzsysteme

Schneider, Jörg Henning 01 June 2010 (has links)
Die vorliegende Arbeit beschreibt ein generisches Verfahren zur wahrscheinlichkeitsbasierten Erkennung von Fahrsituationen und Fahrmanövern für sicherheitsrelevante Fahrerassistenzsysteme. Fahrsituationen und Manöver unterliegen einer gewissen Unsicherheit basierend auf der unterschiedlichen Situationswahrnehmung bzw. Manöverdurchführung der Fahrzeugführer. Diese Unsicherheitskomponente wird in den Ansatz zur Situations- und Manövererkennung mit einbezogen. Ein weiterer Unsicherheitsaspekt beruht auf den ungenauen Umgebungsinformationen auf denen die Situations- und Manövererkennung basiert. Beide Unsicherheitsursachen sind völlig unabhängig voneinander und werden aus diesem Grund separat betrachtet und modelliert. Zur Modellierung dieser beiden Unsicherheitsaspekte bedient sich der vorgestellte Ansatz der Fuzzy-Theorie, der Theorie der probabilistischen Netzen sowie Verfahren zur Fehlerfortpflanzung und Sensitivitätsanalyse. Nach der theoretischen Vorstellung dieser Methodiken wird in der Arbeit detailliert auf den Einsatz und das Zusammenspiel der einzelnen Verfahren zur Erkennung der Fahrsituationen und Fahrmanöver eingegangen. Die Umsetzbarkeit des vorgestellten Verfahrens wird am Beispiel der Notbremssituation gezeigt. Die Notbremssituation setzt sich aus unterschiedlichen Teilsituationen und Manövern zusammen. Die Erkennung der einzelnen Situationen und Manöver sowie die Zusammenführung zur übergeordneten Notbremssituation wurden mit Hilfe des vorgestellten Verfahrens realisiert. Zur Evaluierung der Erkennungsgüte wurden sowohl Messdaten aus dem Straßenverkehr als auch realitätsnahe Daten, aufgezeichnet auf Versuchsstrecken, herangezogen. / The present work describes a generic method for the probabilistic identification of driving situations and driving manoeuvres for safety relevant driver assistance systems. Driving situations and driving manoeuvres underlie a certain uncertainty based on the different situation perception and manoeuvre execution of the driver. This uncertainty component is considered in the approach for the situation and manoeuvre identification. An additional uncertainty aspect is based on the inaccurate environment information, the identification of driving situations and manoeuvres depend on. Both uncertainty aspects are completely independent and are considered and modelled separately for this reason. For modelling both of these uncertainty aspects the present approach is using the fuzzy theory, probabilistic networks, as well as methods for error propagation and sensitivity analysis. After introducing these techniques theoretically, the application and the interaction of the single methods to identify the driving situations and manoeuvres is described in detail. The practicability of the introduced proceeding is shown exemplarily on the emergency brake situation. The emergency brake situation consists of several situation and manoeuvre components. The identification of the single situations and manoeuvres as well as the combination to the higher emergency brake situation is realised with the introduced proceeding. Measuring data gathered on road traffic and close to reality data measured on a test track were used to evaluate the identification quality.
4

Cooperative automation in automobiles

Biester, Lars 29 May 2009 (has links)
Das Ziel dieser Dissertation ist die systematische Entwicklung eines weiterführenden Konzeptes zur Fahrer-Fahrzeug Kooperation, dessen Tauglichkeit anhand empirischer Daten evaluiert und im Hinblick auf sein belegbares Potential in Bezug auf bestehende Ansätze bewertet werden soll.Da Annahmen und Prämissen der Mensch-Maschine-Interaktion den Ausgangspunkt bilden, beginnt die dezidierte Auseinandersetzung und begriffliche Differenzierung von Kooperation in eben diesem Kontext und führt folgerichtig zu einer definitorischen Abgrenzung gegenüber existierenden Ansätzen, der Forderung eines spezifischen Rollenverständnisses zur Interaktion sowie der Ableitung konzeptueller Grundbedingungen. Anschließend werden die strukturellen und prozeduralen Merkmale dieser spezifischen Interaktion herausgearbeitet und dazu benutzt, die generellen Attribute von Kooperation zwischen Fahrer und Fahrzeug zu identifizieren. Dafür wurden nachfolgend solche Indikatoren abgeleitet, vermittels derer der unterstellte Gewinn infolge der Kooperation von Fahrer und Fahrzeug kontrolliert und bewertet werden kann.Im Rahmen mehrerer Voruntersuchungen wurden Fahrsituationen identifiziert, die am meisten von einer kooperativen Interaktion zwischen Fahrer und Fahrzeug profitieren würden. Im Ergebnis wurden für die zwei Hauptuntersuchungen das „Überholen auf der Autobahn“ und das „Linksabbiegen auf innerstädtischen Straßen und Landstraßen mit Gegenverkehr“ als Fahrszenarien ausgewählt, die in jeweils einem eigenständigen Experiment mit alternativen Systemvarianten verglichen worden sind. Die Prüfung spezifischer Hypothesen wurde dabei in die prototypische Umgebung eines Fahrsimulators eingebettet. Abschließend werden in dieser Arbeit die Möglichkeiten zur Etablierung und Einbettung dieses Interaktionskonzeptes in den übergreifenden sozio-technischen Kontext aufgezeigt und zukünftige Perspektiven diskutiert. / The aim of this dissertation is to systematically develop a continuative concept of driver-automobile cooperation, to evaluate its suitability on the basis of empirical data, and to value its provable potential in relation to existing approaches.Assumptions and premises regarding the human-machine interaction constitute the starting point of this work. The decisive altercation and notional differentiation of cooperation are explained in just this context, leading logically to a definitional demarcation of existing approaches, the demand of a specific role understanding of the interaction as well as the derivation of conceptual basic conditions. The structural and procedural characteristics of this specific interaction are then elaborated upon and used to identify the general attributes of cooperation between driver and automobile. In the following, such indicators are derived by which the implied profit as a result of cooperation between driver and automobile can be controlled and valued. Within the framework of several preliminary investigations, those driving situations were identified that would profit most from a cooperative interaction between driver and automobile. As a result, the two driving scenarios "Overtaking on Highways" and "Turning Left on Urban and Country Roads with Oncoming Traffic" were utilized in the experiments. Both single scenarios have been compared in independent experiments with regard to alternative system variants. The prove of specific hypotheses was embedded in the prototypical surroundings of a driving simulator. Finally, the possibility of establishing and embedding this interaction concept into the overall socio-technical context will be presented, and future perspectives will be discussed.
5

Die Erkennung bevorstehender Fahrstreifenwechsel mittels der Fusion und Klassifikation von Merkmalsgrößen des Fahrzeugumfelds, Fahrerverhaltens und Fahrzeugstatus

Leonhardt, Veit 18 December 2024 (has links)
Damit Fahrerassistenzsysteme das noch immer unfallträchtige Manöver des Fahrstreifenwechsels wirksam gegen Unfälle absichern können, benötigen sie zuverlässig wie frühzeitig Kenntnis der Situationen, denen ein solches folgen wird. Nur so sind sie in der Lage, ihre Unterstützung in wirklich allen Situationen zu leisten, in denen diese von Nutzen ist, ohne dafür unpassende Warnungen oder Eingriffe in die Fahrzeugführung in Kauf nehmen zu müssen und an Akzeptanz einzubüßen oder gar selbst zum Sicherheitsrisiko zu werden. Die größte Herausforderung stellt dabei die Komplexität und Vielfalt der im städtischen Verkehr vorkommenden Situationen dar. Bisherige Assistenzsysteme stützen sich zur Aktivierung ihrer Funktion entweder auf den Status des Fahrtrichtungsanzeigers oder werten das Überfahren einer Fahrstreifenbegrenzung als dann allerdings bereits laufenden Fahrstreifenwechsel. Das eine erfolgt nachweislich äußert unzuverlässig, mit dem anderen bleibt kaum mehr Zeit für eine frühzeitige, auf Situation und Fahrer abgestimmte Assistenz. Mit der vorliegenden Arbeit wird ein funktionierender Ansatz zur automatisierten Erkennung bevorstehender Fahrstreifenwechsel vorgestellt, als im Fahrzeug lauffähiges System implementiert und seine Funktion anhand realer Fahrdaten unter Beweis gestellt. Im Zentrum des Erkennungsansatzes stehen aus dem Fahrzeug heraus erfassbare Merkmalsgrößen des Fahrzeugumfelds, Fahrerverhaltens und Fahrzeugstatus, die mit Hilfe künstlicher neuronaler Netze fusioniert und klassifiziert werden. Die Entwicklung der Algorithmen sowie sämtliche Untersuchungen zu ihrer Leistungsfähigkeit beruhen auf Messdaten natürlichen Fahrverhaltens im Verkehr einer Großstadt, die in einer umfangreichen Realfahrtstudie mit einem mit Radar- und Kamerasensorik ausgestatteten Versuchsfahrzeug erhoben wurden. Basierend auf diesen Daten werden zunächst Parameter einer zonenbasierten Repräsentation des Fahrzeugumfelds, der Blickrichtung des Fahrers sowie Zustandsgrößen des Fahrzeugs auf ihre Eignung als Merkmalsgröße untersucht. Es wird gezeigt, inwieweit für verschiedene Arten von Fahrstreifenwechseln und in unterschiedlichem zeitlichen Abstand auf das Manöver bereits zwischen dem Wert einer Merkmalsgröße und dem Bevorstehen eines Fahrstreifenwechsels ein Zusammenhang besteht. Mit einer Auswahl geeigneter Merkmalsgrößen wird die Erkennung schließlich in verschiedenen Ausprägungen implementiert, mittels maschinellen Lernens parametrisiert und über alle Arten in den Daten vorkommender Fahrstreifenwechselsituationen evaluiert. Untersucht wird dabei nicht nur die Erkennungsleistung des Gesamtsystems für verschiedene Vorhersagehorizonte, sondern ebenso die einer Erkennung mit den Merkmalsgrößen nur jeweils eines der Aspekte Fahrzeugumfeld, Fahrerverhalten und Fahrzeugstatus sowie der Effekt des Einbeziehens auch der Merkmalswerthistorie.:Bibliographische Beschreibung i Inhaltsverzeichnis v Abkürzungs- und Symbolverzeichnis xi Abkürzungen xi Symbole xi Vorwort xiii 1 Einleitung 1 1.1 Motivation 1 1.2 Aktueller Stand der Forschung 4 1.3 Forschungslücken 11 1.4 Zielsetzung der Arbeit 12 1.5 Inhalt und Gliederung der Arbeit 14 1.6 Formelzeichen und Zahlenwerte 15 2 Die Fahrstreifenwechselsituation und der algorithmische Ansatz ihrer Erkennung 17 2.1 Grundlegende Begriffe 17 2.2 Modelle zur Beschreibung des Fahrstreifenwechsels 18 2.2.1 Das 3-Ebenen-Modell der kognitiven Prozesse zur Fahrzeugführung 18 2.2.2 Messbarkeit kognitiver Prozesse und der Fahrerintention 21 2.2.3 Das System Fahrer-Fahrzeug-Umwelt 23 2.2.4 Das Phasenmodell des Ablaufs eines Fahrstreifenwechsels 25 2.2.5 Das Modell der Fahrstreifenwechselsituation 26 2.3 Der prinzipielle Ansatz zur Erkennung von Fahrstreifenwechseln 30 2.4 Ein aspektübergreifender Erkennungsansatz im System Fahrer-Fahrzeug-Umwelt 31 3 Merkmalsgrößen zur Erkennung bevorstehender Fahrstreifenwechsel 35 3.1 Kriterien der Wahl der Merkmalsgrößen 35 3.2 Das Versuchsfahrzeug 36 3.2.1 Umfeldsensorik 37 3.2.2 Fahrersensorik 40 3.2.3 Rechentechnik 42 3.3 Definition und Berechnung der Merkmalsgrößen 42 3.3.1 Merkmalsgrößen des Fahrzeugumfelds 43 3.3.1.1 Existenz, Zugänglichkeit und Abstand benachbarter Fahrstreifen 43 3.3.1.2 Sensorübergreifendes Tracking umgebender Objekte als Grundlage 44 3.3.1.3 Einteilung des Fahrzeugumfelds in Zonen 45 3.3.1.4 Beschreibung der Belegung umgebender Zonen durch Objektparameter 49 3.3.1.5 Kurzreferenz zu den Merkmalsgrößen des Fahrzeugumfelds 57 3.3.2 Merkmalsgrößen des Fahrerverhaltens 58 3.3.2.1 Kopfposition und Kopflage 59 3.3.2.2 Blickbereiche 60 3.3.2.3 Kurzreferenz zu den Merkmalsgrößen des Fahrerverhaltens 63 3.3.3 Merkmalsgrößen des Fahrzeugstatus 64 3.3.3.1 Kurzreferenz zu den Merkmalsgrößen des Fahrzeugstatus 66 3.4 Synchrone Berechnung und Auswertung der Merkmalswerte 67 4 Realfahrtstudie zur Messdatenakquise 69 4.1 Studienteilnehmer 69 4.2 Studiendesign und Ablauf 70 4.3 Streckenverlauf 72 4.4 Erhobene Datensätze und Arten vorkommender Fahrstreifenwechselsituationen 73 5 Statistische Analyse und Einzelbewertung der Merkmalsgrößen 77 5.1 Metriken zur statistischen Bewertung der Merkmalsgrößen 77 5.1.1 Der t-Test 78 5.1.2 Die Effektstärke Cohen’s d 81 5.1.3 Die Effektstärke Hedges‘ g 82 5.1.4 Einordnung der Effektstärke 83 5.1.5 Auffassung der Messdaten und Durchführung der Evaluation 83 5.2 Bewertung aus Sicht des einzelnen Messdatums 85 5.2.1 Wahl und Berechnung der Metriken zur Bewertung aus Messdatensicht 85 5.2.2 Ergebnisse zur Signifikanz und Effektstärke aus Messdatensicht 87 5.3 Bewertung aus Sicht des einzelnen Manövers 97 5.3.1 Wahl und Berechnung der Metriken zur Bewertung aus Manöversicht 98 5.3.2 Ergebnisse zur Signifikanz und Effektstärke aus Manöversicht 100 5.4 Fazit der Evaluation und ausgewählter Satz von Merkmalsgrößen 108 6 Wissensbasiert modellierte Klassifikation mittels eines Bayes’schen Netzes 113 6.1 Verfahren zur wissensbasiert modellierten Klassifikation 113 6.1.1 Fuzzy-Logik 114 6.1.2 Support-Vector-Machines und Relevance-Vector-Machines 117 6.1.3 Bayes‘sche Netze 120 6.1.4 Hidden-Markov-Models 125 6.1.5 Die Wahl eines Bayes’schen Netzes zur wissensbasierten Modellierung 129 6.2 Umsetzung einer Erkennung auf Basis eines Bayes‘schen Netzes 130 6.2.1 Aufbau des modellierten Bayes’schen Netzes 131 6.3 Übergang zu einer auf maschinellem Lernen beruhenden Klassifikation 133 7 Künstliche neuronale Netze als Verfahren zur maschinell optimierten Klassifikation 135 7.1 Biologisches Vorbild und Entstehungsgeschichte 135 7.2 Aufbau und Funktionsweise künstlicher neuronaler Netze 137 7.3 Netzschichten und Netztopologie 141 7.4 Parametrisierung 143 7.4.1 Maschinelles Lernen und Optimierung durch Fehlerminimierung 144 7.4.2 Das Gradientenverfahren 146 7.4.3 Gütefunktion und Delta-Lernregel 149 7.4.4 Backpropagation 151 7.4.5 Inkrementelles und stapelweises Training 153 7.5 Abbildung zeitlicher Zusammenhänge 154 7.5.1 Zeitverzögerte neuronale Netze 154 7.5.2 Rekurrente neuronale Netze 156 7.5.3 Das Problem der verschwindenden und explodierenden Gradienten 158 7.5.4 Long-Short-Term-Memory 158 8 Neuronales Netz zur Erkennung jedes Bevorstehens eines Fahrstreifenwechsels 161 8.1 Anforderungen an die Erkennung und ihre Umsetzung 161 8.1.1 Forderung von Effektivität 161 8.1.2 Forderung von Echtzeitfähigkeit 162 8.1.3 Forderung von Realitätsnähe 162 8.1.4 Forderung einer geringen Modellkomplexität 162 8.1.5 Forderung einer gruppenweisen Verarbeitung der Merkmalsgrößen 163 8.2 Aufbau und Funktionsweise des Netzes 164 8.3 Modellierung der Merkmalswerthistorie 166 9 Maschinelle Parametrisierung des neuronalen Netzes 171 9.1 Assistenzbedingte Anforderungen an das Verhalten des Erkennungssystems 171 9.2 Vorbetrachtungen zur Gesamtfehlerdefinition 172 9.2.1 Detektionswert und Detektionsfehler als binäre Größen 173 9.2.2 Bewertung der Güte eines binären Klassifikators 174 9.2.3 Gewichtung der Fehlerklassen in der Gesamtfehlerfunktion 175 9.3 Gesamtfehlerfunktion 177 9.4 Optimierungsverfahren 180 9.5 Aufteilung und Filterung der Messdaten 181 9.6 Technische Umsetzung und Durchführung der Parametrisierung 183 10 Realisiertes Gesamtsystem zur Erkennung bevorstehender Fahrstreifenwechsel 185 10.1 Aufbau und Implementierung des Erkennungssystems 185 11 Empirische Evaluation der realisierten Erkennungsleistung 191 11.1 Evaluationsmethode 191 11.2 Erkennungsleistung des Gesamtsystems 193 11.3 Erkennungsleistung der Merkmalsgruppen in Abhängigkeit des Zeithorizonts 195 11.4 Beitrag der Modellierung der Merkmalswerthistorie 199 11.5 Beitrag der gruppenübergreifenden Fusion von Merkmalsgrößen 202 11.6 Abhängigkeiten der Ergebnisse und sie beeinflussende Faktoren 204 12 Zusammenfassung und Ausblick 207 A Anhang 219 A.1 Tracking der Objekte im Fahrzeugumfeld 219 A.1.1 Prinzip des Unscented-Kalman-Filters und CTRV Bewegungsmodells 219 A.1.2 Probabilistische Multi-Sensor-Multi-Objekt-Messdatenzuordnung 222 A.1.3 Initialisierung, Nutzung und Auflösung von Objektschätzungen 228 A.2 Tabellen zur Signifikanz und Stärke des Effekts einzelner Merkmalsgrößen 229 Literaturverzeichnis 233 Abbildungsverzeichnis 251 Tabellenverzeichnis 253 / In order to enable driver assistance systems to effectively safeguard the still accident-prone manoeuvre of changing lanes against accidents, they need reliable and early knowledge of any situation that will be followed by such a manoeuvre. Only then they will be able to provide assistance in all the situations in which it is useful without having to accept inappropriate warnings or interventions in vehicle control and so losing acceptance or even becoming a safety risk themselves. The biggest challenge here is the complexity and variety of situations occurring in urban traffic. Current assistance systems either rely on the status of the direction indicator to activate their function or interpret the crossing of a lane boundary as a lane change that is already in progress. The former has been proven to be very unreliable, while the latter leaves hardly any time for early assistance tailored to the situation and driver. This work presents a functional approach to the automated detection of impending lane changes, implements it as an in-vehicle system and demonstrates its functionality by using real driving data. The detection approach centres on feature variables of the driving situation, driver behaviour and vehicle status that can be recorded from a vehicle and which are fused and classified with the help of artificial neural networks. The development of the algorithms and all investigations into their performance are based on measurement data of natural driving behaviour in traffic in a bigger city that were collected in an extensive naturalistic driving study with a test vehicle equipped with radar and camera sensors. Based on these data, parameters from a zone-based representation of the surroundings of the vehicle, the direction of the driver’s glances and vehicle state variables are first analysed for their suitability as feature variables. For different types of lane changes and at different time intervals to the manoeuvre it is shown to what extent there already is a correlation between the value of a variable and the imminence of a lane change. Using a selection of suitable feature variables the automated detection is finally implemented in various versions, parameterised by means of machine learning and evaluated across all types of lane change situations occurring in the data. Not only the detection performance of the overall system for different prediction horizons is investigated but also the detection with the feature variables of only one of the aspects driving situation, driver behaviour and vehicle status as well as the effect of including the feature value history.:Bibliographische Beschreibung i Inhaltsverzeichnis v Abkürzungs- und Symbolverzeichnis xi Abkürzungen xi Symbole xi Vorwort xiii 1 Einleitung 1 1.1 Motivation 1 1.2 Aktueller Stand der Forschung 4 1.3 Forschungslücken 11 1.4 Zielsetzung der Arbeit 12 1.5 Inhalt und Gliederung der Arbeit 14 1.6 Formelzeichen und Zahlenwerte 15 2 Die Fahrstreifenwechselsituation und der algorithmische Ansatz ihrer Erkennung 17 2.1 Grundlegende Begriffe 17 2.2 Modelle zur Beschreibung des Fahrstreifenwechsels 18 2.2.1 Das 3-Ebenen-Modell der kognitiven Prozesse zur Fahrzeugführung 18 2.2.2 Messbarkeit kognitiver Prozesse und der Fahrerintention 21 2.2.3 Das System Fahrer-Fahrzeug-Umwelt 23 2.2.4 Das Phasenmodell des Ablaufs eines Fahrstreifenwechsels 25 2.2.5 Das Modell der Fahrstreifenwechselsituation 26 2.3 Der prinzipielle Ansatz zur Erkennung von Fahrstreifenwechseln 30 2.4 Ein aspektübergreifender Erkennungsansatz im System Fahrer-Fahrzeug-Umwelt 31 3 Merkmalsgrößen zur Erkennung bevorstehender Fahrstreifenwechsel 35 3.1 Kriterien der Wahl der Merkmalsgrößen 35 3.2 Das Versuchsfahrzeug 36 3.2.1 Umfeldsensorik 37 3.2.2 Fahrersensorik 40 3.2.3 Rechentechnik 42 3.3 Definition und Berechnung der Merkmalsgrößen 42 3.3.1 Merkmalsgrößen des Fahrzeugumfelds 43 3.3.1.1 Existenz, Zugänglichkeit und Abstand benachbarter Fahrstreifen 43 3.3.1.2 Sensorübergreifendes Tracking umgebender Objekte als Grundlage 44 3.3.1.3 Einteilung des Fahrzeugumfelds in Zonen 45 3.3.1.4 Beschreibung der Belegung umgebender Zonen durch Objektparameter 49 3.3.1.5 Kurzreferenz zu den Merkmalsgrößen des Fahrzeugumfelds 57 3.3.2 Merkmalsgrößen des Fahrerverhaltens 58 3.3.2.1 Kopfposition und Kopflage 59 3.3.2.2 Blickbereiche 60 3.3.2.3 Kurzreferenz zu den Merkmalsgrößen des Fahrerverhaltens 63 3.3.3 Merkmalsgrößen des Fahrzeugstatus 64 3.3.3.1 Kurzreferenz zu den Merkmalsgrößen des Fahrzeugstatus 66 3.4 Synchrone Berechnung und Auswertung der Merkmalswerte 67 4 Realfahrtstudie zur Messdatenakquise 69 4.1 Studienteilnehmer 69 4.2 Studiendesign und Ablauf 70 4.3 Streckenverlauf 72 4.4 Erhobene Datensätze und Arten vorkommender Fahrstreifenwechselsituationen 73 5 Statistische Analyse und Einzelbewertung der Merkmalsgrößen 77 5.1 Metriken zur statistischen Bewertung der Merkmalsgrößen 77 5.1.1 Der t-Test 78 5.1.2 Die Effektstärke Cohen’s d 81 5.1.3 Die Effektstärke Hedges‘ g 82 5.1.4 Einordnung der Effektstärke 83 5.1.5 Auffassung der Messdaten und Durchführung der Evaluation 83 5.2 Bewertung aus Sicht des einzelnen Messdatums 85 5.2.1 Wahl und Berechnung der Metriken zur Bewertung aus Messdatensicht 85 5.2.2 Ergebnisse zur Signifikanz und Effektstärke aus Messdatensicht 87 5.3 Bewertung aus Sicht des einzelnen Manövers 97 5.3.1 Wahl und Berechnung der Metriken zur Bewertung aus Manöversicht 98 5.3.2 Ergebnisse zur Signifikanz und Effektstärke aus Manöversicht 100 5.4 Fazit der Evaluation und ausgewählter Satz von Merkmalsgrößen 108 6 Wissensbasiert modellierte Klassifikation mittels eines Bayes’schen Netzes 113 6.1 Verfahren zur wissensbasiert modellierten Klassifikation 113 6.1.1 Fuzzy-Logik 114 6.1.2 Support-Vector-Machines und Relevance-Vector-Machines 117 6.1.3 Bayes‘sche Netze 120 6.1.4 Hidden-Markov-Models 125 6.1.5 Die Wahl eines Bayes’schen Netzes zur wissensbasierten Modellierung 129 6.2 Umsetzung einer Erkennung auf Basis eines Bayes‘schen Netzes 130 6.2.1 Aufbau des modellierten Bayes’schen Netzes 131 6.3 Übergang zu einer auf maschinellem Lernen beruhenden Klassifikation 133 7 Künstliche neuronale Netze als Verfahren zur maschinell optimierten Klassifikation 135 7.1 Biologisches Vorbild und Entstehungsgeschichte 135 7.2 Aufbau und Funktionsweise künstlicher neuronaler Netze 137 7.3 Netzschichten und Netztopologie 141 7.4 Parametrisierung 143 7.4.1 Maschinelles Lernen und Optimierung durch Fehlerminimierung 144 7.4.2 Das Gradientenverfahren 146 7.4.3 Gütefunktion und Delta-Lernregel 149 7.4.4 Backpropagation 151 7.4.5 Inkrementelles und stapelweises Training 153 7.5 Abbildung zeitlicher Zusammenhänge 154 7.5.1 Zeitverzögerte neuronale Netze 154 7.5.2 Rekurrente neuronale Netze 156 7.5.3 Das Problem der verschwindenden und explodierenden Gradienten 158 7.5.4 Long-Short-Term-Memory 158 8 Neuronales Netz zur Erkennung jedes Bevorstehens eines Fahrstreifenwechsels 161 8.1 Anforderungen an die Erkennung und ihre Umsetzung 161 8.1.1 Forderung von Effektivität 161 8.1.2 Forderung von Echtzeitfähigkeit 162 8.1.3 Forderung von Realitätsnähe 162 8.1.4 Forderung einer geringen Modellkomplexität 162 8.1.5 Forderung einer gruppenweisen Verarbeitung der Merkmalsgrößen 163 8.2 Aufbau und Funktionsweise des Netzes 164 8.3 Modellierung der Merkmalswerthistorie 166 9 Maschinelle Parametrisierung des neuronalen Netzes 171 9.1 Assistenzbedingte Anforderungen an das Verhalten des Erkennungssystems 171 9.2 Vorbetrachtungen zur Gesamtfehlerdefinition 172 9.2.1 Detektionswert und Detektionsfehler als binäre Größen 173 9.2.2 Bewertung der Güte eines binären Klassifikators 174 9.2.3 Gewichtung der Fehlerklassen in der Gesamtfehlerfunktion 175 9.3 Gesamtfehlerfunktion 177 9.4 Optimierungsverfahren 180 9.5 Aufteilung und Filterung der Messdaten 181 9.6 Technische Umsetzung und Durchführung der Parametrisierung 183 10 Realisiertes Gesamtsystem zur Erkennung bevorstehender Fahrstreifenwechsel 185 10.1 Aufbau und Implementierung des Erkennungssystems 185 11 Empirische Evaluation der realisierten Erkennungsleistung 191 11.1 Evaluationsmethode 191 11.2 Erkennungsleistung des Gesamtsystems 193 11.3 Erkennungsleistung der Merkmalsgruppen in Abhängigkeit des Zeithorizonts 195 11.4 Beitrag der Modellierung der Merkmalswerthistorie 199 11.5 Beitrag der gruppenübergreifenden Fusion von Merkmalsgrößen 202 11.6 Abhängigkeiten der Ergebnisse und sie beeinflussende Faktoren 204 12 Zusammenfassung und Ausblick 207 A Anhang 219 A.1 Tracking der Objekte im Fahrzeugumfeld 219 A.1.1 Prinzip des Unscented-Kalman-Filters und CTRV Bewegungsmodells 219 A.1.2 Probabilistische Multi-Sensor-Multi-Objekt-Messdatenzuordnung 222 A.1.3 Initialisierung, Nutzung und Auflösung von Objektschätzungen 228 A.2 Tabellen zur Signifikanz und Stärke des Effekts einzelner Merkmalsgrößen 229 Literaturverzeichnis 233 Abbildungsverzeichnis 251 Tabellenverzeichnis 253

Page generated in 0.1069 seconds