• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 4
  • 4
  • 1
  • Tagged with
  • 30
  • 30
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Identification et mécanisme d'action de modulateurs sélectifs du transporteur ABCG2 responsable de la chimiorésistance de cellules cancéreuses / Identification and mechanism of selective modulators of the ABCG2 transporter conferring chemoresistance of cancer cells

Gauthier, Charlotte 27 March 2014 (has links)
ABCB1 (ou P-gp pour “glycoprotéine-P”), ABCC1 (ou MRP1 pour “Multidrug Resistance Protein 1”) et ABCG2 (ou BCRP pour “Breast Cancer Resistance Protein”) sont les trois transporteurs ABC humains les plus impliqués dans la chimiorésistance de certaines cellules cancéreuses. Deux stratégies sont possibles pour éradiquer cette résistance : 1) l'élimination ciblée des cellules surexprimant ces transporteurs, grâce au talon d'Achille qu'elles ont développé comme conséquence de leur chimiorésistance : la sensibilité collatérale (ou hypersensibilité), et 2) l'identification et l'optimisation d'inhibiteurs spécifiques. Lors de ce projet, nous nous sommes particulièrement intéressés au transporteur ABCG2. Dans un premier temps, comme la sensibilité collatérale avait été décrite dans le cas de la surexpression d'ABCB1 ou d'ABCC1, nous voulions vérifier son implication éventuelle dans le cas de la surexpression d'ABCG2. Sans pouvoir finalement conclure sur son existence, nous avons démontré que le mécanisme d'action ne pouvait pas impliquer un efflux massif de glutathion par la protéine, comme c'est le cas pour ABCC1, contrairement à certaines données de la littérature. Dans le cadre de la seconde approche, nous avons criblé différentes séries de composés, apparentés aux flavonoïdes, pour identifier des inhibiteurs spécifiques d'ABCG2. Nous avons ainsi pu mettre en évidence des relations structure-activité démontrant l'importance de certains substituants, notamment des groupements méthoxy, non seulement pour l'inhibition de l'activité du transporteur mais aussi pour la cytotoxicité des molécules. Ces études nous ont également permis de classer les inhibiteurs identifiés en 4 familles distinctes, quant à leur mécanisme d'action à la fois sur l'efflux de drogues comme la mitoxantrone et l'activité ATPasique d'ABCG2. Enfin, le meilleur inhibiteur spécifique d'ABCG2 décrit à ce jour, la chromone 6g (ou MBL-II-141) a été caractérisé plus en détails. Son efficacité in vivo pour empêcher la croissance de tumeurs humaines xénogreffées chez la souris nous incite à être optimistes sur la possibilité de proposer un inhibiteur d'ABCG2 comme candidat médicament pour de futures études précliniques / ABCB1, ABCC1 and ABCG2 are the 3 human ABC transporters mainly involved in chemoresistance of some cancer cells. Two strategies may eradicate such a resistance: 1) by selectively killing cells overexpressing these transporters thanks to the Achille’s heel they develop consequently to chemoresistance: the so called collateral sensitivity; 2) by the identification and optimization of specific inhibitors. This project has focused on the ABCG2 transporter. Firstly, since collateral sensitivity had already been described in ABCB1- and ABCC1-overexpressing cells, we wanted to verify if it might occur in cases of ABCG2 overexpression. Finally, we could not conclude on its occurence, but we demonstrated that the mechanism could not imply glutathione efflux as it is known to be the case for ABCC1, by contrast with some literature data. Concerning the second approach, we screened different flavonoid compounds to identify new specific ABCG2 inhibitors. We could propose some structure-activity relationships highlighting substituents critical role, particularly concerning methoxy groups, toward both inhibition of the transporter activity and intrinsic cytotoxicity of the molecules. These studies allowed us to propose a classification of the inhibitors into 4 families, thanks to their action mechanism on both inhibition of drug efflux and ATPase activitiy. Finally, the best specific ABCG2 inhibitor, chromone 6g (or MBL-II-141), has been further investigated. Its efficacy to prevent the growth of human tumors xenografted in mice, make us quite optimistic on the possibility to propose an ABCG2 inhibitor as a new drug candidate for future preclinical studies
22

Pulmonary Drug Absorption : In vitro and in vivo investigations of drug absorption across the lung barrier and its relation to drug physicochemical properties

Tronde, Ann January 2002 (has links)
<p>Although, pulmonary drug delivery is a well established means for targeting of drugs to the lungs for the treatment of respiratory diseases as well as for the systemic delivery of volatile anesthetic agents, drug absorption kinetics in the lung have not been subjected to extensive research. The main objective of this thesis was to investigate drug absorption characteristics of the lung barrier, using the isolated and perfused rat lung model and in vivo pharmacokinetic studies in rats. Physicochemically diverse drugs (i.e. atenolol, budesonide, cromolyn, cyanocobalamin, enalapril, enalaprilate, formoterol, imipramine, losartan, metoprolol, propranolol, talinolol, terbutaline, and the tetrapeptide TArPP) were used as model compounds. In connection to these investigations, a nebulization catheter device was successfully adapted and evaluated as a new technique for delivery of defined aerosol doses to the rat lung. In addition, a physicochemical profile of the inhaled drugs on the market worldwide during 2001 was made.</p><p>The pulmonary first-order absorption rate constant and bioavailability were found to correlate to the drug lipophilicity, the molecular polar surface area, and the apparent permeability of Caco-2 cell monolayers. In contrast to the intestinal mucosa and the blood-brain barrier, the pulmonary epithelium was highly permeable to drugs with a high molecular polar surface area. Accordingly, a small hydrophilic tetrapeptide (oral bioavailability ~0.5%) showed a complete bioavailability after pulmonary delivery to rats in vivo. Regional differences in bioavailability, absorption rate, and first-pass metabolism of the peptide was demonstrated after targeted delivery to different regions of the respiratory tract in rats in vivo. The high pulmonary bioavailability of the efflux transporter substrates losartan and talinolol provides functional evidence for an insignificant role of efflux transporters such as P-glycoprotein in limiting the absorption of these drugs from the rat lung. </p><p>The results of this thesis demonstrate that the lung efficiently absorbs drugs with a wide range of lipophilicity. The pulmonary route should thus be regarded as a potential alternative for administration of drugs with low oral bioavailability. In addition, drug inhalation present an opportunity to attain a more rapid onset of drug action than can be attained by the oral route.</p>
23

ATP-Binding Cassette Efflux Transporters and Passive Membrane Permeability in Drug Absorption and Disposition

Matsson, Pär January 2007 (has links)
<p>Transport into and across the cells of the human body is a prerequisite for the pharmacological action of drugs. Passive membrane permeability and active transport mechanisms are major determinants of the intestinal absorption of drugs, as well as of the distribution to target tissues and the subsequent metabolism and excretion from the body. In this thesis, the role of ATP-binding cassette (ABC) transporters and passive permeability on drug absorption and disposition was investigated. Particular emphasis was placed on defining the molecular properties important for these transport mechanisms. </p><p>The influence of different transport pathways on predictions of intestinal drug absorption was investigated using experimental models of different complexity. Experimental models that include the paracellular pathway gave improved predictions of intestinal drug absorption, especially for incompletely absorbed drugs. Further, the inhibition of the ABC transporters breast cancer resistance protein (BCRP/ABCG2) and multidrug-resistance associated protein 2 (MRP2/ABCC2) was experimentally investigated using structurally diverse datasets that were representative of orally administered drugs. A large number of previously unknown inhibitors were identified among registered drugs, but their clinical relevance for drug-drug interactions and drug-induced toxicity remains to be determined. The majority of the inhibitors affected all three major ABC transporters BCRP, MRP2 and P-glycoprotein (P gp/ABCB1), and these multi-specific inhibitors were found to be enriched in highly lipophilic weak bases. </p><p>To summarize, the present work has led to an increased knowledge of the molecular features of importance for ABC transporter inhibition and passive membrane permeability. Previously unknown ABC transporter inhibitors were identified and predictive computational models were developed for the different drug transport mechanisms. These could be valuable tools to assist in the prioritization of experimental efforts in early drug discovery.</p>
24

Pulmonary Drug Absorption : In vitro and in vivo investigations of drug absorption across the lung barrier and its relation to drug physicochemical properties

Tronde, Ann January 2002 (has links)
Although, pulmonary drug delivery is a well established means for targeting of drugs to the lungs for the treatment of respiratory diseases as well as for the systemic delivery of volatile anesthetic agents, drug absorption kinetics in the lung have not been subjected to extensive research. The main objective of this thesis was to investigate drug absorption characteristics of the lung barrier, using the isolated and perfused rat lung model and in vivo pharmacokinetic studies in rats. Physicochemically diverse drugs (i.e. atenolol, budesonide, cromolyn, cyanocobalamin, enalapril, enalaprilate, formoterol, imipramine, losartan, metoprolol, propranolol, talinolol, terbutaline, and the tetrapeptide TArPP) were used as model compounds. In connection to these investigations, a nebulization catheter device was successfully adapted and evaluated as a new technique for delivery of defined aerosol doses to the rat lung. In addition, a physicochemical profile of the inhaled drugs on the market worldwide during 2001 was made. The pulmonary first-order absorption rate constant and bioavailability were found to correlate to the drug lipophilicity, the molecular polar surface area, and the apparent permeability of Caco-2 cell monolayers. In contrast to the intestinal mucosa and the blood-brain barrier, the pulmonary epithelium was highly permeable to drugs with a high molecular polar surface area. Accordingly, a small hydrophilic tetrapeptide (oral bioavailability ~0.5%) showed a complete bioavailability after pulmonary delivery to rats in vivo. Regional differences in bioavailability, absorption rate, and first-pass metabolism of the peptide was demonstrated after targeted delivery to different regions of the respiratory tract in rats in vivo. The high pulmonary bioavailability of the efflux transporter substrates losartan and talinolol provides functional evidence for an insignificant role of efflux transporters such as P-glycoprotein in limiting the absorption of these drugs from the rat lung. The results of this thesis demonstrate that the lung efficiently absorbs drugs with a wide range of lipophilicity. The pulmonary route should thus be regarded as a potential alternative for administration of drugs with low oral bioavailability. In addition, drug inhalation present an opportunity to attain a more rapid onset of drug action than can be attained by the oral route.
25

ATP-Binding Cassette Efflux Transporters and Passive Membrane Permeability in Drug Absorption and Disposition

Matsson, Pär January 2007 (has links)
Transport into and across the cells of the human body is a prerequisite for the pharmacological action of drugs. Passive membrane permeability and active transport mechanisms are major determinants of the intestinal absorption of drugs, as well as of the distribution to target tissues and the subsequent metabolism and excretion from the body. In this thesis, the role of ATP-binding cassette (ABC) transporters and passive permeability on drug absorption and disposition was investigated. Particular emphasis was placed on defining the molecular properties important for these transport mechanisms. The influence of different transport pathways on predictions of intestinal drug absorption was investigated using experimental models of different complexity. Experimental models that include the paracellular pathway gave improved predictions of intestinal drug absorption, especially for incompletely absorbed drugs. Further, the inhibition of the ABC transporters breast cancer resistance protein (BCRP/ABCG2) and multidrug-resistance associated protein 2 (MRP2/ABCC2) was experimentally investigated using structurally diverse datasets that were representative of orally administered drugs. A large number of previously unknown inhibitors were identified among registered drugs, but their clinical relevance for drug-drug interactions and drug-induced toxicity remains to be determined. The majority of the inhibitors affected all three major ABC transporters BCRP, MRP2 and P-glycoprotein (P gp/ABCB1), and these multi-specific inhibitors were found to be enriched in highly lipophilic weak bases. To summarize, the present work has led to an increased knowledge of the molecular features of importance for ABC transporter inhibition and passive membrane permeability. Previously unknown ABC transporter inhibitors were identified and predictive computational models were developed for the different drug transport mechanisms. These could be valuable tools to assist in the prioritization of experimental efforts in early drug discovery.
26

In vitro and in silico prediction of drug-drug interactions with transport proteins

Ahlin, Gustav January 2009 (has links)
Drug transport across cells and cell membranes in the human body is crucial for the pharmacological effect of drugs. Active transport governed by transport proteins plays an important role in this process. A vast number of transport proteins with a wide tissue distribution have been identified during the last 15 years. Several important examples of their role in drug disposition and drug-drug interactions have been described to date. Investigation of drug-drug interactions at the transport protein level are therefore of increasing interest to the academic, industrial and regulatory research communities. The gene expression of transport proteins involved in drug transport was investigated in the jejunum, liver, kidney and colon to better understand their influence on the ADMET properties of drugs. In addition, the gene and protein expression of transport proteins in cell lines, widely used for predictions of drug transport and metabolism, was examined. The substrate and inhibitor heterogeneity of many transport proteins makes it difficult to foresee whether the transport proteins will cause drug-drug interactions. Therefore, in vitro assays for OCT1 and OATP1B1, among the highest expressed transport proteins in human liver, were developed to allow investigation of the inhibitory patterns of these proteins. These assays were used to investigate two data sets, consisting of 191 and 135 registered drugs and drug-like molecules for the inhibition of OCT1 and OATP1B1, respectively. Numerous new inhibitors of the transport proteins were identified in the data sets and the properties governing inhibition were determined. Further, antidepressant drugs and statins displayed strong inhibition of OCT1 and OATP1B1, respectively. The inhibition data was used to develop predictive in silico models for each of the two transport proteins. The highly polymorphic nature of some transport proteins has been shown to affect drug response and may lead to an increased risk of drug-drug interactions, and therefore, the OCT1 in vitro assay was used to study the effect of common genetic variants of OCT1 on drug inhibition and drug-drug interactions. The results indicated that OCT1 variants with reduced function were more susceptible to inhibition. Further, a drug-drug interaction of potential clinical significance in the genetic OCT1 variant M420del was proposed. In summary, gene expression of transport proteins was investigated in human tissues and cell lines. In vitro assays for two of the highest expressed liver transport proteins were used to identify previously unknown SLC transport protein inhibitors and to develop predictive in silico models, which may detect previously known drug-drug interactions and enable new ones to be identified at the transport protein level. In addition, the effect of genetic variation on inhibition of the OCT1 was investigated.
27

Transport and lymphatic uptake of monoclonal antibodies after subcutaneous injection

Ehsan Rahimi (11892065) 02 August 2023 (has links)
<p>The subcutaneous injection has emerged as a common approach for self-administration of biotherapeutics due to the patient comfort and cost-effectiveness. However, the available knowledge about transport and absorption of these agents after subcutaneous injection is limited. Here we aim to find drug distribution in the tissue and lymphatic uptake after subcutaneous (SC) injection. In the first part of the study, a mathematical framework to study the subcutaneous drug delivery from injection to lymphatic uptake is presented. A three-dimensional poroelastic model is exploited to find the biomechanical response of the tissue by taking into account tissue deformation during the injection. The results show that including tissue deformability noticeably changes tissue poromechanical response due to the significant dependence of interstitial pressure on tissue deformation. Moreover, the importance of the amount of lymph fluid at the injection site and injection rate on the drug uptake to lymphatic capillaries is highlighted. Finally, the variability of lymphatic uptake due to uncertainty in parameters, including tissue poromechanical and lymphatic absorption parameters, is evaluated. It is found that interstitial pressure due to injection is the major contributing factor in short-term lymphatic absorption, while the amount of lymph fluid at the site of injection determines the long-term absorption of the drug. Finally, it is shown that the lymphatic uptake results are consistent with experimental data available in the literature.</p><p>In the second part, drug transport and distribution in different tissue layers are studied. A single-layer model of the tissue as a base study was first explored. During injection, the difference between the permeability of the solvent and solute results in a higher drug concentration proportional to the inverse of the permeability ratio. Then the effects of layered tissue properties with primary layers, including epidermis, dermis, subcutaneous, and muscle layers, on tissue biomechanical response to injection and drug transport are studied. The drug distributes mainly in the SQ layer due to its lower elastic moduli. Finally, the effect of secondary tissue elements like the deep fascia layer and the network of septa fibers inside the SQ tissue is investigated. The Voronoi algorithm is exploited to create random geometry of the septa network. It is shown how drug molecules accumulate around these tissue components as observed in experimental SC injection. Next, the effect of injection rate on drug concentration is studied. Higher injection rates slightly increase the drug concentration around septa fibers. Finally, it is demonstrated that the concentration-dependent viscosity increases the concentration of biotherapeutics in the direction of septa fibers.</p><p>In the third part of this thesis, a poro-hyperelastic model of the tissue is exploited to find the biomechanical response of the tissue together with a transport model based on an advection-diffusion equation in large-deformation poro-hyperelastic Media. The process of mAbs transport to the lymphatic system is explored. This process has two major parts. First, the initial phase, where mAbs are dispersed in the tissue as a result of momentum exerted by injection. This stage last for only a few minutes after the injection. Then there is the second stage, which can take tens of hours, and as a result, monoclonal antibodies (mAbs) molecules are transported from the subcutaneous layer towards initial lymphatics in the dermis to enter the lymphatic system. In third chapter, both stages are studied. The process of plume formation, interstitial pressure, and velocity development is explored. Then the effect of the injection device, injection site, and sensitivity of long-term lymphatic uptake due to variability in permeability, diffusivity, viscosity, and binding of mAbs are investigated. Then the results are used to find an equivalent lymphatic uptake coefficient that is widely used in pharmacokinetic (PK) models to study the absorption of mAbs. We show that the injection rate is the least, and the injection site is the most important parameter in the uptake of mAbs. Injection depth and mAbs dose also significantly alter lymphatic absorption. Finally, the computational model is validated against experimental studies available in the literature.</p>
28

Les répercussions de l’insuffisance rénale chronique sur le transport des médicaments

Naud, Judith 05 1900 (has links)
L’insuffisance rénale chronique (IRC) affecte 13 % de la population américaine et son incidence ne cesse d’augmenter. Malgré un ajustement des doses de médicaments administrés en fonction du taux de filtration glomérulaire du patient urémique, près de 40 % des patients reçoivent une dose trop élevée en raison de modifications de l’élimination extrarénale des médicaments chez ces patients. Il est connu que l’IRC affecte l’élimination métabolique des médicaments par les cytochromes P450 et les enzymes de biotransformation de phase II. Nous avons aussi démontré, chez le rat, que l’IRC affecte l’expression et l’activité de transporteurs de médicaments intestinaux entraînant une augmentation de la biodisponibilité de certains médicaments. On retrouve des transporteurs de médicaments dans de nombreux organes comme le foie, les reins et la barrière hématoencéphalique (BHE) où ils jouent des rôles importants dans les éliminations biliaire et rénale et la pénétration des médicaments au cerveau. Le but de ce travail était de mesurer, chez des rats néphrectomisés, les impacts de l’IRC sur l’expression protéique et génique et l’activité des transporteurs de médicaments hépatiques, rénaux et cérébraux. Les transporteurs étudiés sont de la famille des transporteurs ABC (P-glycoprotéine, multidrug-resistance related protein, breast cancer resistance protein) ou des solute carriers (organic anion transporter, organic anion transporting protein). Aussi, une étude réalisée chez l’humain visait à évaluer la pharmacocinétique de deux médicaments : la fexofénadine, un médicament majoritairement transporté, et le midazolam, un substrat du cytochrome P450 3A4, chez des sujets dialysés. Nos résultats montrent que, chez le rat, l’IRC entraîne des modulations de l’expression des transporteurs d’influx et d’efflux hépatiques pouvant entraîner des diminutions du métabolisme hépatique et de l’excrétion biliaire des médicaments. Dans le rein, nous avons démontré des modulations de l’expression des transporteurs de médicaments. Nous avons aussi démontré que l’IRC diminue l’élimination urinaire de la rhodamine 123 et favorise l’accumulation intrarénale de médicaments transportés comme la benzylpénicilline et la digoxine. À la BHE, nous avons démontré des diminutions de l’expression des transporteurs de médicaments. Toutefois, nous n’avons pas observé d’accumulation intracérébrale de trois substrats utilisés (digoxine, doxorubicine et vérapamil) et même une diminution de l’accumulation intracérébrale de la benzylpénicilline. Il semble donc que, malgré les modulations de l’expression des différents transporteurs de médicaments, l’intégrité et la fonction de la BHE soient conservées en IRC. Chez l’humain, nous avons démontré une augmentation de la surface sous la courbe de la fexofénadine chez les sujets dialysés, comparativement aux témoins, suggérant une altération des mécanismes de transport des médicaments chez ces patients. Nous n’avons, toutefois, pas observé de modification de la pharmacocinétique du midazolam chez les patients dialysés, suggérant une activité métabolique normale chez ces patients. Un ou des facteurs s’accumulant dans le sérum des sujets urémiques semblent responsables des modulations de l’expression et de l’activité des transporteurs de médicaments observées chez le rat et l’humain. Ces travaux mettent en évidence une nouvelle problématique chez les sujets urémiques. Nous devons maintenant identifier les mécanismes impliqués afin d’éventuellement développer des stratégies pour prévenir la toxicité et la morbidité chez ces patients. / Chronic renal failure (CRF) affects 13% of the American population and its incidence is rising. Despite dose adjustment of drugs administered to CRF patients according to their glomerular filtration rate, nearly 40% of patients receive up to 6,45-times the recommended dose due to modifications in the extra-renal elimination of drugs. It is known that CRF affects the metabolic elimination of drugs via cytochrome P450s and Phase II biotransformation enzymes. Also, we showed modulations in the expression and activity of intestinal drug transporters in CRF rats that could lead to increases in the bioavailability of drugs. Drug transporters are expressed in various organs including the liver, the kidneys and the blood-brain barrier (BBB) where they play important roles in the biliary and renal elimination, and the brain penetration of drugs. The objective of this work was to measure, using a rat model of CRF, the impacts of CRF on the protein and mRNA expression and the activity of liver, kidney and brain drug transporters. We studied ABC transporters (P-glycoprotein, multidrug-resistance related protein, breast cancer resistance protein) and solute carriers (organic anion transporters, organic anion transporting proteins). Also, a study conducted in human aimed to evaluate the pharmacokinetics of two drugs: fexofenadine, a transported drug, and midazolam, a substrate of cytochrome P450 3A4, in dialyzed patients. In rats, our results show modulations in the expression and activity of hepatic influx and efflux drug transporters that could lead to decreases in the hepatic metabolism and biliary excretion of drugs. In the kidney, we demonstrated modulations in the expression of drug transporters in CRF rats. We also demonstrated that CRF causes a reduction of the urinary elimination of rhodamine 123, a P-glycoprotein substrate, and the intra-renal accumulation of at least two transported drugs: benzylpenicillin and digoxin. Finally, we demonstrated decreases in the expression of influx and efflux drug transporters at the BBB of CRF rats. However, these decreases did not correlate with in vivo changes since BBB permeability of benzylpenicillin was decreased in CRF rats while digoxin, doxorubicin and verapamil permeabilities were unchanged. It thus appears that, even with decreased drug transporters, BBB integrity and function is conserved in CRF. In human, we showed an increase in the area under the curve of fexofenadine in dialyzed subjects compared to healthy controls, suggesting alterations of drug transport mechanisms in these patients. However, we observed no modifications in the pharmacokinetics of midazolam in dialyzed patients, suggesting a normal metabolic activity in these patients. Results from in vitro studies suggest that one or many uremic factors accumulating in the serum of uremic rats and patients are responsible for the observed modulations in drug transporter expression and activity observed in rat and human. This work demonstrates the impacts of CRF on the expression and activity of drug transporters and how they could affect drug pharmacokinetics in patients. Now, the mechanisms leading to these modulations need to be identified in order to eventually develop strategies to prevent drug toxicity and morbidity in uremic patients.
29

Studium lékových interakcí antivirotik na střevních transportérech / Study of drug-drug interactions of antiviral drugs on intestinal transporters

Záboj, Zdeněk January 2019 (has links)
Charles University Faculty of Pharmacy in Hradec Králové Department of Pharmacology & Toxicology Student: Zdeněk Záboj Supervisor: PharmDr. Lukáš Červený, Ph.D. Title of diploma thesis: Study of drugs interactions of antiviral drugs with intestinal transporters Sofosbuvir is an antiviral agent widely used in the treatment of chronic hepatitis C. This orally administered prodrug is a designed substrate of ATP-binding (ABC) efflux transporters, P- glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2). ABCB1 and ABCG2 are important determinants of intestinal absorption and are the site of significant pharmacokinetic drug interactions, leading to changes in drug exposure. Pharmacokinetic drug interactions may be undesirable (increasing the toxicity of the treatment) or desirable (allowing dose reduction). Because sofosbuvir is often administered in combination regimens with other anti(retro)virotics, the aim of this thesis was to study the ability to enhance intestinal absorption of sofosbuvir. To study the pharmacokinetic drug interactions on ABCB1 and ABCG2, a widely established in vitro bi-directional transport method through a polarized monolayer formed by the Caco-2 cell line derived from colorectal cancer has been used. We analyzed the drug interactions of sofosbuvir on these efflux...
30

Les répercussions de l’insuffisance rénale chronique sur le transport des médicaments

Naud, Judith 05 1900 (has links)
L’insuffisance rénale chronique (IRC) affecte 13 % de la population américaine et son incidence ne cesse d’augmenter. Malgré un ajustement des doses de médicaments administrés en fonction du taux de filtration glomérulaire du patient urémique, près de 40 % des patients reçoivent une dose trop élevée en raison de modifications de l’élimination extrarénale des médicaments chez ces patients. Il est connu que l’IRC affecte l’élimination métabolique des médicaments par les cytochromes P450 et les enzymes de biotransformation de phase II. Nous avons aussi démontré, chez le rat, que l’IRC affecte l’expression et l’activité de transporteurs de médicaments intestinaux entraînant une augmentation de la biodisponibilité de certains médicaments. On retrouve des transporteurs de médicaments dans de nombreux organes comme le foie, les reins et la barrière hématoencéphalique (BHE) où ils jouent des rôles importants dans les éliminations biliaire et rénale et la pénétration des médicaments au cerveau. Le but de ce travail était de mesurer, chez des rats néphrectomisés, les impacts de l’IRC sur l’expression protéique et génique et l’activité des transporteurs de médicaments hépatiques, rénaux et cérébraux. Les transporteurs étudiés sont de la famille des transporteurs ABC (P-glycoprotéine, multidrug-resistance related protein, breast cancer resistance protein) ou des solute carriers (organic anion transporter, organic anion transporting protein). Aussi, une étude réalisée chez l’humain visait à évaluer la pharmacocinétique de deux médicaments : la fexofénadine, un médicament majoritairement transporté, et le midazolam, un substrat du cytochrome P450 3A4, chez des sujets dialysés. Nos résultats montrent que, chez le rat, l’IRC entraîne des modulations de l’expression des transporteurs d’influx et d’efflux hépatiques pouvant entraîner des diminutions du métabolisme hépatique et de l’excrétion biliaire des médicaments. Dans le rein, nous avons démontré des modulations de l’expression des transporteurs de médicaments. Nous avons aussi démontré que l’IRC diminue l’élimination urinaire de la rhodamine 123 et favorise l’accumulation intrarénale de médicaments transportés comme la benzylpénicilline et la digoxine. À la BHE, nous avons démontré des diminutions de l’expression des transporteurs de médicaments. Toutefois, nous n’avons pas observé d’accumulation intracérébrale de trois substrats utilisés (digoxine, doxorubicine et vérapamil) et même une diminution de l’accumulation intracérébrale de la benzylpénicilline. Il semble donc que, malgré les modulations de l’expression des différents transporteurs de médicaments, l’intégrité et la fonction de la BHE soient conservées en IRC. Chez l’humain, nous avons démontré une augmentation de la surface sous la courbe de la fexofénadine chez les sujets dialysés, comparativement aux témoins, suggérant une altération des mécanismes de transport des médicaments chez ces patients. Nous n’avons, toutefois, pas observé de modification de la pharmacocinétique du midazolam chez les patients dialysés, suggérant une activité métabolique normale chez ces patients. Un ou des facteurs s’accumulant dans le sérum des sujets urémiques semblent responsables des modulations de l’expression et de l’activité des transporteurs de médicaments observées chez le rat et l’humain. Ces travaux mettent en évidence une nouvelle problématique chez les sujets urémiques. Nous devons maintenant identifier les mécanismes impliqués afin d’éventuellement développer des stratégies pour prévenir la toxicité et la morbidité chez ces patients. / Chronic renal failure (CRF) affects 13% of the American population and its incidence is rising. Despite dose adjustment of drugs administered to CRF patients according to their glomerular filtration rate, nearly 40% of patients receive up to 6,45-times the recommended dose due to modifications in the extra-renal elimination of drugs. It is known that CRF affects the metabolic elimination of drugs via cytochrome P450s and Phase II biotransformation enzymes. Also, we showed modulations in the expression and activity of intestinal drug transporters in CRF rats that could lead to increases in the bioavailability of drugs. Drug transporters are expressed in various organs including the liver, the kidneys and the blood-brain barrier (BBB) where they play important roles in the biliary and renal elimination, and the brain penetration of drugs. The objective of this work was to measure, using a rat model of CRF, the impacts of CRF on the protein and mRNA expression and the activity of liver, kidney and brain drug transporters. We studied ABC transporters (P-glycoprotein, multidrug-resistance related protein, breast cancer resistance protein) and solute carriers (organic anion transporters, organic anion transporting proteins). Also, a study conducted in human aimed to evaluate the pharmacokinetics of two drugs: fexofenadine, a transported drug, and midazolam, a substrate of cytochrome P450 3A4, in dialyzed patients. In rats, our results show modulations in the expression and activity of hepatic influx and efflux drug transporters that could lead to decreases in the hepatic metabolism and biliary excretion of drugs. In the kidney, we demonstrated modulations in the expression of drug transporters in CRF rats. We also demonstrated that CRF causes a reduction of the urinary elimination of rhodamine 123, a P-glycoprotein substrate, and the intra-renal accumulation of at least two transported drugs: benzylpenicillin and digoxin. Finally, we demonstrated decreases in the expression of influx and efflux drug transporters at the BBB of CRF rats. However, these decreases did not correlate with in vivo changes since BBB permeability of benzylpenicillin was decreased in CRF rats while digoxin, doxorubicin and verapamil permeabilities were unchanged. It thus appears that, even with decreased drug transporters, BBB integrity and function is conserved in CRF. In human, we showed an increase in the area under the curve of fexofenadine in dialyzed subjects compared to healthy controls, suggesting alterations of drug transport mechanisms in these patients. However, we observed no modifications in the pharmacokinetics of midazolam in dialyzed patients, suggesting a normal metabolic activity in these patients. Results from in vitro studies suggest that one or many uremic factors accumulating in the serum of uremic rats and patients are responsible for the observed modulations in drug transporter expression and activity observed in rat and human. This work demonstrates the impacts of CRF on the expression and activity of drug transporters and how they could affect drug pharmacokinetics in patients. Now, the mechanisms leading to these modulations need to be identified in order to eventually develop strategies to prevent drug toxicity and morbidity in uremic patients.

Page generated in 0.0619 seconds