• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 719
  • 78
  • 21
  • 17
  • 16
  • 13
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • Tagged with
  • 1201
  • 372
  • 236
  • 225
  • 216
  • 189
  • 182
  • 148
  • 145
  • 121
  • 121
  • 119
  • 82
  • 80
  • 80
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
971

Přestavby Skopje a formování makedonské národní identity / The Reconstructions of Skopje and the Formation of Macedonian National Identity

Nedbalová, Andrea January 2017 (has links)
The capital city of the Republic of Macedonia, Skopje, has undergone two important architectural changes during the last half a century. Both of these, the renewal of the city after the devastating earthquake of 1963 and the extensive architectural project "Skopje 2014" launched in 2010, included content which focused on the formation of Macedonian national identity. The diploma thesis The Reconstructions of Skopje and the Formation of Macedonian National Identity analyses how architecture and urbanism was used to form Macedonian national identity. As these two events had very different initial conditions, the nature of these reconstructions, together with the promoted visions of national identity and their presentation, differed considerably. The rebuilding of Skopje after the earthquake presented Macedonian national identity to a greater extent through a strong ideological content based solely on visions of the future. In comparison, the project "Skopje 2014" presented an interpretation of national identity through specific symbols. This construction was based on the interpretation of historical events, resulting in a new understanding of the historical continuity of the Macedonian nation. The fact that two vastly different visions of Macedonian national identity, presented through the recreation...
972

Katastrofsjukhus : En ny robust typ av fältsjukhus / Emergency Hospital : A new robust type of field hospital

Pehrson, Malin, Foss, Karin January 2012 (has links)
Denna rapport beskriver framtagandet av Katastrofsjukhus, robustare fältsjukhus med förbättrad standard. Jämförelse görs mellan det framtagna Katastrofsjukhuset och uppblåsbara tältsjukhus samt standarden i svenska sjukhus. En färdig produkt finns ännu inte framtagen och rapporten lämnar en hel del lösa trådar, men är en bra grund för mer omfattande utveckling av konceptet och som en idéstudie till en vetenskaplig avhandling eller annan fortsatt forskning. Problemet med befintliga fältsjukhus är främst miljön i operationsavdelningen. Detta är något det lagts stor vikt vid och en strävan att uppnå svensk standard har genomsyrat hela processen. En annan viktig punkt vid framtagandet av Katastrofsjukhus har varit konstruktionens vikt, vilket är tältsjukhusens största fördel. Vikten är av stor betydelse vid både transport och uppbyggnad. Katastrofsjukhusets konstruktion utgår ifrån standardcontainrar för att skapa goda transportmöjligheter. Containrarna är en del av konstruktionen och de rymmer prefabricerade element som utgör Katastrofsjukhusets huvudmodul. Konstruktionen är dimensionerad för att klara kraftiga snö- och vindlaster. Trots detta har elementen gjorts så lätta att det är möjligt att bygga upp hela sjukhuset för hand. Dimensionering efter laster som verkar under en jordbävning har också beräknats redovisas inte i detta arbete då de ej är fullständiga. Utformningen av Katastrofsjukhuset har gjorts för att på bästa sätt fylla det stora behov som finns av sterila operationssalar, samtidigt som planlösningen är anpassningsbar för att Katastrofsjukhuset ska kunna erbjuda olika typer av vård. Rapporten ger även rekommendationer för fortsatt utveckling av Katastrofsjukhuset. / This report describes the development of Emergency Hospital, a robust field hospital with an improved standard. Comparison is made between the developed Emergency Hospital and inflatable tent hospitals and with the standard in Swedish hospitals. A completed product is not presented in this report and it leaves a lot of loose ends, but is a good basis for more extensive development of the concept and as a conceptual study of a scientific treatise, or other continued research. The problem with existing field hospitals is mainly the environment in the operating theater. This is something that has been a strong focus, and a desire to achieve the Swedish standard has permeated the entire process. Another important point in the development of Emergency Hospital has been the mass of the structure, which is the tent hospitals' greatest advantage. The weight is of great importance in both transportation and construction. The Emergency Hospital's design is based on standard containers to provide good transportation possibilities. The containers are a part of the design and they also contain all the prefabricated elements which create the Emergency Hospital's main module. The structure is dimensioned to handle heavy snow and wind loads. Nevertheless, the elements made ​​so light that it is possible to build up the hospital by hand. The design for loads acting during an earthquake has been calculated, but is not included in this report since they are not complete. The hospital has been designed to fill the large needs for sterile operating room, but at the same time the layout is adaptable for different types of care needs. The report also gives recommendations for further development of the Emergency Hospital.
973

Behavior of Swedish Concrete Buttress Dams at Sesmic Loading

Forsgren, Erik, Berneheim, Isak January 2016 (has links)
The aim of the thesis is to study the response of Swedish buttress dams if they are subjected to an earthquake of relevant magnitude to Sweden. Swedish dams are evaluated for an extensive amount of load cases, but not for earthquake loading. Therefore, it is not known how the Swedish buttress dams would respond during such loading. Earthquake engineering is practised only to a marginal extent in Sweden due to a low risk of major earthquakes. In fact, an earthquake hazard zonation map that provides data for earthquake resistant design, does not even exist for Sweden. Therefore, part of the thesis is aimed at acquiring data from alternative sources to enable seismic evaluation. The effect of earthquakes on Swedish buttress dams are analysed through case studies. The case studies are performed with numerical analysis using the commercial finite element program Brigade Plus. The case studies are performed on two buttress dam models that were selected based on an inventory of Swedish buttress dams. In the case studies, the dam models are evaluated for the Safety Evaluation Earthquake (SEE), which correspond to 10 000 years return period. At the SEE event, the Peak Ground Acceleration (PGA), is also related to the geographical location of a dam. The envelope of available PGA in Sweden was used in the case studies to cover the spectrum of PGA. The response of the dams to the lowest value of PGA is insignificant and the dams are essentially unaffected. However, for the highest value of PGA the responses indicates that the concrete of the dams is severely cracked and that the ultimate capacity of the reinforcement may be exceeded. Hence, it is concluded that the geographical location of a Swedish dam is highly influential on the response to earthquake loading. / Syftet med denna uppsats är att analysera effekten på svenska betonglamelldammar i det fall de utsätts för en jordbävning av relevant magnitud för Sverige. Svenska dammar har blivit utvärderade för ett stort antal lastfall, dock ej för jordbävningslaster. Det är därför inte känt hur svenska betonglamelldammar uppträder under sådana laster. Jordbävningsdimensionering tillämpas endast marginellt i Sverige eftersom det föreligger låg risk för kraftfulla jordbävningar. Faktum är att en zonindelningskarta över jordbävningsrisk för byggnadsdimensionering inte ens existerar i Sverige. Därför dedikeras en del av uppsatsen till att hitta data från alternativa källor för seismisk utvärdering. Effekten av jordbävningar på svenska betonglamelldammar analyseras genom fallstudier. Dessa är genomförda baserat på numerisk analys med det kommersiella finita element programmet Brigade Plus. Analyserna är baserade på två utvalda betonglamelldammodeller som valdes genom en inventering av svenska betonglamelldammar. I fallstudien utvärderas dammarna för en Säkerhet Utvärderings Jordbävning (SUJ), denna motsvaras av 10 000 års återkomsttid. Vid en SUJ relateras den Maximala Mark Accelerationen (MAA) även till det geografiska läget av en damm. Ytterlighetsvärdena av tillgänglig MMA värden i Sverige användes i fallstudien för att täcka in hela spektrumet. Effekten av det lägsta MMA värdet på dammarna är obetydlig och dammarna kan anses i stort sett opåverkade. Det högsta värdet av MMA indikerar dock att dammarnas betong utsätts för stor uppsprickning och att kapaciteten av armeringen överskrids. Det kan därmed fastslås att det geografiska läget av en damm har stort inflytande över vilken effekt som kan förväntas vid en jordbävning
974

Application of satellite radar interferometry in study of the relation between surface deformation and seismic event of the 15th September 2018 in the Rudna copper mine, Poland

Owczarz, Karolina, Blachowski, Jan 16 July 2019 (has links)
The phenomenon of induced seismicity is caused by anthropogenic activity such as: underground and opencast mining, extraction of conventional and unconventional hydrocarbons, construction of water reservoirs and production of geothermal energy. In recent years, interest in induced seismicity increased due to the fact that it causes increasingly stronger earthquakes, even above 4 on the Richter scale. Thus, it poses a threat to people, technical and urban infrastructure. This study analyzed the seismic event of M = 4.6, which occurred on the 15 September 2018 in the Rudna copper mine area in SW Poland. For this purpose, Sentinel 1 satellite data and DInSAR processing method were used to determine the ground movement values in the satellite line of sight. Based on the results for four image pairs, the area disturbed by the seismic event was determined. The maximum values of subsidence ranged from -65 mm to -75 mm depending on the analysed dataset and the area of deformation was determined at approx. 4 km sq. The results indicate the usefulness of the adopted method to determine ground deformation caused by induced seismicity in an underground mining area.
975

Distribution of Lateral Forces on Reinforced Masonry Bracing Elements Considering Inelastic Material Behavior - Deformation-Based Matrix Method -

Michel, Kenan 15 June 2021 (has links)
The main goal of CIC-BREL project (Cracked and Inelastic Calculation of BRacing Elements) is to develop an analytical method to distribute horizontal forces on bracing elements, in this case reinforced masonry shear walls, of a building considering the cracked and inelastic state of material. The moment curvature curve of the wall section is created first depending on the section geometry and material properties of both the masonry units and steel reinforcement. This curve will start with an elastic material behavior, then continue in inelastic material behavior where the masonry crushes and the steel start to yield, until the maximum bending moment M_p is reached. Due to reinforced masonry wall ductility, post maximum capacity is also considered assuming a maximum curvature of 0.1%. From the moment curvature curve, the force displacement curve could be extracted depending on the wall height and wall boundary conditions. Matrix formulation has been developed for both elastic and damaged stiffness matrix, considering different boundary conditions. Fixed-fixed boundary condition which usually exists at the middle stories or last story with strong top diaphragm, fixed-pinned which is the case of the last story that has a relatively soft top diaphragm, and pinned-fixed in the first story case. Other boundary conditions could be considered depending on the degree of fixation on the wall both ends at the top and the bottom. The matrix formulation combined with the force-displacement curve which considers different material stages (elastic, inelastic, ductile post peak force) is used to define forces in each bracing element even after elastic behavior. After elastic phase of each wall the stiffness of the element will degrade leading to a less portion of the total lateral force; other elastic walls, i.e., stronger walls, will receive more portion of the total force leading to a redistribution of the total force. This process will be iterated until the total force is distributed on each bracing element depending on the wall section state: elastic, inelastic and ductile post-peak capacity. Flowcharts clearly will show this process. Finally, a Fortran code is developed to show examples using this method. The developed analytical method will be verified by the results of shake table tests held at the University of California in San Diego, USA. Last test performed in the year 2018 uses T-section reinforced masonry walls, subjected to shakings with increased intensity. The total applied force for each shaking could be defined depending on the structural weight and shaking intensity (acceleration). The damage and displacement at each intensity has been recorded and evaluated. Depending on these test results, the results of the analytically developed method will be compared and evaluated. Total system displacement at different lateral load values has been compared for analytical calculations and shake table tests; furthermore, each wall state at increased load has been compared, good agreement could be noticed.:Acknowledgement 5 1. Introduction 7 1.1. State of the Art 9 1.2. Elastic Formulae 9 1.3. Example, Elastic Calculation 12 1.3.1. Stiffnesses of the System 13 1.3.2. Torsion due to Eccentric Lateral Loading 14 1.3.3. Distribution of the Lateral Load on Wall “j” and Floor “i” 15 2. Force Displacement Curve of RM Shear Wall 19 2.1. Introduction 19 2.2. Cantilever Wall 19 2.2.1. Cantilever Elastic Wall 19 2.2.2. Cantilever Inelastic Wall 21 2.2.3. Cantilever Post-Peak Wall 22 2.3. Fixed-Fixed Wall 23 2.3.1. Fixed-Fixed Elastic Wall 23 2.3.2. Fixed-Fixed Inelastic Wall 24 2.3.3. Fixed-Fixed Post-Peak Wall 26 2.4. Moment – Curvature Analysis 26 2.5. Example, Rectangle Cross Section, Cantilever 29 a) Moment Curvature Curve 29 b) Force Displacement Curve 32 2.6. Example, Rectangle Cross Section, Fixed-Fixed 33 a) Moment Curvature Curve 33 b) Force Displacement Curve 33 2.7. Example, T Cross Section, Cantilever 35 a) Moment Curvature Curve 35 b) Force Displacement Curve 41 2.8. Example, T Cross Section, Fixed-Fixed 43 a) Moment Curvature Curve 43 b) Force Displacement Curve 43 3. Matrix Formulation 47 3.1. Procedure 47 3.2. Structure Discretization 47 3.3. Element, i.e.; Wall, Local Stiffness Matrix 48 3.4. Stiffness Matrix of Fixed-Pinned Beam 52 3.4.1. Elastic 52 3.4.2. Pre-Peak Inelastic 54 3.4.3. Post-Peak Inelastic 55 3.4.4. Normal Force Part in the Stiffness Matrix 56 3.5. Stiffness Matrix of Pinned-Fixed Beam 57 3.5.1. Elastic 57 3.5.2. Post-Peak Inelastic 57 3.6. Stiffness Matrix of Fixed-Fixed Beam 58 3.6.1. Elastic 58 3.6.2. Post-Peak Inelastic 60 3.7. Summary of Stiffness Matrices 61 3.7.1. Fixed-Fixed 61 3.7.2. Fixed-Pinned 62 3.7.3. Pinned-Fixed 63 3.8. Transformation Matrix 63 3.9. Assemble the Structure Stiffness Matrix 65 3.10. Assemble the Structure Nodal Vector 66 3.11. Solve, Get Nodal Displacements and Forces 66 4. Matrix Formulation and Deformation Based Method 69 4.1. Elastic Method in Distributing Lateral Force 69 4.2. Elastic and Inelastic Method in Distributing Lateral Force 70 5. Shake Table Tests 73 5.1. Introduction 73 5.2. Design of Test Structure 73 5.3. Material Properties 75 5.4. Tests and Observations 75 5.4.1. Tests up to Mul-90% 76 5.4.2. Tests with Mul-120% 76 5.4.3. Tests with Mul-133% 76 5.5. Deformations 77 6. Verification 81 6.1. T Cross Section, Dimensions, Reinforcement and Materials 81 6.2. Moment Curvature Curve 82 6.3. Force Displacement Curve 85 6.4. Force Displacement Curve of the Structure 88 7. Conclusions and Suggestions 91 8. References 93 Appendix 1, Timoshenko Beam 95 • Fixed-Fixed 95 • Fixed-Pinned 95 • Pinned-Fixed 96 Appendix 2, Bernoulli Beam 97 • Fixed-Fixed 97 • Fixed-Pinned 97 • Pinned-Fixed 98
976

Large-Scale Quasi-Dynamic Earthquake Cycle Simulations with Hierarchical Matrices Method / H行列法を適用した大規模準動的地震発生サイクルシミュレーション

Ohtani, Makiko 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18800号 / 理博第4058号 / 新制||理||1584(附属図書館) / 31751 / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 平原 和朗, 教授 澁谷 拓郎, 准教授 久家 慶子 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
977

Synergy of Education for Sustainable Development (ESD) and Disaster Education in the Post-Tsunami Recovery Context of Kesennuma, Japan / 気仙沼市の津波災害からの復興に向けた持続可能な開発のための教育(ESD)と防災教育の相乗効果

Oikawa, Yukihiko 24 September 2015 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(地球環境学) / 乙第12964号 / 論地環博第12号 / 新制||地環||29(附属図書館) / 32363 / (主査)教授 ショウ ラジブ, 教授 岡﨑 健二, 准教授 西前 出 / 学位規則第4条第2項該当 / Doctor of Global Environmental Studies / Kyoto University / DFAM
978

Study on Application of Multi-Layer and Multi-Phase Theories to Earthquake Site Response / 多層・多相理論を適用した表層地盤の地震応答特性に関する研究

Shingaki, Yoshikazu 25 September 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20684号 / 工博第4381号 / 新制||工||1681(附属図書館) / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 澤田 純男, 教授 清野 純史, 准教授 後藤 浩之 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
979

REHABILITAION OF MAJOR STEEL BRIDGES IN MYANMAR UNDER SEISMIC RISKS / 地震リスクを有するミヤンマーの鋼製橋梁の補修・補強に関する研究

Khin, Maung Zaw 24 November 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20760号 / 工博第4412号 / 新制||工||1686(附属図書館) / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 杉浦 邦征, 教授 白土 博通, 教授 清野 純史 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
980

DEVELOPMENT OF HAZARD ASSESSMENT TECHNOLOGY OF THE PRECURSOR STAGE OF LANDSLIDES / 前兆段階にある地すべりの災害危険度評価技術の開発

Lam, Huu Quang 26 March 2018 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(工学) / 乙第13173号 / 論工博第4164号 / 新制||工||1699(附属図書館) / (主査)教授 寶 馨, 教授 渦岡 良介, 准教授 佐山 敬洋 / 学位規則第4条第2項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM

Page generated in 0.0423 seconds