Spelling suggestions: "subject:"duchenne abuscular dystrophy"" "subject:"duchenne emuscular dystrophy""
71 |
Tratamento da distrofinopatia em camundongos mdx : vantagens da associação entre doxiciclina e deflazacorte sobre a monoterapia com o deflazacorte / Treatment of dystrophinopathy in mdx mice : advantages of the association between doxycycline and deflazacort over monotherapy with deflazacortPereira, Juliano Alves, 1983- 17 April 2015 (has links)
Orientador: Humberto Santo Neto / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-27T14:32:48Z (GMT). No. of bitstreams: 1
Pereira_JulianoAlves_D.pdf: 20174519 bytes, checksum: cb29b0264ecac77cff508a6dbc1ec270 (MD5)
Previous issue date: 2015 / Resumo: Na distrofia muscular de Duchenne (DMD) e no camundongo mdx, a ausência da distrofina no músculo esquelético e cardíaco, desestabiliza o sarcolema e leva a um aumento do influxo de cálcio e consequente mionecrose. A reação inflamatória induzida para remover a fibra muscular necrótica, ativa a produção de citocinas pró-inflamatórias, que por sua vez aumenta o estresse oxidativo e ultimamente levando a formação de fibrose intersticial. A terapia padrão ouro usada no tratamento da DMD é o corticosteroide, tal como a prednisona e o deflazacorte (DFZ). No entanto, eles apresentam valor terapêutico limitado, e sua combinação com drogas já aprovada para o tratamento de outras doenças humanas, como a doxiciclina (DOX) poderia ser uma alternativa no tratamento clínico em pacientes DMD. No presente estudo, investigamos os benefícios da terapia do DFZ associado a DOX em relação ao tratamento padrão ouro DFZ, na atenuação da evolução da distrofinopatia em músculo esquelético e cardíaco de camundongos mdx. As terapias com cada droga isoladamente (DOX 6 mg/mL), (DFZ 1,2 mg/Kg) e com a combinação DOX (6 mg/mL) / DFZ (1,2 mg/Kg) foram administradas na água de beber para mãe e seus recém nascidos, com início no dia do nascimento no grupo tratado de curta duração por 36 dias. No tratamento de longa duração (9 meses), as mesmas terapias e as mesmas doses foram administradas na água de beber, com início aos 8 meses até os 17 meses de idade. Os parâmetros histopatológicos, funcionais e bioquímicos foram avaliados no músculo esquelético (bíceps braquial e diafragma) e coração. A DOX/DFZ apresentou-se vantajosa em relação a monoterapia com DFZ tanto na proteção inicial contra a mionecrose, quanto em retardar a progressão da distrofinopatia nos músculos esqueléticos. Mostrou-se também vantajosa em relação ao DFZ na proteção cardíaca. A combinação da DOX com o DFZ, já utilizada no tratamento de algumas doenças emerge como um tratamento potencialmente útil para DMD / Abstract: In Duchenne Muscular Dystrophy (DMD) and in mdx mice, absence of dystrophin in skeletal and cardiac muscle disrupts the sarcolemma and leads to increased calcium influx and consequent myonecrosis. The inflammatory reaction elicited to remove muscle fiber debris results in production of pro-inflammatory cytokines which, in turn, increases oxidative stress, and ultimately causes interstitial fibrosis. The gold standard therapy used in the treatment of DMD consists in the use of corticosteroids such as prednisone and deflazacort (DFZ). However, these drugs have limited therapeutic value and their combination with drugs already approved for the treatment of other human diseases such as doxycycline (DOX) could be beneficial in the clinical management of DMD patients. In this study, we investigated the benefits of the association between DFZ and DOX over therapy with DFZ (gold standard), in mitigating the evolution of dystrophinopathy in skeletal and heart muscle in mdx mice. The treatments with the single drug (DOX 6 mg/mL), (DFZ 1,2 mg/Kg) or DOX (6 mg/mL) / DFZ (1,2 mg/Kg) combination were administered in drinking water to mothers and newborns, starting on the day of birth in the short-term treatment group for a period of 36 days. In the long-term treatment group, which was composed of mice 17 months of age, the same treatments were administered in drinking water to mdx mice for 9 months, starting on their 8 month of birth. Histopathological, functional and biochemical parameters were evaluated in skeletal (biceps brachii and diaphragm) and cardiac muscle. DOX/DFZ combination was found to be advantageous over monotherapy with DFZ either by promoting an initial protection against myonecrosis or by slowing the progression of dystrophinopathy of skeletal muscles. It was also advantageous for cardiac protection. The combination of DOX with DFZ, which has already been used in the treatment of some diseases, has emerged as a potential useful therapy for DMD / Doutorado / Anatomia / Doutor em Biologia Celular e Estrutural
|
72 |
The therapeutic potential of the CRISPR-Cas9 system for treating Duchenne muscular dystrophyRubin, David Sweeney 05 November 2016 (has links)
The CRISPR-Cas9 gene editing system gives researchers the ability to manipulate and edit DNA with unprecedented ease and precision. It was discovered in bacteria as part of their adaptive immune system, but has been reengineered to target any double stranded DNA. This burgeoning molecular tool has created great excitement as scientists are rapidly adopting it to study fields including human gene therapy, disease modeling, agriculture, gene drive in mosquitos, and many others. This paper will explore the potential impact of CRISPR-Cas9 in human therapeutics. Specifically, the potential of CRISPR-Cas9 to treat Duchenne Muscular Dystrophy will be examined. In several ways, this debilitating degenerative disease is an ideal candidate for gene-editing with CRISPR-Cas9. Recent progress in the lab has demonstrated the gene editing system’s ability to rescue dystrophin protein levels in vivo. Although CRISPR-Cas9 holds great promise for previously incurable diseases, there are still many limitations that must be overcome before the gene editing system can be used in patients. This paper will discuss these barriers as well as recent advancements to overcome them.
|
73 |
The intracellular Ca²⁺ concentration is elevated in cardiomyocytes differentiated from hiPSCs derived from a Duchenne muscular dystrophy patient / デュシェンヌ型筋ジストロフィー疾患特異的iPS細胞由来分化心筋細胞における細胞内カルシウムイオン濃度上昇Tsurumi, Fumitoshi 25 May 2020 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(医学) / 乙第13354号 / 論医博第2200号 / 新制||医||1044(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 長船 健二, 教授 木村 剛, 教授 羽賀 博典 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
74 |
Elucidating Regulatory Mechanisms of Cardiac CaV1.2 and NaV1.5 ChannelsRoybal, Daniel January 2021 (has links)
In the heart, sodium (Na+) influx via NaV1.5 channels initiates the action potential, and calcium (Ca2+) influx via CaV1.2 channels has a key role in excitation-contraction coupling and determining the plateau phase of the action potential. Mutations in the genes that encode these ion channels or in proteins that modulate them are linked to arrhythmias and cardiomyopathy, underscoring the need for characterizing mechanisms of regulation. The work presented in this thesis is subdivided into three different chapters, each with a distinct focus on ion channel modulation.
The first chapter details our investigation of the functional PKA phosphorylation target for β-adrenergic regulation of CaV1.2. Physiologic β-adrenergic activation of PKA during the sympathetic “fight or flight” response increases Ca2+ influx through CaV1.2 in cardiomyocytes, leading to increased cardiac contractility. The molecular mechanisms of β-adrenergic regulation of CaV1.2 in cardiomyocytes are incompletely known, but activation of PKA is required for this process. Recent data suggest that β-adrenergic regulation of CaV1.2 does not require any combination of PKA phosphorylation sites conserved in human, guinea pig, rabbit, rat, and mouse α1C subunits. To test if any non-conserved sites are required for regulation, we generated mice with inducible cardiac-specific expression of α1C with mutations at both conserved and non- conserved predicted PKA phosphorylation sites (35-mutant α1C). Additionally, we createdanother mouse with inducible cardiac-specific expression of β2 with mutations at predicted PKA phosphorylation sites (28-mutant β2B). In each of these mice, β-adrenergic stimulation of Ca²⁺ current was unperturbed. Finally, to test the hypothesis that redundant functional PKA phosphorylation sites exist on the α1C subunit and β2 subunit or that several sites confer incremental regulation, we crossed the 35-mutant α1C mice with the 28-mutant β2B mice to generate offspring expressing both mutant subunits. In these offspring, intact regulation was observed. These results provide the definitive answer that phosphorylation of the α1C subunit or β2 subunit is not required for β-adrenergic regulation of CaV1.2 in the heart.
In the second chapter, we study the influence of calmodulin and fibroblast growth homologous factor (FHF) FGF13 on late Na+ current. Studies in heterologous expression systems show that the Ca²⁺-binding protein calmodulin plays a key role in decreasing late Na⁺ current. The effect of loss of calmodulin binding to NaV1.5 on late Na+ current has yet to be resolved in native cardiomyocytes. We created transgenic mice with cardiac-specific expression of human NaV1.5 channels with alanine substitutions for the IQ motif (IQ/AA), disrupting calmodulin binding to the C-terminus. Surprisingly, we found that the IQ/AA mutation did not cause an increase late Na⁺ current in cardiomyocytes. These findings suggest the existence of endogenous protective mechanisms that counteract the increase in late Na+ current that occurs with loss of calmodulin binding. We reasoned that FGF13, a known modulator of late Na+ current that is endogenously expressed in cardiomyocytes but not HEK cells, might play a protective role in limiting late Na+ current. Finally, we coexpressed the IQ/AA mutant NaV1.5 channel in HEK293 cells with FGF13 and found that FGF13 diminished the late Na⁺ currentcompared to cells without FGF13, suggesting that endogenous FHFs may serve to prevent late Na⁺ current in mouse cardiomyocytes.
The third chapter of this thesis focuses on the use of proximity labeling and multiplexed quantitative proteomics to define changes in the NaV1.5 macromolecular complex in Duchenne muscular dystrophy (DMD), in which the absence of dystrophin predisposes affected individuals to arrhythmias and cardiac dysfunction.. Standard methods to characterize macromolecular complexes have relied on candidate immunoprecipitation or immunocytochemistry techniques that fall short of providing a comprehensive view of the numbers and types of interactors, as well as the potential dynamic nature of the interactions that may be perturbed by disease states. To provide an inclusive understanding of NaV1.5 macromolecular complexes, we utilize live-cell APEX2 proximity labeling in cardiomyocytes. We identify several proximal changes that align with the electrophysiological NaV1.5 phenotype of young dystrophin-deficient mice, including a decrease in Ptpn3 and Gdp1l and an increase in proteasomal machinery. Whole-cell protein expression fold-change results were used to reveal the altered global expression profile and to place context behind NaV1.5-proximal changes. Finally, we leveraged the neighborhood- specificity of proteins at the lateral membrane, intercalated disc, and transverse tubules of cardiomyocytes to demonstrate that NaV1.5 channels can traffic to all three membrane compartments even in the absence of dystrophin. Thus, the approach of proximity labeling in cardiomyocytes from an animal model of human disease offers new insights into molecular mechanisms of NaV1.5 dysfunction in DMD and provides a template for similar investigations in other cardiac diseases.
|
75 |
Att vandra tillsammans : Fysioterapeuters erfarenheter och upplevelser av arbete med Duchennes muskeldystrofi / To wander together : Physical therapists’ experiences in working with Duchenne muscular dystrophyRanjkesh, Iren, Forsell, Matilda January 2021 (has links)
Sammanfattning Bakgrund: Duchennes muskeldystrofi (DMD) är en ovanlig genetisk muskelsjukdom som beräknas drabba cirka tio pojkar i Sverige per år. Sjukdomen påverkas av en brist på proteinet dystrofin, vilket leder till en progressiv nedbrytning av skelett- och respiratoriska muskler samt myocardium. Detta leder till en successiv försämring av muskelstyrka samt ledrörlighet. Fysioterapeutiska åtgärder vid arbete med patientgruppen är framförallt inriktade mot att fördröja försämringen av sjukdomsförloppet. Syfte: Syftet med denna studie var att ge ökad förståelse för hur den fysioterapeutiska behandlingen ser ut för patienter med DMD, samt hur fysioterapeuter upplever arbetet med patientgruppen. Metod: Fyra semistrukturerade intervjuer genomfördes med fysioterapeuter som hade erfarenhet av arbete med patientgruppen. Materialet från intervjuerna analyserades därefter med kvalitativ innehållsanalys enligt Graneheim och Lundman. Resultat: Analysen resulterade i tre huvudkategorier: “Mångfacetterad fysioterapeutisk behandling”, “Samarbete för att bidra till ett normalt liv” och “Komplex diagnos påverkar fysioterapeutens upplevelser”. Slutsats: Fysioterapeuterna uttryckte att huvudmålet för den fysioterapeutiska behandlingen var att ligga steget före med insatser samt att fördröja försämring. Att stötta patienten till ett delaktigt och självständigt liv ansågs som en nyckelkomponent i behandlingen. Arbetet med patientgruppen kunde stundom upplevas som svårt och sorgsamt, men också fridsamt och positivt. Fysioterapeuters upplevelser kan ge en inblick i vårdprocessen och därav bidra till utveckling av en bättre vård.
|
76 |
Exploring fibrosis in muscular dystrophy through modulation of the TGF-beta pathwaySt. Andre, Michael William 22 June 2021 (has links)
The extracellular matrix (ECM) of the skeletal muscle provides the framework for the muscle structure and plays a key role in the repair and maintenance of myofibers through the resident fibroblasts and muscle satellite cells. However, excessive production of ECM components, notably collagen, leads to fibrosis which impedes muscle function, impairs the natural repair process, and leads to muscle weakness. Fibrosis is a hallmark of muscular dystrophies, including Duchenne muscular dystrophy (DMD). Duchenne muscular dystrophy is a terminal, x-linked disorder characterized by progressive muscle wasting as muscle fibers are replaced by fibrosis and fat. There are approximately 300,000 DMD patients worldwide, and the few disease modifying treatments are genotype specific, only helping a small percentage of the patient population. Myostatin is a member of the transforming growth factor beta (TGF-β) family of ligands, is a negative regulator of muscle mass, and may also contribute to the fibrotic environment in dystrophic muscle through myofibroblast proliferation and survival. Therefore, myostatin blockade could potentially ameliorate muscle weakness in DMD patients by increasing skeletal mass and function while also reducing the accumulation of fibrosis.
A murine anti-myostatin antibody, mRK35, and its humanized analogue, domagrozumab, are specific and potent inhibitors of myostatin. mRK35 was tested in multiple mouse models, from healthy C57Bl/6 and C57Bl/10, mildly dystrophic C57Bl/10.mdx, and severely dystrophic D2.mdx mice, for changes in muscle mass, muscle function, and fibrotic content. Additionally, inflammatory, fibrotic, and myogenic gene expression changes were analyzed in the severely dystrophic animals treated with mRK35. Domagrozumab was tested in non-human primates (NHPs) for changes in skeletal muscle mass.
Myostatin blockade with mRK35 resulted in muscle anabolic and functional improvements in healthy murine models and NHPs treated with domagrozumab demonstrated a dose-dependent increase in lean mass and muscle volume. However, as mice age or as the dystrophic severity of the model increases, the anabolic effect of myostatin inhibition is diminished. The extensor digitorum longus (EDL) muscle escapes this trend and is the most responsive to myostatin inhibition across all mouse strains and disease severities. However, analysis of the fibrotic content in the triceps and diaphragms of D2.mdx mice treated with mRK35 for 8 weeks does not reveal any change in fibrotic content. Gene expression changes in the muscles within these mice appear to be tightly tied to their healthy or dystrophic state and myostatin inhibition has minimal effect. In sum, while specific myostatin inhibition with mRK35 increases muscle weight and function in mice, there is no conclusive evidence of reduced muscle fibrosis. / 2023-06-22T00:00:00Z
|
77 |
Health Profile of Preterm Males With Duchenne Muscular DystrophySoim, Aida, Wallace, Bailey, Whitehead, Nedra, Smith, Michael G., Mann, Joshua R., Thomas, Shiny, Ciafaloni, Emma 01 January 2021 (has links)
In this retrospective cohort study, we characterize the health profile of preterm males with Duchenne muscular dystrophy. Major clinical milestones (ambulation cessation, assisted ventilation use, and onset of left ventricular dysfunction) and corticosteroids use in males with Duchenne muscular dystrophy identified through a population-based surveillance system were analyzed using Kaplan-Meier survival curves and Cox proportional hazards modeling. The adjusted risk of receiving any respiratory intervention among preterm males with Duchenne muscular dystrophy was 87% higher than among the corresponding full-term males with Duchenne muscular dystrophy. The adjusted risks for ambulation cessation and left ventricular dysfunction were modestly elevated among preterm compared to full-term males, but the 95% confidence intervals contained the null. No difference in the start of corticosteroid use between preterm and full-term Duchenne muscular dystrophy males was observed. Overall, the disease course seems to be similar between preterm and full-term males with Duchenne muscular dystrophy; however, pulmonary function seems to be affected earlier among preterm males with Duchenne muscular dystrophy.
|
78 |
Labor Market Participation and Productivity Costs for Female Caregivers of Minor Male Children With Duchenne and Becker Muscular DystrophiesSoelaeman, Rieza H., Smith, Michael G., Sahay, Kashika, Tilford, J. M., Goodenough, Dana, Paramsothy, Pangaja, Ouyang, Lijing, Oleszek, Joyce, Grosse, Scott D. 01 January 2021 (has links)
Introduction/Aims Duchenne and Becker muscular dystrophies (DBMD) are X-linked neuromuscular disorders characterized by progressive muscle weakness, leading to decreased mobility and multisystem complications. We estimate productivity costs attributable to time spent by a parent caring for a male child under the age of 18 y with DBMD, with particular focus on female caregivers of boys with Duchenne muscular dystrophy (DMD) who have already lost ambulation. Methods Primary caregivers of males with DBMD in the Muscular Dystrophy Surveillance and Research Tracking Network (MD STARnet) were surveyed during 2011–2012 on family quality of life measures, including labor market outcomes. Of 211 respondents, 96 female caregivers of boys with DBMD were matched on state, year of survey, respondent's age, child's age, and number of minor children with controls constructed from Current Population Survey extracts. Regression analysis was used to estimate labor market outcomes and productivity costs. Results Caregivers of boys with DBMD worked 296 h less per year on average than caregivers of unaffected children, translating to a $8816 earnings loss in 2020 U.S. dollars. Caregivers of boys with DMD with ≥4 y of ambulation loss had a predicted loss in annualized earnings of $23,995, whereas caregivers of boys with DBMD of the same ages who remained ambulatory had no loss of earnings. Discussion Female caregivers of non-ambulatory boys with DMD face additional household budget constraints through income loss. Failure to include informal care costs in economic studies could understate the societal cost-effectiveness of strategies for managing DMD that might prolong ambulation.
|
79 |
Is There a Delay in Diagnosis of Duchenne Muscular Dystrophy Among Preterm-Born Males?Soim, Aida, Smith, Michael G., Kwon, Jennifer M., Mann, Joshua R., Thomas, Shiny, Ciafaloni, Emma 01 July 2018 (has links)
The objective of this study was to investigate whether males who were born preterm took longer to receive a Duchenne muscular dystrophy diagnosis than term males. Data for males with Duchenne muscular dystrophy identified through a population-based surveillance system were analyzed using a Kaplan-Meier estimator. The first signs and symptoms were noted at a median age of 2 years in both groups. Median age when first signs and symptoms prompted medical evaluation was 2.59 years among preterm and 4.01 years among term males. Median age at definitive diagnosis was 4.25 years and 4.92 years for preterm and term males, respectively. Neither difference was statistically significant. Preterm males tended to be seen for their initial medical evaluation earlier than term males, though they were not diagnosed significantly earlier. It may take clinicians longer after the initial evaluation of preterm males to arrive at a Duchenne muscular dystrophy diagnosis.
|
80 |
Precise Correction of the Dystrophin Gene in Duchenne Muscular Dystrophy Patient iPS Cells by TALEN and CRISPR-Cas9 / デュシェンヌ型筋ジストロフィー患者由来iPS細胞におけるTALENやCRISPR-Cas9を用いたジストロフィン遺伝子の修復Li, Hongmei 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18870号 / 医博第3981号 / 新制||医||1008(附属図書館) / 31821 / 京都大学大学院医学研究科医学専攻 / (主査)教授 萩原 正敏, 教授 瀬原 淳子, 教授 中畑 龍俊 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
Page generated in 0.077 seconds