Spelling suggestions: "subject:"cynamic elastography"" "subject:"clynamic elastography""
1 |
L'élastographie ultrasonore dynamique vasculaire : une nouvelle modalité d'imagerie non-invasive pour la caractérisation mécanique de la thrombose veineuseSchmitt, Cédric 04 1900 (has links)
L’accident thromboembolique veineux, tel que la thrombose veineuse profonde (TVP) ou thrombophlébite des membres inférieurs, est une pathologie vasculaire caractérisée par la formation d’un caillot sanguin causant une obstruction partielle ou totale de la lumière sanguine. Les embolies pulmonaires sont une complication mortelle des TVP qui surviennent lorsque le caillot se détache, circule dans le sang et produit une obstruction de la ramification artérielle irriguant les poumons. La combinaison d’outils et de techniques d’imagerie cliniques tels que les règles de prédiction cliniques (signes et symptômes) et les tests sanguins (D-dimères) complémentés par un examen ultrasonographique veineux (test de compression, écho-Doppler), permet de diagnostiquer les premiers épisodes de TVP. Cependant, la performance de ces outils diagnostiques reste très faible pour la détection de TVP récurrentes. Afin de diriger le patient vers une thérapie optimale, la problématique n’est plus basée sur la détection de la thrombose mais plutôt sur l’évaluation de la maturité et de l’âge du thrombus, paramètres qui sont directement corrélées à ses propriétés mécaniques (e.g. élasticité, viscosité).
L’élastographie dynamique (ED) a récemment été proposée comme une nouvelle modalité d’imagerie non-invasive capable de caractériser quantitativement les propriétés mécaniques de tissus. L’ED est basée sur l’analyse des paramètres acoustiques (i.e. vitesse, atténuation, pattern de distribution) d’ondes de cisaillement basses fréquences (10-7000 Hz) se propageant dans le milieu sondé. Ces ondes de cisaillement générées par vibration externe, ou par source interne à l’aide de la focalisation de faisceaux ultrasonores (force de radiation), sont mesurées par imagerie ultrasonore ultra-rapide ou par résonance magnétique. Une méthode basée sur l’ED adaptée à la caractérisation mécanique de thromboses veineuses permettrait de quantifier la sévérité de cette pathologie à des fins d’amélioration diagnostique.
Cette thèse présente un ensemble de travaux reliés au développement et à la validation complète et rigoureuse d’une nouvelle technique d’imagerie non-invasive élastographique pour la mesure quantitative des propriétés mécaniques de thromboses veineuses.
L’atteinte de cet objectif principal nécessite une première étape visant à améliorer les connaissances sur le comportement mécanique du caillot sanguin (sang coagulé) soumis à une sollicitation dynamique telle qu’en ED. Les modules de conservation (comportement élastique, G’) et de perte (comportement visqueux, G’’) en cisaillement de caillots sanguins porcins sont mesurés par ED lors de la cascade de coagulation (à 70 Hz), et après coagulation complète (entre 50 Hz et 160 Hz). Ces résultats constituent les toutes premières mesures du comportement dynamique de caillots sanguins dans une gamme fréquentielle aussi étendue.
L’étape subséquente consiste à mettre en place un instrument innovant de référence (« gold standard »), appelé RheoSpectris, dédié à la mesure de la viscoélasticité hyper-fréquence (entre 10 Hz et 1000 Hz) des matériaux et biomatériaux. Cet outil est indispensable pour valider et calibrer toute nouvelle technique d’élastographie dynamique. Une étude comparative entre RheoSpectris et la rhéométrie classique est réalisée afin de valider des mesures faites sur différents matériaux (silicone, thermoplastique, biomatériaux, gel). L’excellente concordance entre les deux technologies permet de conclure que RheoSpectris est un instrument fiable pour la mesure mécanique à des fréquences difficilement accessibles par les outils actuels.
Les bases théoriques d’une nouvelle modalité d’imagerie élastographique, nommée SWIRE (« shear wave induced resonance dynamic elastography »), sont présentées et validées sur des fantômes vasculaires. Cette approche permet de caractériser les propriétés mécaniques d’une inclusion confinée (e.g. caillot sanguin) à partir de sa résonance (amplification du déplacement) produite par la propagation d’ondes de cisaillement judicieusement orientées. SWIRE a également l’avantage d’amplifier l’amplitude de vibration à l’intérieur de l’hétérogénéité afin de faciliter sa détection et sa segmentation.
Finalement, la méthode DVT-SWIRE (« Deep venous thrombosis – SWIRE ») est adaptée à la caractérisation de l’élasticité quantitative de thromboses veineuses pour une utilisation en clinique. Cette méthode exploite la première fréquence de résonance mesurée dans la thrombose lors de la propagation d’ondes de cisaillement planes (vibration d’une plaque externe) ou cylindriques (simulation de la force de radiation par génération supersonique). DVT-SWIRE est appliquée sur des fantômes simulant une TVP et les résultats sont comparés à ceux donnés par l’instrument de référence RheoSpectris. Cette méthode est également utilisée avec succès dans une étude ex vivo pour l’évaluation de l’élasticité de thromboses porcines explantées après avoir été induites in vivo par chirurgie. / The venous thromboembolism such as the lower limb deep venous thrombosis (DVT) is a vascular pathology characterized by a blood clot formation that induces partial or total vessel lumen occlusion. Pulmonary embolism is a fatal complication of DVT where the clot detaches from the wall, circulates in the blood flow, and produces an obstruction of pulmonary arterial branches. The combination of clinical prediction rules (signs or symptoms) and blood tests (D-dimer testing) coupled to venous ultrasonography (i.e. compression ultrasonography, color Doppler) allows an accurate diagnosis of first DVT. Nevertheless, such clinical tools present poor results to detect recurrent thrombotic events. Then, in order to guide patients towards optimal therapy, the problem is no more to detect the presence of thrombus, but to evaluate its maturity and its age, which are correlated to their mechanical properties (e.g. elasticity, viscosity).
The dynamic elastography (DE) has been recently proposed as a novel non-invasive imaging modality capable to characterize the quantitative mechanical properties of tissues. The DE is based on the analysis of acoustical parameters (i.e. velocity, attenuation, wave pattern) of low frequency (10-7000 Hz) shear waves propagating within the probed medium. Such shear waves generated by external vibration, or remotely using ultrasound beam focalisation (radiation force), were tracked using ultra-fast ultrasound or magnetic resonance imaging. A method based on DE and adapted to mechanical characterization of venous thrombosis may allow the quantification of diseases severity in order to improve the final diagnosis.
This thesis presents the works related to the development and complete validation of a novel non-invasive elastography imaging method for the quantitative and reliable estimation of mechanical properties of venous thrombosis.
In order to fulfil the main objective, it is first necessary to improve knowledge about mechanical behaviours of blood clot (coagulated blood) subjected to a dynamic solicitation similar to DE. The shear storage (elastic behaviour, G’) and loss (viscous behavior, G’’) moduli of porcine blood clots are measured by DE during the blood coagulation kinetics (at 70 Hz) and after completely coagulation (between 50 Hz and 160 Hz). These results are the first dynamic behaviour measurements of blood clots in such wide frequency range.
The subsequent step consists in introducing an innovative reference instrument (« gold standard »), called RheoSpectris, dedicated to measure the hyper-frequency viscoelasticity (between 10 Hz and 1000 Hz) of materials and biomaterials. This tool is indispensable to validate new dynamic elastography techniques. A comparative study between RheoSpectris and classical rheometry is performed to validate the measurements on different materials (silicon, thermoplastic, biomaterials, gel). The excellent agreement between both technologies allows to conclude that RheoSpectris is a reliable instrument for mechanical measurements at high frequencies, which is not always possible with current tools.
The theoretical basis of a novel elastographic imaging modality, labelled SWIRE (« shear wave induced resonance dynamic elastography ») is presented and validated on vascular phantoms. Such approach allows the characterization of mechanical properties of a confined inclusion (e.g. blood clot) from its resonance (displacement amplification) due to the propagation of judiciously oriented shear waves. SWIRE has also the advantage to amplify the vibration amplitude within the heterogeneity to help for its detection and segmentation.
Finally, the method DVT-SWIRE ((« Deep venous thrombosis – SWIRE ») is adapted to the quantitative elasticity estimation of venous thrombosis in the context of clinical use. DVT-SWIRE exploits the first resonance frequency measured within the thrombosis during the plane (vibration of rigid plate) or cylindrical (simulating supersonic radiation force generation) shear waves propagation. The technique is applied on DVT phantoms and the results are compared to those given by the RheoSpectris reference instrument. This method is also used successfully in an ex vivo study for the elasticity assessment of explanted porcine thrombosis surgically induced in vivo.
|
2 |
Modélisation de la diffraction des ondes de cisaillement en élastographie dynamique ultrasonoreMontagnon, Emmanuel 09 1900 (has links)
L'élastographie ultrasonore est une technique d'imagerie émergente destinée à cartographier les paramètres mécaniques des tissus biologiques, permettant ainsi d’obtenir des informations diagnostiques additionnelles pertinentes. La méthode peut ainsi être perçue comme une extension quantitative et objective de l'examen palpatoire. Diverses techniques élastographiques ont ainsi été proposées pour l'étude d'organes tels que le foie, le sein et la prostate et. L'ensemble des méthodes proposées ont en commun une succession de trois étapes bien définies: l'excitation mécanique (statique ou dynamique) de l'organe, la mesure des déplacements induits (réponse au stimulus), puis enfin, l'étape dite d'inversion, qui permet la quantification des paramètres mécaniques, via un modèle théorique préétabli. Parallèlement à la diversification des champs d'applications accessibles à l'élastographie, de nombreux efforts sont faits afin d'améliorer la précision ainsi que la robustesse des méthodes dites d'inversion.
Cette thèse regroupe un ensemble de travaux théoriques et expérimentaux destinés à la validation de nouvelles méthodes d'inversion dédiées à l'étude de milieux mécaniquement inhomogènes. Ainsi, dans le contexte du diagnostic du cancer du sein, une tumeur peut être perçue comme une hétérogénéité mécanique confinée, ou inclusion, affectant la propagation d'ondes de cisaillement (stimulus dynamique). Le premier objectif de cette thèse consiste à formuler un modèle théorique capable de prédire l'interaction des ondes de cisaillement induites avec une tumeur, dont la géométrie est modélisée par une ellipse. Après validation du modèle proposé, un problème inverse est formulé permettant la quantification des paramètres viscoélastiques de l'inclusion elliptique.
Dans la continuité de cet objectif, l'approche a été étendue au cas d'une hétérogénéité mécanique tridimensionnelle et sphérique avec, comme objectifs additionnels, l'applicabilité aux mesures ultrasonores par force de radiation, mais aussi à l'estimation du comportement rhéologique de l'inclusion (i.e., la variation des paramètres mécaniques avec la fréquence d'excitation).
Enfin, dans le cadre de l'étude des propriétés mécaniques du sang lors de la coagulation, une approche spécifique découlant de précédents travaux réalisés au sein de notre laboratoire est proposée. Celle-ci consiste à estimer la viscoélasticité du caillot sanguin via le phénomène de résonance mécanique, ici induit par force de radiation ultrasonore. La méthode, dénommée ARFIRE (''Acoustic Radiation Force Induced Resonance Elastography'') est appliquée à l'étude de la coagulation de sang humain complet chez des sujets sains et sa reproductibilité est évaluée. / Ultrasound elastography is an emerging technology derived from the concept of manual palpation and dedicated to the mapping of biological tissue mechanical properties in a diagnostic context. Various elastographic approaches have been applied to the study of organs such as the liver, breast or prostate. All proposed techniques rely on a three-steps procedure: first, the tissue to be studied is mechanically excited, in a static or dynamic way. Induced displacements are then measured and used to estimate qualitatively or quantitatively mechanical properties of the medium. This step is called inversion. While application fields of elastography are constantly broadened, efforts are made to provide robust and accurate inversion algorithms.
In this monography, theoretical and experimental works related to the development of new inversion methods dedicated to the study of mechanically inhomogeneous media in dynamic ultrasound elastography are provided. In the context of breast cancer diagnosis, a localized tumour can be assumed as a confined mechanical heterogeneity, also referred as an inclusion, which can disturb the propagation of shear waves (dynamic excitation). The first objective of this thesis is to provide a theoretical model to describe physical interactions occurring between incident shear waves and a tumour, here geometrically assumed as an ellipse. Once the theoretical model is validated, an inverse problem is formulated allowing further quantification of inclusion viscoelastic parameters.
Aiming the development of realistic models, the previous work has been extended to the case of three dimensional spherical heterogeneities and adapted to the specific case of an acoustic radiation force excitation. Furthermore, the feasibility of assessing the medium rheological model (i.e., the frequency dependence of mechanical properties) is demonstrated.
Finally, in the context of vascular diseases and blood coagulation, an inversion method based on the study of the mechanical resonance phenomenon induced by acoustic radiation force is proposed. The technique, termed ARFIRE (Acoustic Radiation Force Induced Resonance Elastography), is applied to human whole blood samples and the reproducibility of results is assessed.
|
3 |
L'élastographie ultrasonore dynamique vasculaire : une nouvelle modalité d'imagerie non-invasive pour la caractérisation mécanique de la thrombose veineuseSchmitt, Cédric 04 1900 (has links)
L’accident thromboembolique veineux, tel que la thrombose veineuse profonde (TVP) ou thrombophlébite des membres inférieurs, est une pathologie vasculaire caractérisée par la formation d’un caillot sanguin causant une obstruction partielle ou totale de la lumière sanguine. Les embolies pulmonaires sont une complication mortelle des TVP qui surviennent lorsque le caillot se détache, circule dans le sang et produit une obstruction de la ramification artérielle irriguant les poumons. La combinaison d’outils et de techniques d’imagerie cliniques tels que les règles de prédiction cliniques (signes et symptômes) et les tests sanguins (D-dimères) complémentés par un examen ultrasonographique veineux (test de compression, écho-Doppler), permet de diagnostiquer les premiers épisodes de TVP. Cependant, la performance de ces outils diagnostiques reste très faible pour la détection de TVP récurrentes. Afin de diriger le patient vers une thérapie optimale, la problématique n’est plus basée sur la détection de la thrombose mais plutôt sur l’évaluation de la maturité et de l’âge du thrombus, paramètres qui sont directement corrélées à ses propriétés mécaniques (e.g. élasticité, viscosité).
L’élastographie dynamique (ED) a récemment été proposée comme une nouvelle modalité d’imagerie non-invasive capable de caractériser quantitativement les propriétés mécaniques de tissus. L’ED est basée sur l’analyse des paramètres acoustiques (i.e. vitesse, atténuation, pattern de distribution) d’ondes de cisaillement basses fréquences (10-7000 Hz) se propageant dans le milieu sondé. Ces ondes de cisaillement générées par vibration externe, ou par source interne à l’aide de la focalisation de faisceaux ultrasonores (force de radiation), sont mesurées par imagerie ultrasonore ultra-rapide ou par résonance magnétique. Une méthode basée sur l’ED adaptée à la caractérisation mécanique de thromboses veineuses permettrait de quantifier la sévérité de cette pathologie à des fins d’amélioration diagnostique.
Cette thèse présente un ensemble de travaux reliés au développement et à la validation complète et rigoureuse d’une nouvelle technique d’imagerie non-invasive élastographique pour la mesure quantitative des propriétés mécaniques de thromboses veineuses.
L’atteinte de cet objectif principal nécessite une première étape visant à améliorer les connaissances sur le comportement mécanique du caillot sanguin (sang coagulé) soumis à une sollicitation dynamique telle qu’en ED. Les modules de conservation (comportement élastique, G’) et de perte (comportement visqueux, G’’) en cisaillement de caillots sanguins porcins sont mesurés par ED lors de la cascade de coagulation (à 70 Hz), et après coagulation complète (entre 50 Hz et 160 Hz). Ces résultats constituent les toutes premières mesures du comportement dynamique de caillots sanguins dans une gamme fréquentielle aussi étendue.
L’étape subséquente consiste à mettre en place un instrument innovant de référence (« gold standard »), appelé RheoSpectris, dédié à la mesure de la viscoélasticité hyper-fréquence (entre 10 Hz et 1000 Hz) des matériaux et biomatériaux. Cet outil est indispensable pour valider et calibrer toute nouvelle technique d’élastographie dynamique. Une étude comparative entre RheoSpectris et la rhéométrie classique est réalisée afin de valider des mesures faites sur différents matériaux (silicone, thermoplastique, biomatériaux, gel). L’excellente concordance entre les deux technologies permet de conclure que RheoSpectris est un instrument fiable pour la mesure mécanique à des fréquences difficilement accessibles par les outils actuels.
Les bases théoriques d’une nouvelle modalité d’imagerie élastographique, nommée SWIRE (« shear wave induced resonance dynamic elastography »), sont présentées et validées sur des fantômes vasculaires. Cette approche permet de caractériser les propriétés mécaniques d’une inclusion confinée (e.g. caillot sanguin) à partir de sa résonance (amplification du déplacement) produite par la propagation d’ondes de cisaillement judicieusement orientées. SWIRE a également l’avantage d’amplifier l’amplitude de vibration à l’intérieur de l’hétérogénéité afin de faciliter sa détection et sa segmentation.
Finalement, la méthode DVT-SWIRE (« Deep venous thrombosis – SWIRE ») est adaptée à la caractérisation de l’élasticité quantitative de thromboses veineuses pour une utilisation en clinique. Cette méthode exploite la première fréquence de résonance mesurée dans la thrombose lors de la propagation d’ondes de cisaillement planes (vibration d’une plaque externe) ou cylindriques (simulation de la force de radiation par génération supersonique). DVT-SWIRE est appliquée sur des fantômes simulant une TVP et les résultats sont comparés à ceux donnés par l’instrument de référence RheoSpectris. Cette méthode est également utilisée avec succès dans une étude ex vivo pour l’évaluation de l’élasticité de thromboses porcines explantées après avoir été induites in vivo par chirurgie. / The venous thromboembolism such as the lower limb deep venous thrombosis (DVT) is a vascular pathology characterized by a blood clot formation that induces partial or total vessel lumen occlusion. Pulmonary embolism is a fatal complication of DVT where the clot detaches from the wall, circulates in the blood flow, and produces an obstruction of pulmonary arterial branches. The combination of clinical prediction rules (signs or symptoms) and blood tests (D-dimer testing) coupled to venous ultrasonography (i.e. compression ultrasonography, color Doppler) allows an accurate diagnosis of first DVT. Nevertheless, such clinical tools present poor results to detect recurrent thrombotic events. Then, in order to guide patients towards optimal therapy, the problem is no more to detect the presence of thrombus, but to evaluate its maturity and its age, which are correlated to their mechanical properties (e.g. elasticity, viscosity).
The dynamic elastography (DE) has been recently proposed as a novel non-invasive imaging modality capable to characterize the quantitative mechanical properties of tissues. The DE is based on the analysis of acoustical parameters (i.e. velocity, attenuation, wave pattern) of low frequency (10-7000 Hz) shear waves propagating within the probed medium. Such shear waves generated by external vibration, or remotely using ultrasound beam focalisation (radiation force), were tracked using ultra-fast ultrasound or magnetic resonance imaging. A method based on DE and adapted to mechanical characterization of venous thrombosis may allow the quantification of diseases severity in order to improve the final diagnosis.
This thesis presents the works related to the development and complete validation of a novel non-invasive elastography imaging method for the quantitative and reliable estimation of mechanical properties of venous thrombosis.
In order to fulfil the main objective, it is first necessary to improve knowledge about mechanical behaviours of blood clot (coagulated blood) subjected to a dynamic solicitation similar to DE. The shear storage (elastic behaviour, G’) and loss (viscous behavior, G’’) moduli of porcine blood clots are measured by DE during the blood coagulation kinetics (at 70 Hz) and after completely coagulation (between 50 Hz and 160 Hz). These results are the first dynamic behaviour measurements of blood clots in such wide frequency range.
The subsequent step consists in introducing an innovative reference instrument (« gold standard »), called RheoSpectris, dedicated to measure the hyper-frequency viscoelasticity (between 10 Hz and 1000 Hz) of materials and biomaterials. This tool is indispensable to validate new dynamic elastography techniques. A comparative study between RheoSpectris and classical rheometry is performed to validate the measurements on different materials (silicon, thermoplastic, biomaterials, gel). The excellent agreement between both technologies allows to conclude that RheoSpectris is a reliable instrument for mechanical measurements at high frequencies, which is not always possible with current tools.
The theoretical basis of a novel elastographic imaging modality, labelled SWIRE (« shear wave induced resonance dynamic elastography ») is presented and validated on vascular phantoms. Such approach allows the characterization of mechanical properties of a confined inclusion (e.g. blood clot) from its resonance (displacement amplification) due to the propagation of judiciously oriented shear waves. SWIRE has also the advantage to amplify the vibration amplitude within the heterogeneity to help for its detection and segmentation.
Finally, the method DVT-SWIRE ((« Deep venous thrombosis – SWIRE ») is adapted to the quantitative elasticity estimation of venous thrombosis in the context of clinical use. DVT-SWIRE exploits the first resonance frequency measured within the thrombosis during the plane (vibration of rigid plate) or cylindrical (simulating supersonic radiation force generation) shear waves propagation. The technique is applied on DVT phantoms and the results are compared to those given by the RheoSpectris reference instrument. This method is also used successfully in an ex vivo study for the elasticity assessment of explanted porcine thrombosis surgically induced in vivo.
|
4 |
Suivi par élastographie ultrasonore après réparation endovasculaire d’anévrisme aorto-iliaque : étude de faisabilité in vivoBertrand-Grenier, Antony 12 1900 (has links)
No description available.
|
5 |
Développement d'une nouvelle méthode de caractérisation tissulaire basée sur l'élastographie ultrasonore : application pour le dépistage précoce du cancer du seinOuared, Abderrahmane 09 1900 (has links)
Le cancer du sein est le cancer le plus fréquent chez la femme. Il demeure la cause de mortalité la plus importante chez les femmes âgées entre 35 et 55 ans. Au Canada, plus de 20 000 nouveaux cas sont diagnostiqués chaque année. Les études scientifiques démontrent que l'espérance de vie est étroitement liée à la précocité du diagnostic. Les moyens de diagnostic actuels comme la mammographie, l'échographie et la biopsie comportent certaines limitations. Par exemple, la mammographie permet de diagnostiquer la présence d’une masse suspecte dans le sein, mais ne peut en déterminer la nature (bénigne ou maligne). Les techniques d’imagerie complémentaires comme l'échographie ou l'imagerie par résonance magnétique (IRM) sont alors utilisées en complément, mais elles sont limitées quant à la sensibilité et la spécificité de leur diagnostic, principalement chez les jeunes femmes (< 50 ans) ou celles ayant un parenchyme dense. Par conséquent, nombreuses sont celles qui doivent subir une biopsie alors que leur lésions sont bénignes. Quelques voies de recherche sont privilégiées depuis peu pour réduire l`incertitude du diagnostic par imagerie ultrasonore. Dans ce contexte, l’élastographie dynamique est prometteuse. Cette technique est inspirée du geste médical de palpation et est basée sur la détermination de la rigidité des tissus, sachant que les lésions en général sont plus rigides que le tissu sain environnant. Le principe de cette technique est de générer des ondes de cisaillement et d'en étudier la propagation de ces ondes afin de remonter aux propriétés mécaniques du milieu via un problème inverse préétabli.
Cette thèse vise le développement d'une nouvelle méthode d'élastographie dynamique
pour le dépistage précoce des lésions mammaires. L'un des principaux problèmes des
techniques d'élastographie dynamiques en utilisant la force de radiation est la forte atténuation des ondes de cisaillement. Après quelques longueurs d'onde de propagation, les amplitudes de déplacement diminuent considérablement et leur suivi devient difficile voir impossible. Ce problème affecte grandement la caractérisation des tissus biologiques. En outre, ces techniques ne donnent que l'information sur l'élasticité tandis que des études récentes montrent que certaines lésions bénignes ont les mêmes élasticités que des lésions malignes ce qui affecte la spécificité de ces techniques et motive la quantification de d'autres paramètres mécaniques (e.g.la viscosité).
Le premier objectif de cette thèse consiste à optimiser la pression de radiation acoustique afin de rehausser l'amplitude des déplacements générés. Pour ce faire, un modèle analytique de prédiction de la fréquence de génération de la force de radiation a été développé. Une fois validé in vitro, ce modèle a servi pour la prédiction des fréquences optimales pour la génération de la force de radiation dans d'autres expérimentations in vitro et ex vivo sur des échantillons de tissu mammaire obtenus après mastectomie totale. Dans la continuité de ces travaux, un prototype de sonde ultrasonore conçu pour la génération d'un type spécifique d'ondes de cisaillement appelé ''onde de torsion'' a été développé. Le but est d'utiliser la force de radiation optimisée afin de générer des ondes de cisaillement adaptatives, et de monter leur utilité dans l'amélioration de l'amplitude des déplacements. Contrairement aux techniques élastographiques classiques, ce prototype permet la génération des ondes de cisaillement selon des parcours adaptatifs (e.g. circulaire, elliptique,…etc.) dépendamment de la forme de la lésion. L’optimisation des dépôts énergétiques induit une meilleure réponse mécanique du tissu et améliore le rapport signal sur bruit pour une meilleure quantification des paramètres viscoélastiques. Il est aussi question de
consolider davantage les travaux de recherches antérieurs par un appui expérimental, et de prouver que ce type particulier d'onde de torsion peut mettre en résonance des structures. Ce phénomène de résonance des structures permet de rehausser davantage le contraste de déplacement entre les masses suspectes et le milieu environnant pour une meilleure détection. Enfin, dans le cadre de la quantification des paramètres viscoélastiques des tissus, la dernière étape consiste à développer un modèle inverse basé sur la propagation des ondes de cisaillement adaptatives pour l'estimation des paramètres viscoélastiques. L'estimation des paramètres viscoélastiques se fait via la résolution d'un problème inverse intégré dans un modèle numérique éléments finis. La robustesse de ce modèle a été étudiée afin de déterminer ces limites d'utilisation. Les résultats obtenus par ce modèle sont comparés à d'autres résultats (mêmes échantillons) obtenus par des méthodes de référence (e.g. Rheospectris) afin d'estimer la précision de la méthode développée. La quantification des paramètres mécaniques des lésions permet d'améliorer la sensibilité et la spécificité du diagnostic. La caractérisation tissulaire permet aussi une meilleure identification du type de lésion (malin ou bénin) ainsi que son évolution. Cette technique aide grandement les cliniciens dans le choix et la planification d'une prise en charge adaptée. / Breast cancer is the most frequent cancer in women and the leading cause of death for
women between 35 and 55 years old. In Canada, more than 20,000 new cases are diagnosed each year. Most of the previous works have shown that life expectancy is closely related to the precocity of diagnosis. Current diagnostic imaging methods such as mammography, sonography, MRI present limitations such as irradiation (mammography), low specificity and low resolution (sonography) and high cost (MRI). For example, about 95% of abnormalities detected by mammography are proven to be benign lesions after complementary examinations (biopsy). Sonography is useful as a complementary examination but the low resolution of its images, its low specificity (54% for women less than 50 years) and its operator dependent interpretation seriously limit the use of this modality alone. MRI is a non-invasive technique with a relatively high sensitivity (86% for women below 50 years), but its limitations are the high cost and the waiting time for medical examination, which dedicate it as a monitoring technique in high-risk patients. It is therefore necessary to examine new noninvasive and cost effective methods. In this context, dynamic elastography is a promising approach. It is an emerging quantitative medical imaging technique inspired from palpation and based on the determination of elastic properties (stiffness) of tissues. This thesis aims the development of a novel dynamic ultrasound elastography method for early detection of breast lesions. One of the main problems of dynamic elastography techniques using remote palpation (acoustic radiation force) is the strong attenuation of shear waves. After few wavelengths of propagation, displacement amplitudes considerably decrease and their tracking becomes difficult even impossible. This problem greatly affects biological tissue characterization. Moreover, these techniques give only the information about elasticity while recent studies show that some benign lesions have the same elasticity as malignant lesions which affect the specificity of these techniques and motivate investigation of other physical parameters (e.g. viscosity). The first objective of this thesis is to optimize the acoustic radiation force using frequency adaptation to enhance the amplitude of displacements. An analytical model has been developed to predict the optimal frequency for the generation of the radiation force. Once validated on phantoms (in vitro), this model was used for the prediction of the optimal frequencies for the generation of the radiation force in tissue mimicking phantoms and ex vivo human breast cancer samples obtained after total mastectomy. Gains in magnitude were between 20% to158% for in vitro measurements on agar-gelatin phantoms, and 170% to 336% for ex vivo measurements on a human breast sample, depending on focus depths and attenuations of tested samples. The signal-to-noise ratio was also improved by more than four folds with adapted sequences. We conclude that frequency adaptation is a complementary technique that is efficient for the optimization of displacement amplitudes. This technique can be used safely to optimize the deposited local acoustic energy, without increasing the risk of damaging tissues and transducer elements. In the second part of this thesis, a prototype of an ultrasound probe for the generation of a specific type of adaptive shear waves called ''adaptive torsional shear waves'' has been developed. The goal was to use the optimized radiation force (developed in the first part) to generate adaptive torsional shear wave, and prove their utility in improving the amplitude of displacement. During their inward propagation, the amplitude of displacement generated by torsional shear waves was enhanced and the signal to noise ratio improved due to the constructive interferences. Torsional shear waves can also resonate heterogeneities which further enhance the displacement contrast between suspicious masses and its surrounding medium.
Finally, in the context of assessment of mechanical proprieties of tissue, the last step of this thesis is to develop an inverse problem based on the propagation of adaptive torsional shear waves to estimate the viscoelastic parameters. A finite element method (FEM) model was developed to solve the inverse wave propagation problem and obtain viscoelastic properties of interrogated media. The inverse problem was formulated and solved in the frequency domain and its robustness was evaluated. The proposed model was validated in vitro with two independent rheology methods on several homogeneous and heterogeneous breast tissue mimicking phantoms over a broad range of frequencies (up to 400Hz). The obtained results were in good agreement with reference rheology methods with discrepancies between 8% and 38% for shear modulus and from 9% to 67% for loss modulus. The robustness study showed that the proposed inverse problem solution yielded a good estimation of the storage (19%) and loss moduli (32%) even with very noisy signals.
|
Page generated in 0.0574 seconds