• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • 66
  • 57
  • 20
  • 18
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 331
  • 103
  • 74
  • 70
  • 61
  • 59
  • 52
  • 51
  • 46
  • 46
  • 39
  • 38
  • 38
  • 36
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Comportement et endommagement des alliages d'aluminium 6061-T6 : approche micromécanique

Shen, Yang 18 December 2012 (has links) (PDF)
L'alliage d'aluminium 6061-T6 a été retenu pour la fabrication du caisson-coeur du futur réacteur expérimental Jules Horowitz (RJH). L'objectif de cette thèse est de comprendre et modéliser le comportement et l'endommagement de cet alliage en traction et en ténacité, ainsi que l'origine de l'anisotropie d'endommagement. Il s'agit de faire le lien entre la microstructure et l'endommagement du matériau à l'aide d'une approche micromécanique. Pour ce faire, la microstructure de l'alliage, la structure granulaire et es précipités grossiers ont été caractérisés en utilisant des analyses surfaciques (Microscopie Électronique à Balayage) et volumiques (tomographie/laminographie X). Le mécanisme d'endommagement a été identifié par des essais de traction sous MEB in-situ, des essais de tomographie X ex-situ et des essais de laminographie X in-situ pour différents taux de triaxialité. Ces observations ont notamment permis de montrer que la germination des cavités sur les précipités grossiers de type Mg2Si est plus précoce que sur les intermétalliques au fer. Le scénario identifié et les grandeurs mesurées ont ensuite permis de développer un modèle d'endommagement couplé, basé sur l'approche locale de la rupture, de type GTN intégrant la germination, la croissance et la coalescence des cavités. Le lien entre l'anisotropie d'endommagement et de forme/répartition des précipités a pu être montré. Cette anisotropie microstructurale modifie les mécanismes : Pour une sollicitation dans le sens long l'endommagement est majoritairement intergranulaire alors que dans le sens travers on observe un endommagement mixte intergranulaire et intragranulaire. La prise en compte des mesures de l'endommagement dans la simulation a permis d'expliquer l'anisotropie d'endommagement. Ce travail servira de référence pour les études futures qui seront menées sur le matériau irradié.
112

Caractérisation expérimentale et contribution à la modélisation numérique de l'endommagement en cisaillement des aciers HLE. Applications au procédé de poinçonnage

ACHOURI, Mohamed 06 December 2012 (has links) (PDF)
L'objectif principal de ces travaux de thèse est de caractériser lecomportement et l'endommagement d'un matériau HLE durant le procédé depoinçonnage. Ils comportent dans un premier temps, une étude expérimentale quirepose sur des observations micrographiques et des essais macroscopiques àdifférents états de contrainte, afin d'identifier les mécanismes physiquesd'endommagement mis en jeu. Cette étude est complétée par une modélisationnumérique du modèle d'endommagement de Gurson modifié en cisaillement et sonimplémentation dans ABAQUS/Explicit. Une stratégie d'identification des paramètresmatériau basée sur une large gamme de configurations expérimentales a été mise enplace. Des essais de poinçonnage ont été réalisés en faisant varier le jeu poinçon-matrice, afin de tester la capacité prédictive du modèle de Gurson modifié par rapportau modèle de GTN classique et à un critère découplé basé sur l'initiation de rupture.L'influence du jeu poinçon-matrice sur la qualité de découpe et sur les niveaux desétats de contrainte et de déformation a été également mise en évidence. Lesprédictions de rupture obtenues par cette approche et pour le matériau étudié sont enbon accord avec les observations expérimentales. Il reste à valider le modèle pourdes configurations de couples matériau/procédé plus étendues et à réaliser sonenchainement avec les autres procédés de mise en forme.
113

Some Investigations of Scaling Effects in Micro-Cutting

Subbiah, Sathyan 13 October 2006 (has links)
The scaling of specific cutting energy is studied when micro-cutting ductile metals. A unified framework for understanding the scaling in specific cutting energy is first presented by viewing the cutting force as a combination of constant, increasing, and decreasing force components, the independent variable being the uncut chip thickness. Then, an attempt is made to isolate the constant force component by performing high rake angle orthogonal cutting experiments on OFHC Copper. The data shows a trend towards a constant cutting force component as the rake angle is increased. In order to understand the source of this constant force component the chip-root is investigated. By quickly stopping the spindle at low cutting speeds, the chip is frozen and the chip-workpiece interface is examined in a scanning electron microscope. Evidence of ductile tearing ahead of the cutting tool is seen at low and high rake angles. At higher cutting speeds a quick-stop device is used to obtain chip-roots. These experiments also clearly indicate evidence of ductile fracture ahead of the cutting tool in both OFHC Copper and Al-2024 T3. To model the cutting process with ductile fracture leading to material separation the finite element method is used. The model is implemented in a commercial finite element software using the explicit formulation. Material separation is modeled via element failure. The model is then validated using the measured cutting and thrust forces and used to study the energy consumed in cutting. As the thickness of layer removed is reduced the energy consumed in material separation becomes important. Simulations also show that the stress state ahead of the tool is favorable for ductile fracture to occur. Ductile fracture in three locations in an interface zone at the chip root is seen while cutting with edge radius tool. A hypothesis is advanced wherein an element gets wrapped around the tool edge and is stretched in two directions leading to fracture. The numerical model is then used to study the difference in stress state and energy consumption between a sharp tool and a tool with a non-zero edge radius.
114

Predictive Modeling for Ductile Machining of Brittle Materials

Venkatachalam, Sivaramakrishnan 12 October 2007 (has links)
Brittle materials such as silicon, germanium, glass and ceramics are widely used in semiconductor, optical, micro-electronics and various other fields. Traditionally, grinding, polishing and lapping have been employed to achieve high tolerance in surface texture of silicon wafers in semiconductor applications, lenses for optical instruments etc. The conventional machining processes such as single point turning and milling are not conducive to brittle materials as they produce discontinuous chips owing to brittle failure at the shear plane before any tangible plastic flow occurs. In order to improve surface finish on machined brittle materials, ductile regime machining is being extensively studied lately. The process of machining brittle materials where the material is removed by plastic flow, thus leaving a crack free surface is known as ductile-regime machining. Ductile machining of brittle materials can produce surfaces of very high quality comparable with processes such as polishing, lapping etc. The objective of this project is to develop a comprehensive predictive model for ductile machining of brittle materials. The model would predict the critical undeformed chip thickness required to achieve ductile-regime machining. The input to the model includes tool geometry, workpiece material properties and machining process parameters. The fact that the scale of ductile regime machining is very small leads to a number of factors assuming significance which would otherwise be neglected. The effects of tool edge radius, grain size, grain boundaries, crystal orientation etc. are studied so as to make better predictions of forces and hence the critical undeformed chip thickness. The model is validated using a series of experiments with varying materials and cutting conditions. This research would aid in predicting forces and undeformed chip thickness values for micro-machining brittle materials given their material properties and process conditions. The output could be used to machine brittle materials without fracture and hence preserve their surface texture quality. The need for resorting to experimental trial and error is greatly reduced as the critical parameter, namely undeformed chip thickness, is predicted using this approach. This can in turn pave way for brittle materials to be utilized in a variety of applications.
115

A Contribution to the Modeling of Metal Plasticity and Fracture: From Continuum to Discrete Descriptions

Keralavarma, Shyam Mohan 2011 December 1900 (has links)
The objective of this dissertation is to further the understanding of inelastic behavior in metallic materials. Despite the increasing use of polymeric composites in aircraft structures, high specific strength metals continue to be used in key components such as airframe, fuselage, wings, landing gear and hot engine parts. Design of metallic structures subjected to thermomechanical extremes in aerospace, automotive and nuclear applications requires consideration of the plasticity, creep and fracture behavior of these materials. Consideration of inelasticity and damage processes is also important in the design of metallic components used in functional applications such as thin films, flexible electronics and micro electro mechanical systems. Fracture mechanics has been largely successful in modeling damage and failure phenomena in a host of engineering materials. In the context of ductile metals, the Gurson void growth model remains one of the most successful and widely used models. However, some well documented limitations of the model in quantitative prediction of the fracture strains and failure modes at low triaxialities may be traceable to the limited representation of the damage microstructure in the model. In the first part of this dissertation, we develop an extended continuum model of void growth that takes into account details of the material microstructure such as the texture of the plastically deforming matrix and the evolution of the void shape. The need for such an extension is motivated by a detailed investigation of the effects of the two types of anisotropy on the materials' effective response using finite element analysis. The model is derived using the Hill-Mandel homogenization theory and an approximate limit analysis of a porous representative volume element. Comparisons with several numerical studies are presented towards a partial validation of the analytical model. Inelastic phenomena such as plasticity and creep result from the collective behavior of a large number of nano and micro scale defects such as dislocations, vacancies and grain boundaries. Continuum models relate macroscopically observable quantities such as stress and strain by coarse graining the discrete defect microstructure. While continuum models provide a good approximation for the effective behavior of bulk materials, several deviations have been observed in experiments at small scales such as an intrinsic size dependence of the material strength. Discrete dislocation dynamics (DD) is a mesoscale method for obtaining the mechanical response of a material by direct simulation of the motion and interactions of dislocations. The model incorporates an intrinsic length scale in the dislocation Burgers vector and potentially allows for size dependent mechanical behavior to emerge naturally from the dynamics of the dislocation ensemble. In the second part of this dissertation, a simplified two dimensional DD model is employed to study several phenomena of practical interest such as strain hardening under homogeneous deformation, growth of microvoids in a crystalline matrix and creep of single crystals at elevated temperatures. These studies have been enabled by several recent enhancements to the existing two-dimensional DD framework described in Chapter V. The main contributions from this research are: (i) development of a fully anisotropic continuum model of void growth for use in ductile fracture simulations and (ii) enhancing the capabilities of an existing two-dimensional DD framework for large scale simulations in complex domains and at elevated temperatures.
116

Modelling Damage For Elastoplasticity

Soyarslan, Celal 01 January 2009 (has links) (PDF)
A local isotropic damage coupled hyperelastic-plastic framework is formulated in principal axes where thermo-mechanical extensions are also addressed. It is shown that, in a functional setting, treatment of many damage growth models, including ones originated from phenomenological models (with formal thermodynamical derivations), micro-mechanical models or fracture criteria, proposed in the literature, is possible. Quasi-unilateral damage evolutionary forms are given with special emphasis on the feasibility of formulations in principal axes. Local integration procedures are summarized starting from a full set of seven equations which are simplified step by step initially to two and finally to one where different operator split methodologies such as elastic predictor-plastic/damage corrector (simultaneous plastic-damage solution scheme) and elastic predictor-plastic corrector-damage deteriorator (staggered plasticdamage solution scheme) are given. For regularization of the post peak response with softening due to damage and temperature, Perzyna type viscosity is devised. Analytical forms accompanied with algorithmic expressions including the consistent material tangents are derived and the models are implemented as UMAT and UMATHT subroutines for ABAQUS/Standard, VUMAT subroutines for ABAQUS/Explicit and UFINITE subroutines for MSC.Marc. The subroutines are used in certain application problems including numerical modeling of discrete internal cracks, namely chevron cracks, in direct forward extrusion process where comparison with the experimental facts show the predicting capability of the model, isoerror map production for accuracy assessment of the local integration methods, and development two novel necking triggering methods in the context of a damage coupled environment.
117

Physiochemical characteristics of controlled low strength materials influencing the electrochemical performance and service life of metallic materials

Halmen, Ceki 25 April 2007 (has links)
Controlled Low Strength Materials (CLSM) are cementitious self-compacting materials, comprised of low cement content, supplementary cementing materials, fine aggregates, and water. CLSM is typically used as an alternative to conventional compacted granular backfill in applications, such as pavement bases, erosion control, bridge abutments, retaining walls, bedding and backfilling of pipelines. This dissertation presents the findings of an extensive study carried out to determine the corrosivity of CLSM on ductile iron and galvanized steel pipelines. The study was performed in two phases and evaluated more than 40 different CLSM mixture proportions for their corrosivity. An extensive literature survey was performed on corrosion of metals in soils and corrosion of reinforcement in concrete environments to determine possible influential factors. These factors were used as explanatory variables with multiple levels to identify the statistically significant factors. Empirical models were developed for percent mass loss of metals embedded in CLSM and exposed to different environments. The first and only service life models for ductile iron and galvanized steel pipes embedded in CLSM mixtures were developed. Models indicated that properly designed CLSM mixtures can provide an equal or longer service life for completely embedded ductile iron pipes. However, the service life of galvanized pipes embedded in CLSM should not be expected to be more than the service life provided by corrosive soils.
118

Analytical Description of Brittle-to-Ductile Transition in bcc Metals. Nucleation of dislocation loop at the crack tip

Voskoboinikov, Roman E. 31 March 2010 (has links) (PDF)
Nucleation of dislocation loop at the crack tip in a material subjected to uniaxial loading is investigated. Analytical expression for the total energy of rectangular dislocation loop at the crack tip is found. Depencence of the nucleation energy barrier on dislocation loop shape and stress intensity factor at the crack tip is determined. It is established that the energetic barrier for nucleation of dislocation loop strongly depends on the stress intensity factor. Nucleation of dislocation loop is very sensitive to stress field modifiers (forest dislocations, precipitates, clusters of point defects, etc.) in the crack tip vicinity.
119

Isogeometric analysis of phase-field models for dynamic brittle and ductile fracture

Borden, Michael Johns 25 October 2012 (has links)
To date, efforts to model fracture and crack propagation have focused on two broad approaches: discrete and continuum damage descriptions. The discrete approach incorporates a discontinuity into the displacement field that must be tracked and updated. Examples of this approach include XFEM, element deletion, and cohesive zone models. The continuum damage, or smeared crack, approach incorporates a damage parameter into the model that controls the strength of the material. An advantage of this approach is that it does not require interface tracking since the damage parameter varies continuously over the domain. An alternative approach is to use a phase-field to describe crack propagation. In the phase-field approach to modeling fracture the problem is reformulated in terms of a coupled system of partial differential equations. A continuous scalar-valued phase-field is introduced into the model to indicate whether the material is in the unfractured or fractured ''phase''. The evolution of the phase-field is governed by a partial differential equation that includes a driving force that is a function of the strain energy of the body in question. This leads to a coupling between the momentum equation and the phase-field equation. The phase-field model also includes a length scale parameter that controls the width of the smooth approximation to the discrete crack. This allows discrete cracks to be modeled down to any desired length scale. Thus, this approach incorporates the strengths of both the discrete and continuum damage models, i.e., accurate modeling of individual cracks with no interface tracking. The research presented in this dissertation focuses on developing phase-field models for dynamic fracture. A general formulation in terms of the usual balance laws supplemented by a microforce balance law governing the evolution of the phase-field is derived. From this formulation, small-strain brittle and large-deformation ductile models are then derived. Additionally, a fourth-order theory for the phase-field approximation of the crack path is postulated. Convergence and approximation results are obtained for the proposed theories. In this work, isogeometric analysis, and particularly T-splines, plays an important role by providing a smooth basis that allows local refinement. Several numerical simulations have been performed to evaluate the proposed theories. These results show that phase-field models are a powerful tool for predicting fracture. / text
120

THE RELATIONSHIP BETWEEN IRON PARTICLES IN WATER MAINS AND LEAD RELEASE

Camara, Eliman 15 November 2012 (has links)
The impact on human health caused by lead release has resulted in stringent lead regulations, which limit the drinking water concentration of lead to 10µg/L. In order to meet regulation guidelines, sources of lead are being removed from the distribution system and premise plumbing. Lead service lines (LSLs) are replaced to minimize the effect of lead release, with LSL contributing as much as 50-75% of total lead at the tap. Adsorption of lead on galvanized iron corrosion scales have been shown to increase lead release in LSL replacements, which is very concerning for utilities considering replacing the LSLs. Adsorption of lead on to iron minerals has been hypothesized as a mechanism for lead exposure. With the significant presence of unlined cast iron pipes in Halifax, the objective of this thesis was to determine the relationship between the iron particles found in cast iron pipes and lead release at the tap.

Page generated in 0.0443 seconds