• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 290
  • 101
  • 33
  • 30
  • 20
  • 19
  • 10
  • 10
  • 9
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 640
  • 155
  • 125
  • 100
  • 93
  • 91
  • 63
  • 61
  • 61
  • 53
  • 52
  • 50
  • 47
  • 44
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

Estudo de reatividade na redução eletrolítica de alguns α-cetoesteres em metanol, com eletrodos de platina / Study of the reactivity of the electrolytic reduction of some α-ketoesters in methanol, with platinum electrodes

Pardini, Vera Lucia 07 December 1974 (has links)
A presente tese fornece uma revisão bibliográfica dos trabalhos mais importantes sobre as reduções catódicas e anódicas do grupo carbonila em aldeídos, cetonas, dicetonas, cetonas α, β-insaturadas, cetoácidos, cetoésteres, e ésteres α, &#946 -insaturados. São descritas as sínteses por nós efetuadas de 13 hidroxi e cetoésteres metílicos, a saber: mandelato , 4-carbometoxi, 4-cloro, 4-nitro e 4-metoximandelatos, α-fenil-β-hidroxibutirato, fenilglioxilato, 4-carbometoxi, 4-cloro, 4-nitro e 4-metoxifenilglioxilatos,benzilpiruvato e piruvato. A pureza desses compostos foi testada por meio de espectroscopia no I.V .e R.M.N., cromatografia de gás ou em camada delgada e, em alguns casos, por análise elementar. 4-nitrofenilglioxilato, 4-carbometoxifenilglioxilato e 4-carbometoximandelato, compostos ainda não descritos na literatura, foram caracterizados e analisados. O trabalho fornece as eletrólises, com eletrodos de platina em metanol, de 10 cetoésteres que incluem, além dos acima enumerados, o α -cetobutirato de metila, 4-cetopimelato de etila e o cetomalonato de etila. Os produtos de reação obtidos foram identificados por métodos cromatográficos e espectroscópicos. São apresentadas dois tipos de experiências eletrolíticas: as simples e as que foram acompanhadas em tempos periódicos pela análise cromatográfica, sendo as primeiras, em alguns casos, repetidas, variando-se o tempo da eletrólise. Os resultados obtidos demonstram que são reduzidos aos hidroxiésteres correspondentes os seguintes cetoésteres contendo anel aromático: fenilglioxilato, 4-cloro e 4-carbometoxifenilglioxilatos e benzilpiruvato, como também, os 2 cetoésteres alifáticos -α -cetobutirato e piruvato. Entretanto, verifica-se que tanto 4-nitro e 4-metoxifenilglioxilatos como cetomalonato e 4-cetopimelato não sofrem redução. Estes resultados comparados com os anteriores do nosso laboratório, permitem sugerir a seguinte ordem de velocidade da redução: α -cetovalerato > α-cetobutirato > piruvato > fenilglioxilato) > 4-clorofenilglioxilato > 4-carbometoxifenilglioxilato. São fornecidas provas de que a falta de reatividade de 4-nitrofenilglioxilato e cetomalonato e a diminuição de reatividade de 4-cloro e 4-carbometoxifenilglioxilatos, como também, de piruvato são devidas à existência do equilíbrio cetoéster-semiacetaléster nestes compostos, em metanol. Finalmente, é apresenta.da uma discussão do mecanismo da redução de cetoésteres que justificaria a diminuição de reatividade de fenilglioxilato em relação aos α-cetoésteres alifáticos e a falta de reatividade. de 4-cetopimelato e 4-metoxifenilglioxilatonilglioxilato. / The present work describes the syntheses of some aliphatic and aromatic α-hydroxy - and α-keto-methyl esters and reports the electrolyses of the latter, in methanol, at a platinum cathode Some simple electrolytic experiments, varying the experimental conditions as well as those in which the transformations occurring during the electrolyses were followed by gas chromatography, are described. The reactivities towards cathodic reduction are reported and the following order of the relative rate for the reduction is suggested: α-oxovalerate > α-oxobutyrate > pyruvate> phenylglyoxylate > 4-chlorophenylglyoxylate > 4-methoxycarbonylphenylglyoxylate .No reduction is found to occur with 4-methoxyphenylglyoxylate 4-nitrophenylglyoxylate or 4-oxopymelate .An explanation for these differences in reactivities is suggested on the basis of electronic effects, steric inhibition of coplanarity, and hemiacetal formation
462

AMIDO DE MANDIOCA OXIDADO POR PERÓXIDO DE HIDROGÊNIO COM PROPRIEDADE DE EXPANSÃO

Brites, Lara Tatiane Geremias Ferreira 20 February 2013 (has links)
Made available in DSpace on 2017-07-21T18:53:18Z (GMT). No. of bitstreams: 1 Lara Tatiane Geremias Ferreira Brites.pdf: 2802840 bytes, checksum: c22d0a4cc841b761b048479e54280f53 (MD5) Previous issue date: 2013-02-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Native starches have characteristics that limit their application by industries. Among commercial starches, that extracted from cassava is considered abundant and economical and several studies considering its modification has been carried out with the aim of improving and enhancing industrial application.The oxidation is a form of modification that provides starches with low paste viscosity and increased expansion property. The use of metal ions has been reported by some authors to increase the efficiency of the oxidation process, but the incorporation of ions in starch granules also seems to occur. Another form of modification that is being studied is the acid-alcohol, due to the fact that alcoholic reaction medium allows the use of lower concentrations of acids. In order to improve and enhance the oxidation of starches, this study aimed to investigate the interference of pH, hydrogen peroxide concentration, reaction time and also the interaction of the starch granule with metal ions in the oxidation process. Preliminary tests were conducted for understanding the influence of Cu (II) and Fe (II) in starch oxidation, and their residues in the final product, through qualitative and quantitative instrumental analyses, besides being investigated contribution of pH and the concentration of hydrogen peroxide during the oxidation. From the preliminary tests a central composite rotatable design (CCRD) with 17 treatments and three central points was used to verify the influence of variables pH (2.30 to 5.70), H2O2 concentration (0.5 to 5.5 %, v/w, dry basis) and reaction time (28 to 62 min). Two methods were used for the oxidation, one using water and the other using anhydrous methanol as reaction medium in order to verify the behavior of the oxidation reaction. The effect of variables on the physicochemical properties was evaluated with use of Response Surface Method (RSM). The samples oxidized with the use of metal ions presented residues in the oxidized starch and the results with the use of Fe (II) showed a greater expansion and lower peak viscosity, being used for the entire planning. It was found by the RSM, that the pH, the concentration of hydrogen peroxide and the reaction time influenced the two methods of oxidation and the physicochemical properties of cassava starch. The cassava starch oxidized in aqueous media showed better results, regarding the physicochemical analyses, than those found in the oxidation in anhydrous medium. The best conditions found for oxidation in aqueous media were those of the central point (treatments 15,16 and 17) for the expansion property, carboxyl content and reducing power; for soluble solids at 50 and 80 ° C the best treatments were 4 and 13; for swelling power at 50 and 80 °C treatments 9 and 6, whereas for cycles of freezing and thawing, the treatment 5; in the case of paste property, the most pronounced change occurred in the treatment 7.For anhydrous methanol oxidation due to lack of fit of different models, it is difficult to establish which were the best conditions for the experiment and this methodology should be studied considering other variables in different alcohols 9 and starches, so it can be directly compared with the traditional oxidation is aqueous medium. / O amido nativo possui características que limitam sua aplicação pelas indústrias. Dentre os amidos comerciais, o de mandioca é considerado abundante e econômico, por isso muitos estudos sobre a modificação deste vem sendo realizados, com o intuito de melhorar e aumentar sua aplicação. A oxidação é uma forma de modificação que proporciona amidos com baixa viscosidade de pasta e aumento da propriedade de expansão. A utilização de íons metálicos tem sido reportada por alguns autores para aumentar a eficiência do processo de oxidação, no entanto, a incorporação dos íons nos grânulos de amido também parece ocorrer. Outra forma de modificação que vem sendo estudada é a álcool-ácida, que pela utilização de álcool possibilita que menores concentrações de ácidos sejam utilizadas para se obter amidos com características diferenciadas. Visando melhorar e aperfeiçoar a oxidação de amidos, este estudo teve como objetivo principal investigar a interferência do pH, concentração de peróxido de hidrogênio, tempo de reação e averiguar a interação do grânulo de amido com íons metálicos no processo de oxidação.Testes preliminares foram realizados com o intuito de observar a influência dos íons de Cu (II) e Fe (II) na oxidação, bem como seus resíduos no produto final, por intermédio de análises instrumentais qualitativas e quantitativas, além de se investigara contribuição do pH e da concentração de peróxido de hidrogênio durante a oxidação. A partir dos testes preliminares um Delineamento Composto Central Rotacional (DCCR) com 17 tratamentos sendo três pontos centrais foi utilizado para verificar a influência das variáveis pH (2,30 a 5,70),concentrações de H2O2 (0,5 a 5,5 %, v/m) (b.s) e tempos de reação (28 a 62 min). Duas metodologias foram utilizadas para a oxidação, uma utilizando água e outra utilizando metanol anidro como meio reacional, a fim de verificar o comportamento da reação de oxidação. O efeito das variáveis sobre as propriedades físico-químicas foi avaliado com emprego do Método de Superfície de Resposta. As amostras oxidadas com a utilização de íons metálicos apresentaram resíduos no amido oxidado, no entanto os resultados encontrados com a utilização de Fe(II) demonstraram maior propriedade de expansão e menores picos de viscosidade, sendo utilizado para todo o planejamento. Verificou-se, pela metodologia de superfície de resposta, que o pH, a concentração de peróxido de hidrogênio e o tempo de reação tiveram influência nas duas metodologias de oxidação e nas propriedades físicoquímicas do amido de mandioca. Porém o amido de mandioca oxidado em meio aquoso apresentou resultados superiores em relação as características físico-químicas, aos encontrados na oxidação em meio anidro. As melhores condições encontradas para oxidação em meio aquoso foi no ponto central (tratamentos 15,16 e 17) para as análises de propriedade de expansão, conteúdo de carboxilas e poder redutor; para sólidos solúveis 50 e 80 ºC foram nos tratamentos 4 e 13; poder de inchamento 50 e 80 ºC nos tratamentos 9 e 6;nos ciclos de congelamento e descongelamento o tratamento 5; propriedade de 7 pasta no tratamento 7. Para a oxidação em metanol anidro devido a falta de ajuste de diversos modelos, é difícil afirmar quais as melhores condições para o experimento, devendo essa metodologia ser estudada com diferentes variáveis, em diferentes alcoóis e amidos, para poder ser comparada diretamente com a oxidação tradicional que utiliza água.
463

Rational bioenergy utilisation in energy systems and impacts on CO2emissions

Wahlund, Bertil January 2003 (has links)
The increased concentration of greenhouse gases in theatmosphere, in particular CO2, is changing the Earth’s climate. Accordingto the Kyoto protocol, where the international community agreedon binding emission targets, developed countries are committedto reduce their greenhouse gas emissions. The increased use ofbiomass in energy systems is an important strategy to reduce CO2emissions. The purpose of this thesis has been toanalyse the opportunities for Sweden to further reduce CO2emissions in the energy system, by rationallyutilising woody biomass energy. The characteristics of currentcommercially operating biofuel-based CHP plants in Sweden aresurveyed and systematically presented. A consistent andtransparent comprehensive reference base for system comparisonsis given. Furthermore, the fuel effectiveness and contributionto CO2reduction is calculated. The governmentalsubsidies of the CHP plants’investment, expressed as costof specific CO2reduction, appears to be low. The competitiveness of biomass-fuelled energy production inrelation to fossil-based production with carbon capture isanalysed, showing that the biomass-fuelled systems provide acompetitive option, in terms of cost of electricity andefficiencies. The remaining Swedish woody biofuel potential ofat least 100 PJ/yr is principally available in regions with abiomass surplus. Transportation is therefore required to enableits utilisation in a further national and international market.Refining the biofuel feedstock to pellets, or even furtherrefining to motor fuels (DME, methanol or ethanol) or power,could facilitate this transport. Different options for fuelrefining are studied and compared. The entire fuel chain, fromfuel feedstock to end users, is considered and CO2emissions are quantified. Substituting fuelpellets for coal appears to be the most costeffectivealternative and shows the largest CO2reduction per energy unit biofuel. Motor fuelsappear more costly and give about half the CO2reduction. Transportation of the upgraded biofuelpellets is highly feasible from CO2emissions point of view and does not constitute ahindrance for further utilisation, i.e. the pellets can betransported over long distances efficiently with only limitedemissions of CO2. Bioenergy utilisation has additional features forenvironmental improvement, apart from the CO2aspect. Waste heat from biofuel-based CHP can becost-effectively used in conjunction with sewage treatment. Theincoming sewage water to the nitrification process can bepreheated with the waste heat, and thereby substantiallyenhance the nitrification and the reduction of ammoniumnitrogen during the winter season. <b>Keywords:</b>CO2reduction, energy system, biofuel, CHP, refining,fuel pellets, ethanol, methanol, DME, fuel substitution, sewagewater, nitrification.
464

A Membrane Separation Process for Biodiesel Purification

Saleh, Jehad 02 February 2011 (has links)
In the production of biodiesel via the transesterification of vegetable oils, purification to international standards is challenging. A key measure of biodiesel quality is the level of free glycerol in the biodiesel. In order to remove glycerol from fatty acid methyl ester (FAME or biodiesel), a membrane separation setup was tested. The main objective of this thesis was to develop a membrane process for the separation of free glycerol dispersed in FAME after completion of the transesterification reaction and to investigate the effect of different factors on glycerol removal. These factors included membrane pore size, pressure, temperature, and methanol, soap and water content. First, a study of the effect of different materials present in the transesterification reaction, such as water, soap, and methanol, on the final free glycerol separation was performed using a modified polyacrylonitrile (PAN) membrane, with 100 kD (ultrafiltration) molecular weight cut off for all runs at 25°C. Results showed low concentrations of water had a considerable effect in removing glycerol from the FAME. The mechanism of separation of free glycerol from FAME was due to the removal of an ultrafine dispersed glycerol-rich phase present in the untreated (or raw) FAME. The size of the droplets and the free glycerol separation both increased with increasing water content of the FAME. Next, three types of polymeric membranes in the ultrafiltration range with different molecular weight cut off, were tested at three fixed operating pressures and three operating temperatures (0, 5 and 25oC) to remove the free glycerol from a biodiesel reactor effluent. The ASTM standard for free glycerol concentration was met for the experiments performed at 25°C. The results of this study indicate that glycerol could be separated from raw FAME to meet ASTM and EN standards at methanol feed concentrations of up to 3 mass%. The process was demonstrated to rely on the formation of a dynamic polar layer on the membrane surface. Ceramic membranes of different pore sizes (0.05 µm (ultrafiltration (UF) range) and 0.2 µm (microfiltration (MF) range)) were used to treat raw FAME directly using the membrane separation set up at temperatures of 0, 5 and 25°C. The results were encouraging for the 0.05 µm pore size membrane at the highest temperature (25°C). The effect of temperature on glycerol removal was evident from its relation with the concentration factor (CF). Higher temperatures promoted the achievement of the appropriate CF value sooner for faster separation. Membrane pore size was also found to affect separation performance. A subsequent study revealed the effect of different variables on the size of the glycerol droplets using dynamic light scattering (DLS). A key parameter in the use of membrane separation technology is the size of the glycerol droplets and the influence of other components such as water, methanol and soaps on that droplet size. The effect of water, methanol, soap and glycerol on the size of suspended glycerol droplets in FAME was studied using a 3-level Box-Behnken experimental design technique. Standard statistical analysis techniques revealed the significant effect of water and glycerol on increasing droplet size while methanol and soap served to reduce the droplet size. Finally, a study on the effect of trans-membrane pressure (TMP) at different water concentrations in the FAME phase on glycerol removal using UF (0.03 µm pore size, polyethersulfone (PES)) and MF (0.1 and 0.22 µm pore sizes, PES) membranes at 25, 40 and 60°C was performed. Results showed that running at 25°C for the two membrane types produced the best results for glycerol removal and exceeded the ASTM and EN standards. An enhancement of glycerol removal was found by adding small amounts of water up to the maximum solubility limit in biodiesel. An increase in temperature resulted in an increase in the solubility of water in the FAME and less effective glycerol removal. Application of cake filtration theory and a gel layer model showed that the gel layer on the membrane surface is not compressible and the specific cake resistance and gel layer concentration decrease with increasing temperature. An approximate value for the limiting (steady-state) flux was reported and it was found that the highest fluxes were obtained at the lowest initial water concentrations at fixed temperatures. In conclusion, dispersed glycerol can be successfully removed from raw FAME (untreated FAME) using a membrane separation system to meet the ASTM biodiesel fuel standards. The addition of water close to the solubility limit to the FAME mixture enables the formation of larger glycerol droplets and makes the separation of these droplets straightforward.
465

A Membrane Separation Process for Biodiesel Purification

Saleh, Jehad 02 February 2011 (has links)
In the production of biodiesel via the transesterification of vegetable oils, purification to international standards is challenging. A key measure of biodiesel quality is the level of free glycerol in the biodiesel. In order to remove glycerol from fatty acid methyl ester (FAME or biodiesel), a membrane separation setup was tested. The main objective of this thesis was to develop a membrane process for the separation of free glycerol dispersed in FAME after completion of the transesterification reaction and to investigate the effect of different factors on glycerol removal. These factors included membrane pore size, pressure, temperature, and methanol, soap and water content. First, a study of the effect of different materials present in the transesterification reaction, such as water, soap, and methanol, on the final free glycerol separation was performed using a modified polyacrylonitrile (PAN) membrane, with 100 kD (ultrafiltration) molecular weight cut off for all runs at 25°C. Results showed low concentrations of water had a considerable effect in removing glycerol from the FAME. The mechanism of separation of free glycerol from FAME was due to the removal of an ultrafine dispersed glycerol-rich phase present in the untreated (or raw) FAME. The size of the droplets and the free glycerol separation both increased with increasing water content of the FAME. Next, three types of polymeric membranes in the ultrafiltration range with different molecular weight cut off, were tested at three fixed operating pressures and three operating temperatures (0, 5 and 25oC) to remove the free glycerol from a biodiesel reactor effluent. The ASTM standard for free glycerol concentration was met for the experiments performed at 25°C. The results of this study indicate that glycerol could be separated from raw FAME to meet ASTM and EN standards at methanol feed concentrations of up to 3 mass%. The process was demonstrated to rely on the formation of a dynamic polar layer on the membrane surface. Ceramic membranes of different pore sizes (0.05 µm (ultrafiltration (UF) range) and 0.2 µm (microfiltration (MF) range)) were used to treat raw FAME directly using the membrane separation set up at temperatures of 0, 5 and 25°C. The results were encouraging for the 0.05 µm pore size membrane at the highest temperature (25°C). The effect of temperature on glycerol removal was evident from its relation with the concentration factor (CF). Higher temperatures promoted the achievement of the appropriate CF value sooner for faster separation. Membrane pore size was also found to affect separation performance. A subsequent study revealed the effect of different variables on the size of the glycerol droplets using dynamic light scattering (DLS). A key parameter in the use of membrane separation technology is the size of the glycerol droplets and the influence of other components such as water, methanol and soaps on that droplet size. The effect of water, methanol, soap and glycerol on the size of suspended glycerol droplets in FAME was studied using a 3-level Box-Behnken experimental design technique. Standard statistical analysis techniques revealed the significant effect of water and glycerol on increasing droplet size while methanol and soap served to reduce the droplet size. Finally, a study on the effect of trans-membrane pressure (TMP) at different water concentrations in the FAME phase on glycerol removal using UF (0.03 µm pore size, polyethersulfone (PES)) and MF (0.1 and 0.22 µm pore sizes, PES) membranes at 25, 40 and 60°C was performed. Results showed that running at 25°C for the two membrane types produced the best results for glycerol removal and exceeded the ASTM and EN standards. An enhancement of glycerol removal was found by adding small amounts of water up to the maximum solubility limit in biodiesel. An increase in temperature resulted in an increase in the solubility of water in the FAME and less effective glycerol removal. Application of cake filtration theory and a gel layer model showed that the gel layer on the membrane surface is not compressible and the specific cake resistance and gel layer concentration decrease with increasing temperature. An approximate value for the limiting (steady-state) flux was reported and it was found that the highest fluxes were obtained at the lowest initial water concentrations at fixed temperatures. In conclusion, dispersed glycerol can be successfully removed from raw FAME (untreated FAME) using a membrane separation system to meet the ASTM biodiesel fuel standards. The addition of water close to the solubility limit to the FAME mixture enables the formation of larger glycerol droplets and makes the separation of these droplets straightforward.
466

Bränsleceller i taktisk enhet / Fuel cells in military units

Ohlson, Jan January 2010 (has links)
Inom Försvarsmakten används motordrivna generatorer för att förse många förbandsenheter med elektricitet. Dagens bullriga och vibrerande elverk är idag möjliga att ersätta med tystare bränsleceller. På köpet erhålls en bättre ergonomi för alla som arbetar i hytter som strömförsörjs av elverk. I rapporten redovisas funktionen för olika typer av bränsleceller, vilka bränslen de använder sig av och hur dessa kan transporteras. Dessutom redovisas hur två elverk används och vilka förbättringar som kan åstadkommas vid byte till bränsleceller. Slutligen analyseras den militära nyttan med ett byte. / In the Armed Forces many units are provided with electricity from generators. It is now possible to replace noisy and vibrating generators used today with more quiet fuel cells. As a bonus, we obtain better ergonomics for those working in units powered by generators. This report describes the function of different types of fuel cells, what fuels they use and how they can be transported. Furthermore it shows how two generators are used and what improvements can be achieved when switching to fuel cells. Finally the military benefit of retrofitting is analyzed.
467

Membrane Electrode Assembly (MEA) Design for Power Density Enhancement of Direct Methanol Fuel Cells (DMFCs)

Tse, Laam Angela 13 June 2006 (has links)
Micro-direct methanol fuel cells (micro-DMFC) can be the power supply solution for the next generation of handheld devices. The applications of the micro-DMFCs require them to have high compactness, high performance, light weight, and long life. The major goal of this research project is to enhance the volumetric power density of direct methanol fuel cells (DMFCs). A performance roadmap has been formulated and showed that patterning the planar membrane electrode assembly (MEA) to 2-D and 3-D corrugated manifolds can greatly increase the power generation with very modest overall volume increases. In this project, different manufacturing processes for patterning MEAs with corrugations have been investigated. A folding process was selected to form 2D triangular corrugations on MEAs for experimental validations of the performance prediction. The experimental results show that the volumetric power densities of the corrugated MEAs have improved by about 25% compared to the planar MEAs, which is lower than the expected performance enhancement. ABAQUS software was used to simulate the manufacturing process and identify the causes of deformations during manufacture. Experimental analysis methods like impedance analysis and 4 point-probes were used to quantify the performance loss and microstructure alteration during the forming process. A model was proposed to relate the expected performance of corrugated MEAs to manufacturing process variables. Finally, different stacking configurations and issues related to cell stacking for corrugated MEAs are also investigated.
468

Study Of Sorption Of Alcohols On High Silica Zsm-35

Babuccuoglu, Yurdaer 01 January 2007 (has links) (PDF)
This study investigated the equilibrium sorption capacities and rates of sorption of some alcohols on Na- and/or H- form of ZSM-35 at different temperatures by gravimetric method using an electrobalance. The alcohols studied were methanol, ethanol, propan-1-ol, propan-2-ol, n-butanol. The ZSM-35 sample used in sorption experiments resulted from a study for synthesis of high silica ZSM-35 zeolite. This ZSM-35 sample was called as NaZSM-35. The influence of ion-exchange on the sorption capacity and kinetics was investigated by converting NaZSM-35 into H-form by the ion exchange method. In this method, a sufficient amount of ZSM-35 sample (200-250 mg) was mixed with 25 ml of 1 N NH4Cl solution for 24 hours at room temperature. This procedure was repeated until no Na+ was detected by a Flame Photometer. After the ion exchange was completed , the sample was washed with deionized water, filtered, dried and recalcined for the removal of the ammonia and this sample was denoted as HZSM-35. The highest sorption capacity (cm3/g) was observed for methanol on HZSM-35 / 0.1656 cm3/g and the lowest sorption capacity was observed for propan-2-ol at NaZSM-35 / 0.003 cm3/g. Sorption of methanol and ethanol were very rapid. The sorption capacities of other three alcohols / propan-1-ol, propan-2-ol and n-butanol, were lower and they had slower rates of sorption. HZSM-35 had greater limiting sorption capacity than NaZSM-35 for propan-1-ol, propan-2-ol and n-butanol at all temperatures.
469

Quantum Chemical Investigation Of Reactions Of Atomic Carbon With Water And Methanol

Dede, Yavuz 01 November 2007 (has links) (PDF)
Reactions of singlet (1S and 1D) and triplet (3P) carbon atoms with water, and 1D and 3P carbon atoms with methanol were studied computationally. In the water and methanol systems, the carbon vapor containing a mixture of C(1S), C(1D), and C(3P) atoms, is predicted to react by primarily interacting with the oxygen, OH bond and CH bond of the substrate mainly with the 1D state. While C(1S) was proven to be unreactive C(3P) can hardly be supported to be reactive, and can safely be defined as unreactive. The major product, CO forms as a result of oxygen abstraction, which is observed as a fast, energetically quite favorable process. The scheme of this oxygen abstraction is promising to be applicable to substrates with the general formula R1-O-R2 i.e. water, alcohols, and ethers. OH insertion, both for water and methanol, yields trappable carbenes / the carbene being a key species on the distribution of the end products. Water matrix trapping the carbene opens the path to the formation of formaldehyde / and exhibits a prototype reaction for the formation of dialkoxymethanes. Gas phase product spectrum from the reactions are broader, due to the accessibility of the routes originating from the otherwise trapped intermediates / and the excess energy of the reactions being carried by them. In the condensed phase the very early and rapid reactions seem to have chance, the subsequent rearrangements are hard to occur. The conclusions thus far apply to the reactions in the gas phase as well as in condensed phases involving inert matrices / and the experimental isolation of the species is highly dependent on the ability of the medium to trap the intermediates via effective transfer of excess energy. Due to the large excess energies of intermediates involved, subsequent reactions are fast / of the order 1013 s-1 from kinetic rate calculations. In the absence of efficient transfer of non-fixed energies to the surrounding medium, all of the reaction paths will conclude with irreversible dissociation reactions. Plausible mechanisms for all the experimentally observed products are predicted. The results are in agreement with the available experimental data.
470

Bi-functional Nanostructured Novel Catalysts For Dimethyl Ether Synthesis

Gokhan, Celik 01 August 2012 (has links) (PDF)
Excessive use of fossil fuels shall result in the significant energy problems in the coming century and causes global warming by CO2 emission. Use of petroleum in transportation constitutes the dominant part of total petroleum use. Researches on non-petroleum based, environmentally friendly alternative fuels have been ascended in last decades. Among the alternative fuels, DME has been considered as an attractive fuel alternate due to high cetane number, low PM (particulate matter) and low NOx emission. Synthesis of DME is possible with gasification of biowastes or coal and steam reforming of natural gas. DME is produced in two different methods. In the first method, methanol is formed from the synthesis gas, followed by methanol dehydration to DME. In the second method, called as direct synthesis of DME from synthesis gas, methanol formation and dehydration occurs simultaneously at the same location within the reactor. For the direct synthesis of DME, bi-functional catalysts must be used / one site is responsible for methanol synthesis and other site is responsible for methanol dehydration. Throughout this thesis work, several catalysts were prepared to be used as methanol synthesis component or methanol dehydration component of bi-functional direct DME synthesis catalyst and bi-functional catalysts were also prepared for the direct synthesis of DME from synthesis gas. Materials were characterized by XRD, EDS, SEM, N2 physisorption, and DRIFTS characterization techniques. Activity tests were conducted in a high pressure, fixed bed flow reactor at 50 bar and for the feed gas compositions of H2:CO=50:50 and H2:CO: CO2=50:40:10. Addition of zirconia and alumina promoters, long aging time, calcination temperature of 550 &deg / C and reduction at 250 &deg / C were found to be beneficial in methanol synthesis from the equimolar composition of CO and H2. Precipitated catalysts were usually active and selective to methanol. However, bi-functional co-precipitated catalyst was not successful in situ conversion of methanol into dimethyl ether. Furthermore, tungstosilisic acid impregnated SBA-15 was physically mixed with commercial methanol reforming catalyst and activity results revealed that high DME yield and selectivity were obtained. By physically mixing commercial methanol synthesis and reforming catalysts with &gamma / -Al2O3 and TRC-75(L) in appropriate proportions or by preparing the reactor bed in a sequential arrangement, very high DME yields were obtained and superiority of direct synthesis to conventional two step synthesis was proven. Presence of CO2 in the feed stream not only enhanced the catalytic activity but also utilization of the most important greenhouse gas was accomplished. It was seen that synthesized catalysts are very promising in the direct synthesis of dimethyl ether from synthesis gas.

Page generated in 0.0313 seconds