• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Análise das propriedades acústicas de contrapisos produzidos com materiais reciclados

Borges, Joice Giuliani Krás 27 November 2015 (has links)
Submitted by Silvana Teresinha Dornelles Studzinski (sstudzinski) on 2016-02-18T12:09:06Z No. of bitstreams: 1 Joice Giuliani Krás Borges_.pdf: 2287182 bytes, checksum: 91bf17f3aaf35b6e94a1a9a7d0ca42c3 (MD5) / Made available in DSpace on 2016-02-18T12:09:06Z (GMT). No. of bitstreams: 1 Joice Giuliani Krás Borges_.pdf: 2287182 bytes, checksum: 91bf17f3aaf35b6e94a1a9a7d0ca42c3 (MD5) Previous issue date: 2015-11-27 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / FAPERGS - Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul / Em meio às mudanças que o setor da construção civil está passando, encontra-se a necessidade de buscar soluções que não agridam o meio ambiente, visto que o setor é grande responsável pela escassez de recursos naturais e pelo aumento da poluição ambiental. Uma alternativa precursora é a inserção de produtos mais sustentáveis, com a utilização de resíduos que podem ser usados como matéria prima em substituição aos agregados naturais. Diante disso, o desafio é a comprovação do desempenho dos produtos e dos sistemas construtivos, principalmente após a nova versão da NBR 15575 (ABNT, 2013) - Desempenho das edificações. A norma estabelece parâmetros de desempenho e requisitos de conforto ao usuário, entre os quais está o acústico. Neste contexto o objetivo do trabalho foi investigar o potencial acústico de compósitos de argamassa com substituição parcial da areia por resíduos: da agroindústria (casca de arroz), da indústria de calçados (EVA) e da construção civil (resíduo de madeira, serragem). Foram investigados os teores de substituição de 25%, 50% e 75%. A medição de isolamento acústico foi efetuada através do ruído de impacto, em placas de 1 m², nas espessuras 3 e 5cm, e ensaio de rigidez dinâmica em placas de 20x20 cm, nas espessuras 3 e 5 cm. Os resultados mostraram que a redução dos níveis de ruído de impacto é maior na medida em que se aumenta a espessura e o teor de resíduos das amostras, especialmente nas bandas de frequências acima de 500 Hz. Em relação aos níveis de pressão sonora padronizado ponderado (L’nT,W), o EVA se destacou entre os resíduos, seguido da casca de arroz. As amostras confeccionadas com 75% de EVA apresentaram um forte decaimento nas bandas de frequência acima de 500 Hz. As amostras confeccionadas com 50% de casca de arroz apresentaram reduções de 1 dB para as espessuras de 3 cm e de 3 dB nas amostras com espessuras de 5 cm em relação às amostras de referência. / Bearing in mind the evolution of construction industry, it’s needed to find solutions that do not harm the environment, considering that the sector is largely responsible for the lack of natural resources and increased environmental pollution. A precursor alternative is increase the use of more sustainable products, such as residues to replace natural aggregates. Thus, the challenge is to prove the performance of products and construction systems, especially after the new version of NBR 15575 (ABNT, 2013) - Performance of buildings. The standard establishes performance and comfort requirements for the users, among which is the acoustic. In this context, the aim of this study was to investigate the acoustic potential of grout composites with partial replacement of sand by residues of agro-industry (rice husk), the shoe industry (EVA) and civil construction (wood waste, sawdust). The substitution levels of 25%, 50% and 75% were investigated. The sound insulation measurement was performed through the impact noise in 1 m² plates, in thicknesses 3 and 5 cm, and the dynamic stiffness test, in plates of 20x20 cm, with thicknesses of 3 and 5 cm. The results showed that the reduction of the impact noise level is higher as it increases the thickness and the residues of the samples, especially in bands above 500 Hz frequency. Regarding the sound pressure levels of weighted standard impact (L'nT,W), EVA stood out among the residues, followed by rice husk. The samples made with 75% EVA showed strong decay in the frequency bands above 500 Hz. The samples made with 50% of rice husk showed reductions of 1 dB for the thickness of 3 cm, and 3 dB in samples with thickness of 5 cm, in comparison with the reference samples.
12

On dynamic properties of rubber isolators

Sjöberg, Mattias January 2002 (has links)
This work aims at enhancing the understanding and to provideimproved models of the dynamic behavior of rubber vibrationisolators which are widely used in mechanical systems.Initially, a time domainmodel relating compressions tocomponent forces accounting for preload effects, frequency anddynamic amplitude dependence is presented. The problem ofsimultaneously modelling the elastic, viscoelastic and frictionforces are removed by additively splitting them, where theelastic force response is modelled either by a fully linear ora nonlinear shape factor based approach, displaying resultsthat agree with those of a neo-Hookean hyperelastic isolatorunder a long term precompression. The viscoelastic force ismodelled by a fractional derivative element, while the frictionforce governs from a generalized friction element displaying asmoothed Coulomb force. This is a versatile one-dimensionalcomponent model effectively using a small number of parameterswhile exhibiting a good resemblance to measured isolatorcharacteristics. Additionally, the nonlinear excitationeffects on dynamic stiffness and damping of a filled rubberisolator are investigated through measurements. It is shownthat the well-known Payne effect - where stiffness is high forsmall excitation amplitudes and low for large amplitudes whiledamping displays a maximum at intermediate amplitudes -evaluated at a certain frequency, is to a large extentinfluenced by the existence of additional frequency componentsin the signal. Finally, a frequency, temperature and preloaddependent dynamic stiffness model is presented covering theranges from 20 to 20 000 Hz, -50 to +50 °C at 0 to 20 %precompression. A nearly incompressible, thermo-rheologicallysimple material model is adopted displaying viscoelasticitythrough a time - strain separable relaxation tensor with asingle Mittag-Leffler function embodying its time dependence.This fractional derivative based function successfully fitsmaterial properties throughout the whole audible frequencyrange. An extended neo-Hookean strain energy function, beingdirectly proportional to the temperature and density, isapplied for the finite deformation response with componentproperties solved by a nonlinear finite element procedure. Thepresented work is thus believed to enlighten workingconditions’impact on the dynamic properties of rubbervibration isolators, while additionally taking some of thesemost important features into account in the presentedmodels.
13

On dynamic properties of rubber isolators

Sjöberg, Mattias January 2002 (has links)
<p>This work aims at enhancing the understanding and to provideimproved models of the dynamic behavior of rubber vibrationisolators which are widely used in mechanical systems.Initially, a time domainmodel relating compressions tocomponent forces accounting for preload effects, frequency anddynamic amplitude dependence is presented. The problem ofsimultaneously modelling the elastic, viscoelastic and frictionforces are removed by additively splitting them, where theelastic force response is modelled either by a fully linear ora nonlinear shape factor based approach, displaying resultsthat agree with those of a neo-Hookean hyperelastic isolatorunder a long term precompression. The viscoelastic force ismodelled by a fractional derivative element, while the frictionforce governs from a generalized friction element displaying asmoothed Coulomb force. This is a versatile one-dimensionalcomponent model effectively using a small number of parameterswhile exhibiting a good resemblance to measured isolatorcharacteristics. Additionally, the nonlinear excitationeffects on dynamic stiffness and damping of a filled rubberisolator are investigated through measurements. It is shownthat the well-known Payne effect - where stiffness is high forsmall excitation amplitudes and low for large amplitudes whiledamping displays a maximum at intermediate amplitudes -evaluated at a certain frequency, is to a large extentinfluenced by the existence of additional frequency componentsin the signal. Finally, a frequency, temperature and preloaddependent dynamic stiffness model is presented covering theranges from 20 to 20 000 Hz, -50 to +50 °C at 0 to 20 %precompression. A nearly incompressible, thermo-rheologicallysimple material model is adopted displaying viscoelasticitythrough a time - strain separable relaxation tensor with asingle Mittag-Leffler function embodying its time dependence.This fractional derivative based function successfully fitsmaterial properties throughout the whole audible frequencyrange. An extended neo-Hookean strain energy function, beingdirectly proportional to the temperature and density, isapplied for the finite deformation response with componentproperties solved by a nonlinear finite element procedure. Thepresented work is thus believed to enlighten workingconditions’impact on the dynamic properties of rubbervibration isolators, while additionally taking some of thesemost important features into account in the presentedmodels.</p>
14

INVESTIGATING WHOLE-BODY VIBRATION INJURIES IN FORESTRY SKIDDER OPERATORS: COMBINING OPERATOR VIBRATION EXPOSURES AND POSTURES IN THE FIELD WITH BIODYNAMIC RESPONSES IN THE LABORATORY

Jack, Robert Joel 19 January 2012 (has links)
The purpose of this thesis was to investigate potential links between trunk stiffness, vibration transmission and whole-body vibration (WBV) injuries. The investigation was comprised of field and laboratory studies. Tri-planar trunk postures, operator injury histories and 6-degree-of-freedom (DOF) vibration exposure data were collected from eight forestry skidders during normal field operations in Northern Ontario. Using this skidder posture and vibration exposure data, the laboratory investigation examined interactions between WBV exposure levels and spectra, seated trunk postures, trunk muscle activity, and trunk stiffness on the transmission of 6-DOF vibration from the seat to several levels of the spine. The field study revealed that when driving, skidder operators were exposed to vibrations with higher accelerations and lower frequency exposures while adopting the most neutral postures. When dropping-off (DOAL), picking-up (PUAL) or ploughing a load, operators were exposed to vibrations with lower accelerations and higher frequency exposures while adopting the postures furthest away from neutral. Furthermore, operators who adopted the greatest lateral trunk bending and forward flexion for the greatest percentage of time reported low-back and neck pain, however, interestingly were not exposed to the greatest exposure accelerations. Operators who complained of neck pain as a result of twisting to see the rear of the vehicle while DOAL and PAUL experienced some of the highest translational and rotational vibration exposures during those operating conditions. This suggests that WBV exposures and postures may interact to produce operator injuries. The laboratory study revealed a number of interactions between vibration exposure (magnitude, spectra and axis), posture, muscle activity, trunk stiffness, vibration transmissibility, dominant transmission frequency and spinal level. In general, experiment conditions expected to increase trunk muscle activity and stiffness typically did. In contrast, the expected increase in vibration transmissibility and dominant transmission frequency with increased muscle activity and trunk stiffness was not present under many of the simulated field conditions. Trunk muscle activity patterns necessary to maintain required trunk postures were often out of phase with input accelerations, reducing trunk stiffness and increasing transmissibility. These results are contrary to findings from previous studies thus bringing into question the appropriateness of literature based vibration exposure guidelines.
15

Formulation et mise en oeuvre d’un élément continu de plaque sandwich et de plaque multicouche / Formulation and implementation of a continuous stiffened sandwich plates and multilayer plates element

Ghorbel, Olfa 13 January 2016 (has links)
Cette thèse traite du développement d’un élément continu de plaques orthotropes, sandwichs et multicouches. La démarche consiste dans un premier temps à établir la matrice de raideur dynamique de plaques orthotropes pour des conditions aux limites naturelles à partir d’une reformulation des éléments de plaques isotropes développés au laboratoire QUARTZ (EA7393). La démarche est basée d’une part sur la décomposition des conditions aux limites libres décrite par Gorman et d’autre part sur la résolution des équations de mouvement en se basant sur les développements en séries de Levy. La matrice de raideur dynamique est ensuite obtenue par projection des déplacements et des efforts de frontières sur des bases fonctionnelles compatibles avec les opérations d’assemblage. Dans un second temps, la formulation des éléments sandwichs et multicouches est décrite par superposition des plaques orthotropes précédemment développées.Les formulations présentées prennent en compte les vibrations de flexion et les vibrations dans le plan, dites vibrations de membrane. La validation de ces éléments est menée par une confrontation systématique de réponses harmoniques non amorties avec celles obtenues par diverses modélisations éléments finis. / This thesis deals with the development of a continuous element for orthotropic, sandwich and multilayer plates. This approach is based essentially on the construction of the dynamic stiffness matrix of orthotropic plates using natural boundary conditions from a reformulation of the isotropic plate elements developed in the QUARTZ laboratory (EA 7393). In order to develop the dynamic stiffness matrix of the studied element we resort on the first hand to the decomposition of free boundary conditions described by Gorman, on the second hand to the resolution of the equations of motion by using Levy series expansions. The dynamic stiffness matrix is then obtained by projecting movements and frontier efforts on functional bases compatible with assembly operations. Finally the continuous sandwich and multilayer plate element is described by superposition of continuous orthotropic plates element previously developed.The formulations presented takes into account the bending vibration and the vibration in the plane, called membrane vibration. The validation of all obtained results is conducted by a systematic comparison of undamped harmonic responses with those obtained by various finite element models.
16

Development of a Parallel Finite-element Tool for Dynamic Soil-structure Interaction : A Preliminary Case Study on the Dynamic Stiffness of a Vertical Pile

Ullberg, Mårten January 2012 (has links)
This thesis has two major goals; first to develop scalable scripts for steady-state analysis, then to perform a case study on the dynamic properties of a vertical pile. The scripts are based on the numerical library PETSc for parallel linear algebra. This opens up the opportunity to use the scripts to solve large-scale models on supercomputers. The performance of the scripts are verified against problems with analytical solutions and the commercial software ABAQUS. The case study compares the numerical results with those obtained from an approximate solution.   The results from this thesis are verified scripts that can find a steady-state solution for linear-elastic isotropic solids on supercomputers. The case study has shown differences between numerical and semi-analytical solutions for a vertical pile. The dynamic stiffness show differences within reasonable limits but the equivalent viscous damping show larger differences. This is believed to come from the material damping in the soil that has been excluded from the approximate solution.   These two results make it possible for further case studies on typical three-dimensional problems, that result in large-scale models, such as the dynamic properties of a slanted pile or pile-groups. The scripts can easily be expanded and used for other interesting research projects and this is the major outcome of from this thesis.
17

Effective vibro-acoustical modelling of rubber isolators

Coja, Michael January 2005 (has links)
This thesis, gathering four papers, concerns the enhancement in understanding and modelling of the audible dynamic stiffness of vibration rubber isolators including experimental measurements. Paper A studies the performances of three different types of vibration isolator using an indirect measurement technique to estimate the blocked dynamic transfer stiffness of each specimen. The measurements are performed over a wide audible frequency range of 200 to 1000 Hz in a specially designed test rig enabling the investigation of arbitrary preload influences. Paper B addresses the modelling of the audible-frequency stiffness of the rubber conical mount experimentally appraised in Paper A accounting for preload effects. The model is based on a simpliflied waveguide approach approximating the nonlinearities attributed to the predeformations by adopting shape factor considerations. The carbon black filled rubber is assumed incompressible, displaying a viscoelastic behavior based on a fractional derivative Kelvin-Voigt model efficiently reducing the number of required material parameters. In Paper C the focus is on the axial dynamic stiffness modelling of an arbitrary long rubber bushing within the audible frequency range. The problems of simultaneously satisfying the locally non-mixed boundary conditions at the radial and end surfaces are solved by adopting a waveguide approach, using the dispersion relation for axially symmetric waves in thick-walled infinite plates, while fulfilling the radial boundary conditions by mode-matching. The results obtained are successfully compared with simpliflied models but display discrepancies when increasing the diameter-to-length ratios since the influence of higher order modes and dispersion augments. Paper D develops an effective waveguide model for a pre-compressed cylindrical vibration isolator within the audible frequency domain at arbitrary compressions. The original, mathematically arduous problem of simultaneously modelling the preload and frequency dependence is solved by applying a novel transformation of the pre-strained isolator into a globally equivalent homogeneous and isotropic configuration enabling the straightforward application of a waveguide model to satisfy the boundary conditions. The results obtained present good agreement with the non-linear finite element results for a wide frequency range of 20 to 2000 Hz at different preloads. / QC 20101001
18

High dynamic stiffness nano-structured composites for vibration control : A Study of applications in joint interfaces and machining systems

Fu, Qilin January 2015 (has links)
Vibration control requires high dynamic stiffness in mechanical structures for a reliable performance under extreme conditions. Dynamic stiffness composes the parameters of stiffness (K) and damping (η) that are usually in a trade-off relationship. This thesis study aims to break the trade-off relationship. After identifying the underlying mechanism of damping in composite materials and joint interfaces, this thesis studies the deposition technique and physical characteristics of nano-structured HDS (high dynamic stiffness) composite thick-layer coatings. The HDS composite were created by enlarging the internal grain boundary surface area through reduced grain size in nano scale (≤ 40 nm). The deposition process utilizes a PECVD (Plasma Enhanced Chemical Vapour Deposition) method combined with the HiPIMS (High Power Impulse Magnetron Sputtering) technology. The HDS composite exhibited significantly higher surface hardness and higher elastic modulus compared to Poly(methyl methacrylate) (PMMA), yet similar damping property. The HDS composites successfully realized vibration control of cutting tools while applied in their clamping interfaces. Compression preload at essential joint interfaces was found to play a major role in stability of cutting processes and a method was provided for characterizing joint interface properties directly on assembled structures. The detailed analysis of a build-up structure showed that the vibrational mode energy is shifted by varying the joint interface’s compression preload. In a build-up structure, the location shift of vibration mode’s strain energy affects the dynamic responses together with the stiffness and damping properties of joint interfaces. The thesis demonstrates that it is possible to achieve high stiffness and high damping simultaneously in materials and structures. Analysis of the vibrational strain energy distribution was found essential for the success of vibration control.
19

Stochastic Dynamic Stiffness Method For Vibration And Energy Flow Analyses Of Skeletal Structures

Adhikari, Sondipon 07 1900 (has links) (PDF)
No description available.
20

Static and dynamic stiffness analysis of cable-driven parallel robots / Analyse des raideurs statique et dynamique des robots parallèles à câbles

Yuan, Han 11 March 2015 (has links)
Cette thèse contribue à l'analyse des raideurs statique et dynamique des robots parallèles à câbles dans un objectif d'amélioration de la précision de positionnement statique et de la précision de suivi de trajectoire. Les modélisations statique et dynamique proposées des câbles considèrent l'effet du poids du câble sur son profil et l'effet de masse du câble sur la dynamique de ce dernier. Sur la base du modèle statique de câble proposé, l'erreur de pose statique au niveau de l'organe terminal du robot est définie et sa variation en fonction de la charge externe appliquée est utilisée pour évaluer la raideur statique globale de la structure. Un nouveau modèle dynamique vibratoire de robots à câbles est proposé en considérant le couplage de la dynamique des câbles avec les vibrations de l'organe terminal. Des validations expérimentales sont réalisées sur des prototypes de robots à câbles. Une série d'expériences de statique, d'analyses modales, d'analyses en régime libre et de suivi de trajectoire sont réalisées. Les modèles statiques et dynamiques proposés sont confirmés. Les dynamiques des câbles et du robot ainsi que leur couplage sont discutées montrant la pertinence des modèles développés pour l’amélioration des performances des robots à câbles en termes de design et le contrôle. Outre l'analyse des raideurs statique et dynamique, les modèles proposés sont appliqués dans l'amélioration du calcul de la distribution des efforts dans les câbles des robots redondants. Une nouvelle méthode de calcul de la distribution des efforts dans les câbles basée sur la détermination de la limite inférieure des forces dans les câbles est présentée. La prise en compte de la dépendance à la position dans l'espace de travail permet de limiter les efforts dans les câbles et ainsi d'améliorer l'efficience des robots d'un point de vue énergétique. / This thesis contributes to the analysis of the static and dynamic stiffness of cable-driven parallel robots (CDPRs) aiming to improve the static positioning accuracy and the trajectory tracking accuracy. The proposed static and dynamic cable modeling considers the effect of cable weight on the cable profile and the effect of cable mass on the cable dynamics. Based on the static cable model, the static pose error of the end-effector is defined and the variation of the end-effector pose error with the external load is used to evaluate the static stiffness of CDPRs. A new dynamic model of CDPRs is proposed with considering the coupling of the cable dynamics and the end-effector vibrations. Experimental validations are carried out on CDPR prototypes. Static experiments, modal experiments, free vibration experiments and trajectory experiments are performed. The proposed static and dynamic models are verified. Cable dynamics, robot dynamics and their coupling are discussed. Results show the relevance of the proposed models on improving the performances of CDPRs in terms of design and control. Besides stiffness analysis, the proposed models are applied on the force distribution of redundant actuated CDPRs. A new method on the calculation of the cable forces is proposed, where the determination of the lower-boundary of the cable forces is presented. The consideration of the pose-dependence of the lower force boundary can minimize the cable forces and improve the energy efficiency of CDPRs.

Page generated in 0.036 seconds