Spelling suggestions: "subject:"durbin watson"" "subject:"durbin matson""
1 |
Applications of Monte Carlo Methods in Statistical Inference Using Regression AnalysisHuh, Ji Young 01 January 2015 (has links)
This paper studies the use of Monte Carlo simulation techniques in the field of econometrics, specifically statistical inference. First, I examine several estimators by deriving properties explicitly and generate their distributions through simulations. Here, simulations are used to illustrate and support the analytical results. Then, I look at test statistics where derivations are costly because of the sensitivity of their critical values to the data generating processes. Simulations here establish significance and necessity for drawing statistical inference. Overall, the paper examines when and how simulations are needed in studying econometric theories.
|
2 |
Assessing Macroeconomic factors' influence on the Swedish real estate company stock market - A multiple linear regression analysis / Bedömning av makroekonomiska faktorers påverkan på svenska fastighetsaktier - En multipel linjär regressionsanalysLöfman, Axel, Jia, Kay January 2022 (has links)
Investing in public real estate stocks can diversify a stock portfolio due to the nature of these companies. The industry is generally less sensitive to economic downturns and spikes in inflation are offset by increased real estate property and rent prices. Nevertheless, measures of the wider economy could be used as predictors of the real estate stock market. This thesis attempts to model the Swedish real estate stock market with the index SX35PI (Stockholm Real Estate PI) using the fundamental economic factors and repo rate. Data was collected and formatted to a monthly interval for the period February 2012 to December 2021. This resulted in an exponential multiple regression model that used all the regressors that explained 95.7% of the variation in SX35PI, and an alternative autoregressive forecasting model that explained 82.3% of the variation in SX35PI. / Investeringar i fastighetsbolag kan diversifiera en aktieportfölj tack vare dessa bolags karaktär. Denna industri är nämligen mindre känslig för ekonomiska nedgångar och minskad efterfråga samt plötsliga ökningar i inflationen som vägs upp av ökningar i fastighetspriser och hyror. Aktiemarknaden för fastighetsaktier kan modelleras med makroekonomiska mått. Denna rapport försöker modellera aktiemarknaden för svenska fastighetsbolag med fundamentala ekonomiska mått samt reporäntan. Data samlades och transformerades för att få datapunkter varje månad under februari 2012 till december 2021. Resultatet blev en exponentiell multipel regressionsmodell som använde alla förklarande variabler vilka förklarade 95.7% av variationen i SX35PI, och en alternativ autoregressiv modell som förklarade 82.3% av variationen i SX35PI.
|
3 |
Market efficiency and the financial crisis : A study based on the market efficiency in the Nordic countriesHenriksson, Albin January 2021 (has links)
The efficient market hypothesis states that stock prices fully reflect availablei nformation and that stocks thereby always are priced correctly. Hence, it should be impossible to predict future prices in the stock market, and investors will gain no benefits from engaging themselves into historical analyzes. This is a quantitative study which aim to investigate if there is any difference in market efficiency in Nordic stock markets during and after the financial crisis of 2008. By applying various statistical methods, such as unitroot tests, autocorrelation tests and runs test on the returns from each country’s leading market index, the study tries to find evidence for or against the weak form of market efficiency. The study finds evidence both for and against weak form market efficiency but concludes that there is no distinct difference in market efficiency during and after the financial crisis.
|
4 |
Asymptotical results for models ARX in adaptive tracking / Résultats asymptotiques pour les modèles ARX en poursuite adaptativeVázquez Guevara, Víctor Hugo 10 June 2010 (has links)
Cette thèse est consacrée aux résultats asymptotiques pour les modèles ARX en poursuite adaptative. Elle est constituée de quatre parties. La première partie est une brève introduction sur les modèles ARMAX et un état de l’art des principaux résultats de la littérature en poursuite adaptative. La seconde partie porte sur l’introduction d’un nouveau concept de contrôlabilité forte pour les modèles ARX en poursuite adaptative. Il permet de généraliser les résultats antérieurs. On montre la convergence presque sûre des algorithmes des moindres carrés ordinaires et pondérés. On établit également le théorème de la limite centrale ainsi que la loi du logarithme itéré pour ces deux algorithmes. La troisième partie est dédiée aux modèles ARX qui ne sont pas fortement contrôlables. On montre que, via un contrôle de poursuite excité, il est possible de s’affranchir de l’hypothèse de forte contrôlabilité. La quatrième partie est consacrée au comportement asymptotique de la statistique de Durbin-Watson pour les modèles ARX en poursuite adaptative via des arguments martingales. / This thesis is devoted to asymptotical results for ARX models in adaptive tracking. It is divided into four parts. The first part is a short introduction on ARMAX models together with a state of the art on the main results in the literature on adaptive tracking. The second part deals with a new concept of strong controllability for ARX models in adaptive tracking. This new notion allows us to extend the previous convergence results. We prove the almost sure convergence for both least squares and weighted least squares algorithms. We also establish a central limit theorem and a law of iterated logarithm for these two algorithms. The third part is dedicated to ARX models that are not strongly controllable. Thanks to a persistently excited adaptive tracking control, we show that it is possible to get rid of the strong controllability assumption. The fourth part deals with the asymptotic behaviour of the Durbin-Watson statistic for ARX models in adaptive tracking via a martingale approach.
|
5 |
Inégalités de déviations, principe de déviations modérées et théorèmes limites pour des processus indexés par un arbre binaire et pour des modèles markoviens / Deviation inequalities, moderate deviations principle and some limit theorems for binary tree-indexed processes and for Markovian models.Bitseki Penda, Siméon Valère 20 November 2012 (has links)
Le contrôle explicite de la convergence des sommes convenablement normalisées de variables aléatoires, ainsi que l'étude du principe de déviations modérées associé à ces sommes constituent les thèmes centraux de cette thèse. Nous étudions principalement deux types de processus. Premièrement, nous nous intéressons aux processus indexés par un arbre binaire, aléatoire ou non. Ces processus ont été introduits dans la littérature afin d'étudier le mécanisme de la division cellulaire. Au chapitre 2, nous étudions les chaînes de Markov bifurcantes. Ces chaînes peuvent être vues comme une adaptation des chaînes de Markov "usuelles'' dans le cas où l'ensemble des indices à une structure binaire. Sous des hypothèses d'ergodicité géométrique uniforme et non-uniforme d'une chaîne de Markov induite, nous fournissons des inégalités de déviations et un principe de déviations modérées pour les chaînes de Markov bifurcantes. Au chapitre 3, nous nous intéressons aux processus bifurcants autorégressifs d'ordre p (). Ces processus sont une adaptation des processus autorégressifs linéaires d'ordre p dans le cas où l'ensemble des indices à une structure binaire. Nous donnons des inégalités de déviations, ainsi qu'un principe de déviations modérées pour les estimateurs des moindres carrés des paramètres "d'autorégression'' de ce modèle. Au chapitre 4, nous traitons des inégalités de déviations pour des chaînes de Markov bifurcantes sur un arbre de Galton-Watson. Ces chaînes sont une généralisation de la notion de chaînes de Markov bifurcantes au cas où l'ensemble des indices est un arbre de Galton-Watson binaire. Elles permettent dans le cas de la division cellulaire de prendre en compte la mort des cellules. Les hypothèses principales que nous faisons dans ce chapitre sont : l'ergodicité géométrique uniforme d'une chaîne de Markov induite et la non-extinction du processus de Galton-Watson associé. Au chapitre 5, nous nous intéressons aux modèles autorégressifs linéaires d'ordre 1 ayant des résidus corrélés. Plus particulièrement, nous nous concentrons sur la statistique de Durbin-Watson. La statistique de Durbin-Watson est à la base des tests de Durbin-Watson, qui permettent de détecter l'autocorrélation résiduelle dans des modèles autorégressifs d'ordre 1. Nous fournissons un principe de déviations modérées pour cette statistique. Les preuves du principe de déviations modérées des chapitres 2, 3 et 4 reposent essentiellement sur le principe de déviations modérées des martingales. Les inégalités de déviations sont établies principalement grâce à l'inégalité d'Azuma-Bennet-Hoeffding et l'utilisation de la structure binaire des processus. Le chapitre 5 est né de l'importance qu'a l'ergodicité explicite des chaînes de Markov au chapitre 3. L'ergodicité géométrique explicite des processus de Markov à temps discret et continu ayant été très bien étudiée dans la littérature, nous nous sommes penchés sur l'ergodicité sous-exponentielle des processus de Markov à temps continu. Nous fournissons alors des taux explicites pour la convergence sous exponentielle d'un processus de Markov à temps continu vers sa mesure de probabilité d'équilibre. Les hypothèses principales que nous utilisons sont : l'existence d'une fonction de Lyapunov et d'une condition de minoration. Les preuves reposent en grande partie sur la construction du couplage et le contrôle explicite de la queue du temps de couplage. / The explicit control of the convergence of properly normalized sums of random variables, as well as the study of moderate deviation principle associated with these sums constitute the main subjects of this thesis. We mostly study two sort of processes. First, we are interested in processes labelled by binary tree, random or not. These processes have been introduced in the literature in order to study mechanism of the cell division. In Chapter 2, we study bifurcating Markov chains. These chains may be seen as an adaptation of "usual'' Markov chains in case the index set has a binary structure. Under uniform and non-uniform geometric ergodicity assumptions of an embedded Markov chain, we provide deviation inequalities and a moderate deviation principle for the bifurcating Markov chains. In chapter 3, we are interested in p-order bifurcating autoregressive processes (). These processes are an adaptation of $p$-order linear autoregressive processes in case the index set has a binary structure. We provide deviation inequalities, as well as an moderate deviation principle for the least squares estimators of autoregressive parameters of this model. In Chapter 4, we dealt with deviation deviation inequalities for bifurcating Markov chains on Galton-Watson tree. These chains are a generalization of the notion of bifurcating Markov chains in case the index set is a binary Galton-Watson tree. They allow, in case of cell division, to take into account cell's death. The main hypothesis that we do in this chapter are : uniform geometric ergodicity of an embedded Markov chain and the non-extinction of the associated Galton-Watson process. In Chapter 5, we are interested in first-order linear autoregressive models with correlated errors. More specifically, we focus on the Durbin-Watson statistic. The Durbin-Watson statistic is at the base of Durbin-Watson tests, which allow to detect serial correlation in the first-order autoregressive models. We provide a moderate deviation principle for this statistic. The proofs of moderate deviation principle of Chapter 2, 3 and 4 are essentially based on moderate deviation for martingales. To establish deviation inequalities, we use most the Azuma-Bennet-Hoeffding inequality and the binary structure of processes. Chapter 6 was born from the importance that explicit ergodicity of Markov chains has in Chapter 2. Since explicit geometric ergodicity of discrete and continuous time Markov processes has been well studied in the literature, we focused on the sub-exponential ergodicity of continuous time Markov Processes. We thus provide explicit rates for the sub-exponential convergence of a continuous time Markov process to its stationary distribution. The main hypothesis that we use are : existence of a Lyapunov fonction and of a minorization condition. The proofs are largely based on the coupling construction and the explicit control of the tail of the coupling time.
|
6 |
Autocorrélation et stationnarité dans le processus autorégressif / Autocorrelation and stationarity in the autoregressive processProïa, Frédéric 04 November 2013 (has links)
Cette thèse est dévolue à l'étude de certaines propriétés asymptotiques du processus autorégressif d'ordre p. Ce dernier qualifie communément une suite aléatoire $(Y_{n})$ définie sur $\dN$ ou $\dZ$ et entièrement décrite par une combinaison linéaire de ses $p$ valeurs passées, perturbée par un bruit blanc $(\veps_{n})$. Tout au long de ce mémoire, nous traitons deux problématiques majeures de l'étude de tels processus : l'\textit{autocorrélation résiduelle} et la \textit{stationnarité}. Nous proposons en guise d'introduction un survol nécessaire des propriétés usuelles du processus autorégressif. Les deux chapitres suivants sont consacrés aux conséquences inférentielles induites par la présence d'une autorégression significative dans la perturbation $(\veps_{n})$ pour $p=1$ tout d'abord, puis pour une valeur quelconque de $p$, dans un cadre de stabilité. Ces résultats nous permettent d'apposer un regard nouveau et plus rigoureux sur certaines procédures statistiques bien connues sous la dénomination de \textit{test de Durbin-Watson} et de \textit{H-test}. Dans ce contexte de bruit autocorrélé, nous complétons cette étude par un ensemble de principes de déviations modérées liées à nos estimateurs. Nous abordons ensuite un équivalent en temps continu du processus autorégressif. Ce dernier est décrit par une équation différentielle stochastique et sa solution est plus connue sous le nom de \textit{processus d'Ornstein-Uhlenbeck}. Lorsque le processus d'Ornstein-Uhlenbeck est lui-même engendré par une diffusion similaire, cela nous permet de traiter la problématique de l'autocorrélation résiduelle dans le processus à temps continu. Nous inférons dès lors quelques propriétés statistiques de tels modèles, gardant pour objectif le parallèle avec le cas discret étudié dans les chapitres précédents. Enfin, le dernier chapitre est entièrement dévolu à la problématique de la stationnarité. Nous nous plaçons dans le cadre très général où le processus autorégressif possède une tendance polynomiale d'ordre $r$ tout en étant engendré par une marche aléatoire intégrée d'ordre $d$. Les résultats de convergence que nous obtenons dans un contexte d'instabilité généralisent le \textit{test de Leybourne et McCabe} et certains aspects du \textit{test KPSS}. De nombreux graphes obtenus en simulations viennent conforter les résultats que nous établissons tout au long de notre étude. / This thesis is devoted to the study of some asymptotic properties of the $p-$th order \textit{autoregressive process}. The latter usually designates a random sequence $(Y_{n})$ defined on $\dN$ or $\dZ$ and completely described by a linear combination of its $p$ last values and a white noise $(\veps_{n})$. All through this manuscript, one is concerned with two main issues related to the study of such processes: \textit{serial correlation} and \textit{stationarity}. We intend, by way of introduction, to give a necessary overview of the usual properties of the autoregressive process. The two following chapters are dedicated to inferential consequences coming from the presence of a significative autoregression in the disturbance $(\veps_{n})$ for $p=1$ on the one hand, and then for any $p$, in the stable framework. These results enable us to give a new light on some statistical procedures such as the \textit{Durbin-Watson test} and the \textit{H-test}. In this autocorrelated noise framework, we complete the study by a set of moderate deviation principles on our estimates. Then, we tackle a continuous-time equivalent of the autoregressive process. The latter is described by a stochastic differential equation and its solution is the well-known \textit{Ornstein-Uhlenbeck process}. In the case where the Ornstein-Uhlenbeck process is itself driven by an Ornstein-Uhlenbeck process, one deals with the serial correlation issue for the continuous-time process. Hence, we infer some statistical properties of such models, keeping the parallel with the discrete-time framework studied in the previous chapters as an objective. Finally, the last chapter is entirely devoted to the stationarity issue. We consider the general autoregressive process with a polynomial trend of order $r$ driven by a random walk of order $d$. The convergence results in the unstable framework generalize the \textit{Leybourne and McCabe test} and some angles of the \textit{KPSS test}. Many graphs obtained by simulations come to strengthen the results established all along the study.
|
7 |
Autocorrélation et stationnarité dans le processus autorégressifProïa, Frédéric 04 November 2013 (has links) (PDF)
Cette thèse est dévolue à l'étude de certaines propriétés asymptotiques du processus autorégressif d'ordre p. Ce dernier qualifie communément une suite aléatoire $(Y_{n})$ définie sur $\dN$ ou $\dZ$ et entièrement décrite par une combinaison linéaire de ses $p$ valeurs passées, perturbée par un bruit blanc $(\veps_{n})$. Tout au long de ce mémoire, nous traitons deux problématiques majeures de l'étude de tels processus : l'\textit{autocorrélation résiduelle} et la \textit{stationnarité}. Nous proposons en guise d'introduction un survol nécessaire des propriétés usuelles du processus autorégressif. Les deux chapitres suivants sont consacrés aux conséquences inférentielles induites par la présence d'une autorégression significative dans la perturbation $(\veps_{n})$ pour $p=1$ tout d'abord, puis pour une valeur quelconque de $p$, dans un cadre de stabilité. Ces résultats nous permettent d'apposer un regard nouveau et plus rigoureux sur certaines procédures statistiques bien connues sous la dénomination de \textit{test de Durbin-Watson} et de \textit{H-test}. Dans ce contexte de bruit autocorrélé, nous complétons cette étude par un ensemble de principes de déviations modérées liées à nos estimateurs. Nous abordons ensuite un équivalent en temps continu du processus autorégressif. Ce dernier est décrit par une équation différentielle stochastique et sa solution est plus connue sous le nom de \textit{processus d'Ornstein-Uhlenbeck}. Lorsque le processus d'Ornstein-Uhlenbeck est lui-même engendré par une diffusion similaire, cela nous permet de traiter la problématique de l'autocorrélation résiduelle dans le processus à temps continu. Nous inférons dès lors quelques propriétés statistiques de tels modèles, gardant pour objectif le parallèle avec le cas discret étudié dans les chapitres précédents. Enfin, le dernier chapitre est entièrement dévolu à la problématique de la stationnarité. Nous nous plaçons dans le cadre très général où le processus autorégressif possède une tendance polynomiale d'ordre $r$ tout en étant engendré par une marche aléatoire intégrée d'ordre $d$. Les résultats de convergence que nous obtenons dans un contexte d'instabilité généralisent le \textit{test de Leybourne et McCabe} et certains aspects du \textit{test KPSS}. De nombreux graphes obtenus en simulations viennent conforter les résultats que nous établissons tout au long de notre étude.
|
8 |
Inégalités de déviations, principe de déviations modérées et théorèmes limites pour des processus indexés par un arbre binaire et pour des modèles markoviensBitseki Penda, Siméon Valère 20 November 2012 (has links) (PDF)
Le contrôle explicite de la convergence des sommes convenablement normalisées de variables aléatoires, ainsi que l'étude du principe de déviations modérées associé à ces sommes constituent les thèmes centraux de cette thèse. Nous étudions principalement deux types de processus. Premièrement, nous nous intéressons aux processus indexés par un arbre binaire, aléatoire ou non. Ces processus ont été introduits dans la littérature afin d'étudier le mécanisme de la division cellulaire. Au chapitre 2, nous étudions les chaînes de Markov bifurcantes. Ces chaînes peuvent être vues comme une adaptation des chaînes de Markov "usuelles'' dans le cas où l'ensemble des indices à une structure binaire. Sous des hypothèses d'ergodicité géométrique uniforme et non-uniforme d'une chaîne de Markov induite, nous fournissons des inégalités de déviations et un principe de déviations modérées pour les chaînes de Markov bifurcantes. Au chapitre 3, nous nous intéressons aux processus bifurcants autorégressifs d'ordre p (). Ces processus sont une adaptation des processus autorégressifs linéaires d'ordre p dans le cas où l'ensemble des indices à une structure binaire. Nous donnons des inégalités de déviations, ainsi qu'un principe de déviations modérées pour les estimateurs des moindres carrés des paramètres "d'autorégression'' de ce modèle. Au chapitre 4, nous traitons des inégalités de déviations pour des chaînes de Markov bifurcantes sur un arbre de Galton-Watson. Ces chaînes sont une généralisation de la notion de chaînes de Markov bifurcantes au cas où l'ensemble des indices est un arbre de Galton-Watson binaire. Elles permettent dans le cas de la division cellulaire de prendre en compte la mort des cellules. Les hypothèses principales que nous faisons dans ce chapitre sont : l'ergodicité géométrique uniforme d'une chaîne de Markov induite et la non-extinction du processus de Galton-Watson associé. Au chapitre 5, nous nous intéressons aux modèles autorégressifs linéaires d'ordre 1 ayant des résidus corrélés. Plus particulièrement, nous nous concentrons sur la statistique de Durbin-Watson. La statistique de Durbin-Watson est à la base des tests de Durbin-Watson, qui permettent de détecter l'autocorrélation résiduelle dans des modèles autorégressifs d'ordre 1. Nous fournissons un principe de déviations modérées pour cette statistique. Les preuves du principe de déviations modérées des chapitres 2, 3 et 4 reposent essentiellement sur le principe de déviations modérées des martingales. Les inégalités de déviations sont établies principalement grâce à l'inégalité d'Azuma-Bennet-Hoeffding et l'utilisation de la structure binaire des processus. Le chapitre 5 est né de l'importance qu'a l'ergodicité explicite des chaînes de Markov au chapitre 3. L'ergodicité géométrique explicite des processus de Markov à temps discret et continu ayant été très bien étudiée dans la littérature, nous nous sommes penchés sur l'ergodicité sous-exponentielle des processus de Markov à temps continu. Nous fournissons alors des taux explicites pour la convergence sous exponentielle d'un processus de Markov à temps continu vers sa mesure de probabilité d'équilibre. Les hypothèses principales que nous utilisons sont : l'existence d'une fonction de Lyapunov et d'une condition de minoration. Les preuves reposent en grande partie sur la construction du couplage et le contrôle explicite de la queue du temps de couplage.
|
Page generated in 0.0291 seconds