1 |
The Effects of Adenovirus Region E1B Mutations on the Accumulations of Viral Specific RNAs / RNA Accumulations in Adenovirus E1B MutantsCaussy, Deoraj 09 1900 (has links)
The expression of the adenovirus (Ad) genome is co-ordinately regulated and the various early regions of the genome are known to exert feedback controls on each other. The region E1B is known to encode functions which are required for oncogenic transformation by adenovirus yet its potential regulatory role is poorly understood. In this study the regulatory role(s) of the region E1B was investigated at the level of RNA accumulation. The Northern blot technique using various cloned early regions as probes and RNAs from E1B mutants Ad 12, Ad 2 and Ad 5 were used. The levels of region E1A specific RNAs were found to be aberrant. Thus for Ad 12 cyt 68 and Ad 2 dl 250 the levels were higher than wild type ones at late times whereas for Ad 5 dl 313 hr-6 the levels were consistently lower than Ad 5. This implies that the region E1B normally encodes functions which are involved either directly or indirectly in the efficient accumulation of region E1A specific RNA. Other regions also seemed to be affected in these mutants. In cyt 68, region E1B RNA was higher than wild ones at late time, indicating an auto-regulatory mode of control for this region. The expression of region E3, E4 and LS RNA were all perturbed by the E1B mutation as some of the mutants either accumulated higher or lower than wild type levels of RNA. / Thesis / Master of Science (MS)
|
2 |
Enteric adenovirus type 41 : genome organization and specific detection proceduresAllard, Annika January 1992 (has links)
Enteric adenoviruses (EAd) types 40 and 41 (Ad40 and Ad41) representing subgenus F, are primary pathogens of children being second only to rotaviruses as the most important cause of infantile diarrhea. The EAds differ from all other adenoviruses in their inability to grow in most conventional established cell lines and have been suggested to be deficient in some early gene functions since they could be complemented by Ad 5 early regions EIA and E1B. In order to search for differences that could explain its characteristic growth restriction, the early regions EIA and E1B of Ad41 (strain D389) were sequenced, analysed and compared with the corresponding regions of Adl2, Ad7, Ad2, and Ad4. As revealed by the analysis of Ad2, three major mRNAs of 9S, 12S and 13S are generated from region EIA. The EIA region of Ad41 encodes two mRNAs corresponding to the 12S and 13S mRNAs. Only the 13S mRNA is transcribed at detectable levels. This mRNA can be translated into a 251 aa putative protein that contains the three highly conserved domains found in all other human adenoviruses and shown to be responsible for many important regulatory functions during infection. The E1B region of Ad41 encodes three transcripts that correspond to 22S, 14S and 9S mRNA of Ad2. No equivalent to the 13S mRNA of Ad2 E1B is found. In addition the Ad41 14S mRNA exhibits an additional exon of 23 bp created by a donor and an acceptor splice sites not desribed for other adenovirus E1B sequences. Due to their growth restriction in conventional cultures, rapid diagnostic procedures developed for the enteric adenovirus infections have mainly been aimed at the detection of viral antigens or nucleic acids. This thesis also describes several procedures developed for the general detection of adenoviruses and specific detection of the enteric types in stools specimens. General and specific hybridization assays were developed by use of two BamHI clones obtained from the EIA region of Ad41. One- and two-step PCR procedures were also developed for the general detection of adenoviruses using primers corresponding to highly conserved sequences within the hexon gene. Subgenus F specific one- and two-step PCRs were developed by using primers located in the Ad41 E1B region. The one-step PCR systems were tested and validated against isolation in tissue culture, DNA restriction enzyme analysis and a commercial latex agglutination test in the study of 60 specimens obtained from children with rotavirus negative diarrhea. The asymptomatic fecal excretion of adenoviruses was evaluated by two-step PCR amplifications on samples from 50 healthy children, 50 healthy adults, and 50 adults suffering from diarrhea. Finally, a simplified procedure for detection, discrimination and typing of EAd was also designed by combining the one-step PCR amplification of the hexon region with the restriction of the 300 bp product. / <p>Diss. (sammanfattning) Umeå : Umeå universitet, 1992</p> / digitalisering@umu
|
3 |
The interaction of the adenovirus E1B-55K protein with a histone deacetylase complex : its importance in regulation of P53 protein functions /Punga, Tanel, January 2003 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2004. / Härtill 3 uppsatser.
|
4 |
The Individual Roles of the Major E1B Proteins in Transformation and Their Function in the Lytic Cycle of Adenovirus Type 5McLorie, Whynn 08 1900 (has links)
Transformation by human adenovirus type 5 requires the cooperation of gene products from both the E1a and E1B early transcription units. Our major goal was to better understand the individual roles that the E1B proteins play in the transformation process. In order to determine the specific contribution made by the two major E1B proteins, 19K and 58K, mutants were constructed which were defective in the synthesis of each protein. Analysis with these mutants suggested that 58K appeared to be necessary for efficient plaque formation on human HeLa cells whereas 19K was not required. Mutants which failed to produce 19K or made a truncated 19K product displayed the cyt/deg phenotype characterized by production of large plaques and degradation of DNA These properties were not apparent with point mutants at methionine 120 or serine 164 of 19K or with mutants defective for 58K production. All E1B mutants produce E1A at levels comparable to wild type adenovirus 5, suggesting that neither E1B protein affects the regulation of E1A expression. Of interest was the observation that in combination with E1A, both 19K and 58K were able to induce transformation of baby rat kidney cells. However, the efficiency of transformation was greatly increased if both these E1B products were present. It seems likely that the mechanism of transformation involving each of these E1B proteins utilizes different pathways, but these pathways appear to be additive. / Thesis / Master of Science (MS)
|
5 |
The Interaction of the Adenovirus E1B-55K Protein with a Histone Deacetylase Complex: Its Importance in Regulation of P53 Protein FunctionsPunga, Tanel January 2003 (has links)
<p>The human tumour suppressor protein p53 is an effective inhibitor of cell growth, by inducing cell cycle arrest and apoptosis. However, p53-induced cell growth inhibition can be detrimental for virus multiplication. Therefore, viruses encode for proteins, which can interfere with the functions of the p53 protein. Human adenoviruses encode for a transcription repressor protein named E1B-55K, which inhibits the activity of the p53 protein during a lytic adenovirus infection.</p><p>In this thesis, we have studied the biochemical characteristics of the E1B-55K protein and how the E1B-55K protein interferes with the function of p53 as a transcription factor.</p><p>Our data show that the E1B-55K protein interacts with the Sin3 co-repressor complex in adenovirus transformed and in adenovirus infected cells. Furthermore, the E1B-55K protein recruites a histone deacetylase activity, indicating that the E1B-55K protein is associated with a functional chromatin modifying complex. We also show that in addition to repressing p53-activated transcription, E1B-55K could also relieve p53-mediated repression of the survivin and Map4 promoters.</p><p>Previous results have shown that E1B-55K inhibits p53 as a transcriptional activator of the p21/CDKN1A promoter. Here we show that the E1B-55K protein prevents p53 from inducing histone H3 and H4 acetylation on p21/CDKN1A promoter, which coincided with the inhibition of p21/CDKN1A protein expression. Notably, the Sin3 complex was detected in the vicinity of the p53 binding site on the p21/CDKN1A promoter, suggesting that the E1B-55K protein blocked p53-mediated histone acetylation by recruitment of a histone deacetylase activity. Inhibition of p21/CDKN1A protein expression might be the reason, why the E1B-55K protein alleviates p53-dependent transcriptional repression of the survivin promoter. </p><p>Finally, we show that oligomerisation of the E1B-55K protein is important for the defined subcellular localization of the protein and for its function as a repressor of p53-activated transcription.</p>
|
6 |
The Interaction of the Adenovirus E1B-55K Protein with a Histone Deacetylase Complex: Its Importance in Regulation of P53 Protein FunctionsPunga, Tanel January 2003 (has links)
The human tumour suppressor protein p53 is an effective inhibitor of cell growth, by inducing cell cycle arrest and apoptosis. However, p53-induced cell growth inhibition can be detrimental for virus multiplication. Therefore, viruses encode for proteins, which can interfere with the functions of the p53 protein. Human adenoviruses encode for a transcription repressor protein named E1B-55K, which inhibits the activity of the p53 protein during a lytic adenovirus infection. In this thesis, we have studied the biochemical characteristics of the E1B-55K protein and how the E1B-55K protein interferes with the function of p53 as a transcription factor. Our data show that the E1B-55K protein interacts with the Sin3 co-repressor complex in adenovirus transformed and in adenovirus infected cells. Furthermore, the E1B-55K protein recruites a histone deacetylase activity, indicating that the E1B-55K protein is associated with a functional chromatin modifying complex. We also show that in addition to repressing p53-activated transcription, E1B-55K could also relieve p53-mediated repression of the survivin and Map4 promoters. Previous results have shown that E1B-55K inhibits p53 as a transcriptional activator of the p21/CDKN1A promoter. Here we show that the E1B-55K protein prevents p53 from inducing histone H3 and H4 acetylation on p21/CDKN1A promoter, which coincided with the inhibition of p21/CDKN1A protein expression. Notably, the Sin3 complex was detected in the vicinity of the p53 binding site on the p21/CDKN1A promoter, suggesting that the E1B-55K protein blocked p53-mediated histone acetylation by recruitment of a histone deacetylase activity. Inhibition of p21/CDKN1A protein expression might be the reason, why the E1B-55K protein alleviates p53-dependent transcriptional repression of the survivin promoter. Finally, we show that oligomerisation of the E1B-55K protein is important for the defined subcellular localization of the protein and for its function as a repressor of p53-activated transcription.
|
7 |
Self-association of adenovirus 5 E1B-55 kDa as well as p53 is essential for their mutual interactionMorawska-Onyszczuk, Magdalena 14 December 2009 (has links)
No description available.
|
8 |
Investigating the mechanisms used by the Adenovirus E4-34kDa protein to promote viral late gene expressionCorbin-Lickfett, Kara 05 June 2003 (has links)
No description available.
|
9 |
Développement de procédés efficaces pour la construction et la production de vecteurs adénovirauxGagnon, David 04 1900 (has links)
L’adénovirus possède plusieurs caractéristiques faisant de ce virus un candidat de choix pour la construction de vecteurs utiles dans les études de génomique fonctionnelle. Dans la majorité de ces applications, on a recours à un vecteur adénoviral de première génération délété de sa région E1. L’utilisation de vecteurs adénoviraux comprend deux maillons faibles : la construction du vecteur et la production subséquente de ce dernier. Le développement de méthodes alternatives est donc nécessaire pour renforcer ces deux maillons, permettant ainsi une utilisation étendue de ces vecteurs. Ce développement va s’articuler sur deux axes : l’ingénierie du vecteur de transfert pour la construction de l’adénovirus recombinant et l’ingénierie d’une lignée cellulaire pour la production du vecteur.
En utilisant un vecteur de transfert adénoviral co-exprimant, à partir d’un promoteur régulable à la tétracycline, la protéase de l’adénovirus et une protéine de fluorescence verte (GFP) par l’intermédiaire d’un site d’entrée ribosomal interne (IRES), notre groupe a établi que la sélection positive, via l’expression ectopique de la protéase, est un processus efficace pour la création de librairie d’adénovirus recombinants. Par contre, la diversité atteinte dans ce premier système est relativement faible, environ 1 adénovirus recombinant par 1 000 cellules. Le travail effectué dans le cadre de cette thèse vise à construire un nouveau transfert de vecteur dans lequel l’expression de la protéase sera indépendante de celle du transgène permettant ainsi d’optimiser l’expression de la protéase. Ce travail d’optimisation a permis de réduire le phénomène de transcomplémentation du virus parental ce qui a fait grimper la diversité à 1 virus recombinant par 75 cellules. Ce système a été mis à l’épreuve en générerant une librairie adénovirale antisens dirigée contre la GFP. La diversité de cette librairie a été suffisante pour sélectionner un antisens réduisant de 75% l’expression de la GFP.
L’amplification de ce vecteur adénoviral de première génération doit se faire dans une lignée cellulaire exprimant la région E1 telle que les cellules 293. Par contre, un adénovirus de première génération se répliquant dans les cellules 293 peut échanger, par recombinaison homologue, son transgène avec la région E1 de la cellule créant ainsi un adénovirus recombinant réplicatif (RCA), compromettant ainsi la pureté des stocks. Notre groupe a déjà breveté une lignée cellulaire A549 (BMAdE1) exprimant la région E1, mais qui ne peut pas recombiner avec le transgène du virus. Par contre, le niveau de réplication de l’adénovirus dans les BMAdE1 est sous-optimal, à peine 15-30% du niveau obtenu dans les cellules 293. Le travail fait dans le cadre de cette thèse a permis de mettre en évidence qu’une expression insuffisante d’E1B-55K était responsable de la mauvaise réplication du virus dans les BMAdE1. Nous avons produit de nouveaux clones à partir de la lignée parentale via une transduction avec un vecteur lentiviral exprimant E1B-55K. Nous avons confirmé que certains clones exprimaient une plus grande quantité d’E1B-55K et que ces clones amplifiaient de manière plus efficace un vecteur adénoviral de première génération. Ce clone a par la suite été adapté à la culture en suspension sans sérum. / The adenovirus has numerous interesting characteristics making this particular virus an ideal candidate for the construction of vector for conducting studies in functional genomics. The vast majority of those applications rely on a so-called “first-generation vector” in which the E1 region is replaced by a transgene. Despite all their advantages, there are 2 weak links associated with first-generation vector: the efficient construction of the actual vector and its production. Therefore, the development of alternative methods for construction and production is necessary to ensure their usefulness. The development will involve 2 axes: the reengineering of the transfer vector for the construction of recombinant adenovirus and the reengineering of the cell line capable of producing the vector.
Using a transfer vector co-expressing the adenoviral protease (PS) gene and GFP by using an IRES under the control of a tetracycline-regulated promoter, our laboratory previously established the proof of concept that positive selection of recombinant adenovirus through ectopic expression of the PS gene was an efficient approach to generate adenoviral libraries. However, the diversity achieved was quite low, around 1 recombinant adenovirus per 1,000 cells. The goal of this thesis was to design a new transfer vector in which the PS expression was independent from the expression of the transgene in order to be able to optimize its expression independently. We also improved library diversity by lowering the amount of PS in order to reduce the the trans-complementation from the transfer vector. Using this method, at least 1 recombinant adenovirus per 75 cells was generated with 100% of the plaques being recombinant. This system was successfully used to generate an antisense library targeting GFP. The diversity of the library was high enough to allow the selection of an antisense that inhibited 75% of GFP expression.
Amplification of those first-generation recombinant adenoviruses must take place in an E1-expressing cell such as 293 cells. However, when replicating in 293 cells, the recombinant adenovirus can exchange their transgene with the E1 region of the cell by homologous recombination, which results in the generation of a fully replicative adenovirus (RCA), a situation that compromises the purity of the viral preparation. Our laboratory has previously patented an A549 cell line expressing the E1 region and producing RCA-free recombinant adenovirus (BMAdE1). However, the replication of E1-deleted adenovirus in BMAdE1 cells was sub-optimal, in the range of 15-30% the level obtained in 293 cells. The work done in this thesis establishes that the low level of E1B-55K could be responsible for the lower productivity of BMAdE1 cells. Thus, we have derived new clones following lentiviral transduction in order to increase E1B-55K expression. Western blot confirmed that some clones expressed more E1B-55K than BMAdE1, and this correlated with a more robust replication of a recombinant adenovirus in those clones. This newly optimized BMAdE1 cell line was adapted to serum-free suspension culture.
|
10 |
Développement de procédés efficaces pour la construction et la production de vecteurs adénovirauxGagnon, David 04 1900 (has links)
L’adénovirus possède plusieurs caractéristiques faisant de ce virus un candidat de choix pour la construction de vecteurs utiles dans les études de génomique fonctionnelle. Dans la majorité de ces applications, on a recours à un vecteur adénoviral de première génération délété de sa région E1. L’utilisation de vecteurs adénoviraux comprend deux maillons faibles : la construction du vecteur et la production subséquente de ce dernier. Le développement de méthodes alternatives est donc nécessaire pour renforcer ces deux maillons, permettant ainsi une utilisation étendue de ces vecteurs. Ce développement va s’articuler sur deux axes : l’ingénierie du vecteur de transfert pour la construction de l’adénovirus recombinant et l’ingénierie d’une lignée cellulaire pour la production du vecteur.
En utilisant un vecteur de transfert adénoviral co-exprimant, à partir d’un promoteur régulable à la tétracycline, la protéase de l’adénovirus et une protéine de fluorescence verte (GFP) par l’intermédiaire d’un site d’entrée ribosomal interne (IRES), notre groupe a établi que la sélection positive, via l’expression ectopique de la protéase, est un processus efficace pour la création de librairie d’adénovirus recombinants. Par contre, la diversité atteinte dans ce premier système est relativement faible, environ 1 adénovirus recombinant par 1 000 cellules. Le travail effectué dans le cadre de cette thèse vise à construire un nouveau transfert de vecteur dans lequel l’expression de la protéase sera indépendante de celle du transgène permettant ainsi d’optimiser l’expression de la protéase. Ce travail d’optimisation a permis de réduire le phénomène de transcomplémentation du virus parental ce qui a fait grimper la diversité à 1 virus recombinant par 75 cellules. Ce système a été mis à l’épreuve en générerant une librairie adénovirale antisens dirigée contre la GFP. La diversité de cette librairie a été suffisante pour sélectionner un antisens réduisant de 75% l’expression de la GFP.
L’amplification de ce vecteur adénoviral de première génération doit se faire dans une lignée cellulaire exprimant la région E1 telle que les cellules 293. Par contre, un adénovirus de première génération se répliquant dans les cellules 293 peut échanger, par recombinaison homologue, son transgène avec la région E1 de la cellule créant ainsi un adénovirus recombinant réplicatif (RCA), compromettant ainsi la pureté des stocks. Notre groupe a déjà breveté une lignée cellulaire A549 (BMAdE1) exprimant la région E1, mais qui ne peut pas recombiner avec le transgène du virus. Par contre, le niveau de réplication de l’adénovirus dans les BMAdE1 est sous-optimal, à peine 15-30% du niveau obtenu dans les cellules 293. Le travail fait dans le cadre de cette thèse a permis de mettre en évidence qu’une expression insuffisante d’E1B-55K était responsable de la mauvaise réplication du virus dans les BMAdE1. Nous avons produit de nouveaux clones à partir de la lignée parentale via une transduction avec un vecteur lentiviral exprimant E1B-55K. Nous avons confirmé que certains clones exprimaient une plus grande quantité d’E1B-55K et que ces clones amplifiaient de manière plus efficace un vecteur adénoviral de première génération. Ce clone a par la suite été adapté à la culture en suspension sans sérum. / The adenovirus has numerous interesting characteristics making this particular virus an ideal candidate for the construction of vector for conducting studies in functional genomics. The vast majority of those applications rely on a so-called “first-generation vector” in which the E1 region is replaced by a transgene. Despite all their advantages, there are 2 weak links associated with first-generation vector: the efficient construction of the actual vector and its production. Therefore, the development of alternative methods for construction and production is necessary to ensure their usefulness. The development will involve 2 axes: the reengineering of the transfer vector for the construction of recombinant adenovirus and the reengineering of the cell line capable of producing the vector.
Using a transfer vector co-expressing the adenoviral protease (PS) gene and GFP by using an IRES under the control of a tetracycline-regulated promoter, our laboratory previously established the proof of concept that positive selection of recombinant adenovirus through ectopic expression of the PS gene was an efficient approach to generate adenoviral libraries. However, the diversity achieved was quite low, around 1 recombinant adenovirus per 1,000 cells. The goal of this thesis was to design a new transfer vector in which the PS expression was independent from the expression of the transgene in order to be able to optimize its expression independently. We also improved library diversity by lowering the amount of PS in order to reduce the the trans-complementation from the transfer vector. Using this method, at least 1 recombinant adenovirus per 75 cells was generated with 100% of the plaques being recombinant. This system was successfully used to generate an antisense library targeting GFP. The diversity of the library was high enough to allow the selection of an antisense that inhibited 75% of GFP expression.
Amplification of those first-generation recombinant adenoviruses must take place in an E1-expressing cell such as 293 cells. However, when replicating in 293 cells, the recombinant adenovirus can exchange their transgene with the E1 region of the cell by homologous recombination, which results in the generation of a fully replicative adenovirus (RCA), a situation that compromises the purity of the viral preparation. Our laboratory has previously patented an A549 cell line expressing the E1 region and producing RCA-free recombinant adenovirus (BMAdE1). However, the replication of E1-deleted adenovirus in BMAdE1 cells was sub-optimal, in the range of 15-30% the level obtained in 293 cells. The work done in this thesis establishes that the low level of E1B-55K could be responsible for the lower productivity of BMAdE1 cells. Thus, we have derived new clones following lentiviral transduction in order to increase E1B-55K expression. Western blot confirmed that some clones expressed more E1B-55K than BMAdE1, and this correlated with a more robust replication of a recombinant adenovirus in those clones. This newly optimized BMAdE1 cell line was adapted to serum-free suspension culture.
|
Page generated in 0.0175 seconds