• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 156
  • 52
  • 31
  • 12
  • 10
  • 8
  • 7
  • 7
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 335
  • 117
  • 54
  • 51
  • 42
  • 34
  • 32
  • 31
  • 29
  • 28
  • 28
  • 27
  • 26
  • 26
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Mecanismos de regulação da localização subcelular de maspina em linhagem de células epiteliais de mama. / Mechanisms of subcellular localization of maspin in breast epithelial cell line.

Longhi, Mariana Tamazato 11 June 2018 (has links)
Maspina, uma proteína supressora de tumor de 42 kDa, pertence à superfamília das serpinas (inibidores de serina protease), no entanto, seu mecanismo de ação independe da inibição de proteases. Maspina é expressa por epitélio de diferentes órgãos e apresenta regulação diferencial durante a progressão tumoral. Entre suas atividades biológicas, foram descritas a regulação da adesão celular, migração, morte, expressão gênica e resposta ao estresse oxidativo. A localização subcelular de maspina está relacionada a regulação de suas funções biológicas. Estudos clínicos recentes indicam que é a localização nuclear de maspina, ao invés de seus níveis de expressão, correlaciona-se com bons fatores prognósticos e sobrevida global em alguns tipos de câncer, incluindo câncer de mama. No entanto, pouco se sabe sobre como a localização subcelular de maspina é regulada. A maioria dos estudos sobre maspina é conduzido em linhagens de células tumorais, que apresentam uma grande variabilidade no contexto celular. Portanto, é importante usar uma linhagem celular não transformada para esta abordagem. Nesse trabalho investigamos fatores solúveis, interação célula-célula e interação célula-substrato como possíveis reguladores da localização de maspina na célula e as vias de sinalização envolvidas nesta regulação. Usando a linhagem celular epitelial mamária não transformada MCF10A como modelo, observamos por experimentos de imunofluorescência que o Fator de Crescimento Epidermal (EGF) promove a localização nuclear de maspina. EGF também altera a fosforilação da proteína conforme mostram nossos experimentos de 2D-SDS-PAGE e gel contendo Phostag. A fosforilação ocorre em resíduos de serina e a desfosforilação em resíduos de tirosina. À procura por vias de sinalização a jusante de do receptor de EGF envolvidas na regulação da localização subcelular de maspina, identificamos as vias de PI3K e Stat3 . Além disso, a adesão célula-célula parece bloquear a localização nuclear de maspina. Na tentativa de investigar funções celulares relacionadas à regulação de maspina por EGFR, identificamos proteínas que co-imunoprecipitam com maspina após o tratamento com EGF. O agrupamento funcional dessas proteínas sugere que a maspina pode estar envolvida em metabolismo de RNA, adesão celular e citoesqueleto. Desta forma, este trabalho identificou diferentes mecanismos que regulam a localização subcelular de maspina, que dependem da ativação das vias de PI3K e AKT pela via de EGFR. / Maspin, a 42 kDa tumor suppressor protein, belongs to the serpin (serine protease inhibitors) superfamily, however, its mechanism of action does not depend on protease inhibition. Maspin is expressed by epithelium of different organs and presents differential regulation during tumor progression. Among its biological activities, regulation of cell adhesion, migration, death, gene expression and oxidative stress response were described. Subcellular localization of maspin is related to the regulation of its biological functions. Recent clinical studies indicate that nuclear localization of maspin, not its expression levels, correlates with good prognostic factors and overall survival in some types of cancer, including breast cancer. However, little is known about how maspin subcellular localization is regulated. Most studies on maspin are conducted in tumor cell lines, which show great variability in cell context. Therefore, it is important to use a nontransformed cell line for this approach. Here we investigated soluble factors, cell-cell interaction and cell-substrate interaction as possible regulators of maspin subcellular localization and the signaling pathways involved. Using the MCF10A untransformed mammary epithelial cell line as a model system, we observed by immunofluorescence experiments that the Epidermal Growth Factor (EGF) promotes nuclear localization of maspin. EGF also alters the phosphorylation of the protein as observed by 2D-SDSPAGE and gel containing Phos-tag. Phosphorylation occurs on serine residues and dephosphorylation, on tyrosine residues. Looking for signaling pathways downstream of EGF receptor involved in regulation of maspin subcelular localization, we identified the PI3K and STAT3 pathways. On the other hand, cell-cell adhesion seems to block nuclear localization of maspin. In an attempt to investigate cellular functions related to regulation of maspin by EGFR, we identified proteins that co-immunoprecipitate with maspin in EGF-treated cells. The functional grouping of these proteins suggests that maspin may be involved with RNA metabolism, cell adhesion and cytoskeleton. Thus, this study identified different mechanisms that regulate subcellular localization of maspin, which depends on PI3K and STAT3 activation downstream of EGFR pathway.
42

MUC/EGFR/IL17 et l’autophagie sont associés à la résistance de la chimiothérapie ou des thérapies ciblées dans les cancers du sein triple négatif. / MUC1/EGFR/IL17 and autophagy are associated in the resistance of chemiotherapy or targeted therapy in triple negative breast cancer.

Garbar, Christian 06 July 2018 (has links)
Le cancer du sein triple négatif (TN) est un cancer présentant des résistances aux agents de chimiothérapie. Malgré la forte expression de l’EGFR, il est aussi résistant aux anti-EGFR. Ces mécanismes de résistance ne sont pas connus.MUC1 est une protéine transmembranaire largement glycosylée. Sa fonction extracellulaire est impliquée dans la régulation des récepteurs membranaires dont l’EGFR. Comme les autres glycoprotéines membranaires, son unité extracellulaire (MUC1-N) peut moduler la réponse cellulaire immune par hypersialylation. Son unité intracellulaire (MUC1-C) possède des sites de phosphorylation impliqués dans plusieurs voies de signalisation telles que PI3K/AKT/mTOR ou RAS/RAF/MEK/ERK. Ces dernières régulent l’autophagie qui est un mécanisme de survie cellulaire associé à la résistance aux agents de chimiothérapie.Nous avons démontré que les TN présentaient des modifications quantitatives et qualitatives de l’expression de MUC1, altérant probablement les régulations des voies associées à MUC1/EGFR dont l’autophagie. L’activation de l’autophagie explique la résistance aux traitements des agents de chimiothérapie. L’IL17 est un facteur pro-inflammatoire secrété par du microenvironnement tumoral et associé également à la résistance des agents de chimiothérapie des TN, par activation de la voie MEK/ERK, suggérant son implication à activer l’autophagie.En conclusion, nos travaux permettent d’émettre l’hypothèse que l’inhibition de l’autophagie et/ou MUC1 et/ou IL17 pourrait augmenter la sensibilité aux traitements de chimiothérapie ou des thérapies ciblées dirigées contre les TN. / Triple negative breast cancer (TN) is often associated to chemioresistance. Moreover, despite an EGRF over-expression, TN is also resistant to anti-EGFR drugs. These resistance mechanisms are not known yet.MUC1 is a transmembrane broadly glycosylated protein. Its extracellular unit (MUC-N) is involved to membrane receptor regulations, as EGFR. As other membrane glycoproteins, MUC1 could modulate, by over-sialylation, the immune cellular response. Its intracellular unit (MUC-C) presents phosphorylation sites involved in numerous signal pathways such as PI3K/AKT/mTOR or RAS/RAF/MEK/ERK. Both pathways regulate autophagy which is a survival cellular mechanism associated to resistance of chemiotherapy drugs.We showed that TN presents quantitative and qualitative MUC1 alterations, likely associated with dys-regulation of autophagy/MUC1/EGFR pathways. The activation of autophagy explains the chemiotherapy resistance. IL17 is a proinflammatory interleukin secreted by the tumor microenvironment. In TN, IL17 is also associated to chemiorestistance throughout the MEK/ERK pathways, suggesting its involving activating autophagy.In conclusion, our work allows us to hypothesize that inhibition of autophagy and/or MUC1 and/or IL17 could be increase the sensibility to chemiotherapy or targeted therapies against TN.
43

Gene profiling in soft tissue sarcoma: predictive value of EGFR in sarcoma tumour progression and survival

Das Gupta, Paromita, Clinical School - Prince of Wales Hospital, Faculty of Medicine, UNSW January 2007 (has links)
Despite improvements in the clinical management of soft tissue sarcomas (STS), 50% of patients will die of metastatic disease that is largely unresponsive to conventional chemotherapeutic agents. The aims of this study were to identify genes and pathways that are dysregulated in progressive and metastatic STS. In addition to this, cell lines from fresh tumours were initiated and established, thus increasing the repository of cell lines available for functional studies. Recent advances in the understanding of the molecular biology of STS have thus far not resulted in the use of molecular markers for clinical prognostication. Identifying novel genes and pathways will lead to molecular diagnostic methods to better stratify prognostic groups and could identify cellular targets for more efficacious treatments. Gene expression profiling of sarcoma cell lines of increasing metastatic potential revealed over-expression of genes involved in the epidermal growth factor (EGF) and transforming growth factor beta (TGFb) pathways. Factors involved in invasion and metastasis such as integrins and MMPs were over-expressed in the cell lines with higher metastatic potential. The developmental Notch pathway and cell cycle regulators were also dysregulated. NDRG1 was significantly over-expressed in the high grade sarcoma cell line, a novel finding in sarcomas. The expression of EGFR, NDRG1 and other genes from the above pathways was validated using quantitative RT-PCR in real time (qRT-PCR). A tissue microarray (TMA) comprising STS of varying tumour grades was constructed for high throughput assessment of target proteins. EGFR, its activated form and its signal transducers were investigated using immunohistochemistry (IHC). Activated EGFR (HR 2.228, p < 0.001) and phosphorylated Akt (HR 2.032, p = 0.003) were found to be independent predictors of overall survival and both correlated with tumour grade. Of the several STS cultures initiated and maintained, two of these cell lines were fully characterised in terms of cytogenetics, telomerase and alternate lengthening of 5 telomeres (ALT) status, KIT and TP53 mutation and the expression of certain biomarkers using both qRT-PCR and IHC. In summary, transcript profiling identified several potential biomarkers of tumour progression and metastasis in STS. Crucially, activated EGFR and pAkt were found in a cohort of STS samples to correlate with clinical outcome, identifying them as potential diagnostic and therapeutic targets in the treatment of STS. Activated EGFR can be used as a diagnostic marker for patient selection, as well as for target effect monitoring. Furthermore, the cell lines established in this project will serve as valuable tools in future preclinical studies.
44

Expression von EGFR, HER-2 und COX-2 beim Zervixkarzinom: Vergleich von Primärtumoren und Rezidiven

Fritzsche, Julia 12 August 2013 (has links) (PDF)
Ziel dieser Studie war es, die Häufigkeit der Expression von EGFR, HER-2 sowie COX-2 im Zervixkarzinom zu eruieren. Dabei galt es herauszufinden, ob Unterschiede hinsichtlich des Nachweises dieser drei, möglicherweise therapeutisch relevanten Moleküle zwischen den primären, nicht vortherapierten und operierten Karzinomen und den multimodal vorbehandelten Rezidiven gab. In der vorliegenden retrospektiven Arbeit wurden 45 TMMR-operierte Primärtumoren und 28 LEER-operierte Rezidivtumoren der Universitätsfrauenklinik Leipzig (Triersches Institut) einbezogen und zusätzlich hinsichtlich der prognostischen Überlebensanalyse durch das Tumorstadium, Lymphknotenmetastasen und Rezidivauftreten sowie histologischer Charakteristika untersucht. Dazu wurden Tissue - Microarrays angefertigt mit anschließender immunhistochemischer Untersuchung dieser. Die Ergebnisse zeigten, dass die TMMR-Operation die Überlebensprognose signifikant verbessert, denn lediglich bei den LEER-therapierten Rezidivtumoren erlitten die Patientinnen sowohl Fernmetastasen als auch erneute Rezidive. Weder die Expression der drei untersuchten Moleküle noch die histopathologischen Parameter haben eine prognostische Relevanz. Es gibt keine signifikanten Zusammenhänge zwischen der Häufigkeit der Expression von EGFR, HER-2 sowie COX-2 und Primär-, bzw. Rezidivtumoren, sodass diese Moleküle keine Targets für eine individualisierte, zielgerichtete Therapie beim Zervixkarzinom darstellen.
45

Copper-64 radiopharmaceuticals for receptor-mediated tumor imaging and radiotherapy

Eiblmaier, Martin 18 April 2008 (has links) (PDF)
This study investigated several somatostatin analogues labeled with copper-64 for imaging and targeted therapy of SSTr positive cancer. Among three new cross-bridged bifunctional chelators coupled to Y3-TATE, 64Cu-CB-TE2A-Y3-TATE had the most favorable tumor targeting properties. The introduction of ionizable linker groups could not remedy the slow clearance from the kidney, and other modifications will be necessary to resolve this issue. The emerging idea of using the copper-64-labeled somatostatin antagonist 64Cu-CB-TE2A-sst2-ANT as a tumor targeting agent will require further experimentation. This radiopharmaceutical showed promising initial results in a biodistribution study in male Lewis rats, however, it should be compared to 111In-DOTA-sst2-ANT in the same model. Nuclear localization of copper-64 from two somatostatin analogues differing in their chelate stability strengthened the hypothesis of copper-64 dissociation from the bifunctional chelator prior to trafficking to the nucleus. However, the increased nuclear uptake of copper-64 from the less stable 64Cu-TETA-Y3-TATE did not result in a significant effect on cell killing of A427-7 cells. In experiments with [64Cu]copper acetate and the EGFR-antibody 64Cu-DOTA-cetuximab, the tumor suppressor protein p53 was identified as a mediator of the nuclear transport of copper. 64Cu-DOTA-cetuximab was also utilized in five cervical cancer cell lines with a wide range of EGFR expression. EGFR quantification by saturation receptor binding, and EGFR function as determined via internalization of 64Cu-DOTA-cetuximab closely followed the expression pattern of these cell lines found via EGFR mRNA profiling. This constitutes a first step in the evaluation of cetuximab for the treatment, and of 64Cu-DOTA-cetuximab for the imaging of advanced cervical cancer, as EGFR expression on the tumor cell surface clearly can be quantified and visualized with this experimental system. Copper-64 has been used in this study to probe the basic biochemical process of intracellular copper trafficking, and for the targeting of cell surface receptors via radiolabeled peptides and antibodies, providing an example of the powerful combination of radiopharmaceutical chemistry and cell biology.
46

Therapeutic Potential of EGFR Derived Peptides in Breast Cancer

Su, Hsin-Yuan January 2013 (has links)
The epidermal growth factor receptor (EGFR) belongs to the erbB family of receptor tyrosine kinases which consists of four members (EGFR, ErbB2, ErbB3 and ErbB4). Upon ligand binding, the EGFR is capable of dimerization with other erbB receptors and propagates signals regulating a diverse array of cellular physiologies, including cell growth, migration and survival. Dysregulation of the EGFR is important for development and progression of different types of cancers, including breast cancer. Breast cancer is the second leading cause of cancer death in women. EGFR overexpression has been observed in about 15% of all breast cancers. Moreover, in triple negative breast cancer (TNBC), which is a more aggressive type of breast cancer and lacks effective therapies, up to 50% of tumors are found to overexpress EGFR. Targeted therapy against EGFR has been used in TNBC. However, limited efficacy has been observed in TNBC due to intrinsic and acquired resistant mechanisms. In order to overcome this issue, we have developed two novel therapeutic peptides derived from the nuclear localization signal (NLS) sequence and juxtamembrane domain of EGFR and investigated their efficacy in regard to inhibiting EGFR translocation and activation in TNBC. EGFR has been found to translocate into the nucleus and nuclear EGFR can affect gene transcription, cell proliferation, stress response and DNA repair through interacting with different components in the nucleus. Importantly, these functions of nuclear EGFR correlate with cancer prognosis and therapeutic resistance. We found that an EGFR NLS-derived peptide (ENLS peptide) could inhibit activated EGFR (pY845) undergoing nuclear translocation. We also showed that this ENLS peptide sensitized breast cancer cells to AG1478 (EGFR tyrosine kinase inhibitor) treatment. The juxtamembrane domain of EGFR regulates its trafficking to the nucleus and mitochondria, interaction with calmodulin and calcium signaling, and participates in dimerization and activation of EGFR. These non-traditional kinase related functions of EGFR represent a novel target for EGFR therapy. We found that a mimetic peptide of the juxtamembrane domain of EGFR (EJ1 peptide) could effectively inhibit EGFR activation through promoting inactive dimer formation. It could also effectively kill cancer cells through processes of apoptosis and necrosis. Mechanistically, this EJ1 peptide affects membrane integrity thereby leading to calcium influx, disruption of mitochondrial membrane potential and reactive oxygen species (ROS) accumulation. Importantly, EJ1 peptide appeared to be effective in inhibition of tumor growth and metastasis in a transgenic mouse model of breast cancer and showed no observable toxicity. ErbB3, another member of the erbB family, represents an important driver of the parallel signaling pathway to EGFR as well as a key regulator of PI3K/AKT activity which is important for therapeutic resistance. ErbB3 has been shown to interact with MUC1. The interaction between MUC1 and EGFR promotes EGFR stability through recycling of receptors. We found that MUC1 expression also affected ErbB3 activity and stability through ErbB3/EGFR/MUC1 complex formation. In conclusion, we demonstrated that two EGFR-derived peptides, working through novel strategies, represent a new foundation of effective therapeutic agents to breast cancer. ErbB3/EGFR/MUC1 complex formation under MUC1 expression also represents a druggable target for ErbB3 activity and stability.
47

EGFR in Early Non-small Cell Lung Cancer: Tyrosine Kinase Inhibition in a Neoadjuvant Trial

Lara-Guerra, Humberto 10 January 2012 (has links)
EGFR TKIs are standard therapy for advanced NSCLC. In order to define their role in early disease, we implemented a phase II trial of neoadjuvant gefitinib in clinical stage I NSCLC. Tumour shrinkage was seen in 43% of patients, with 11% achieving RECIST partial response (PR). Analysis of molecular markers showed EGFR TKD mutations in 17% of cases, being the only associated with PR. For the first time we defined the histopathological response of NSCLC to these agents, characterized by reduction in tumour cellularity and proliferative index as well as presence of non-mucinous BAC histology. Clinical PR tumours also presented large areas of stromal fibrosis with presence of focal residual tumour. In a characterization of intracellular signalling response, EGFR dephosphorylation in the residues Y1068 and Y1173 was not concordant and only the former was significantly reduced. pAkt Ser473/Akt and Thr308/Akt ratios were significantly reduced but observed among both, clinical responders and resistant patients. Interestingly, reduction in pEGFR Y1068 was significantly associated with increase in tumour cellularity (p=0.047), Ki-67 index (p=0.018) and tumour growth (p=0.019) with a residual perinuclear localization been detected, suggesting a novel mechanism of resistance involving receptor internalization. Finally, we determined that the EGFR protein remains stable up to one hour of post resection ischemia but two to three tumour samples are necessary for an adequate tumour representation. Furthermore, EGFR cytoplasmic compartment presented the best association with clinical response in our cohort. Taking all together, we were able to generate the first clinical trial exploring the use of an EGFR TKI in early NSCLC, characterizing for the first time the histopathological and signalling responses to these agents with an evidence of a potential novel mechanism of resistance. Finally, we observed that multiple samples collection for an adequate tumour representation, and assessment of the cytoplasmic compartment, are warrant.
48

EGFR in Early Non-small Cell Lung Cancer: Tyrosine Kinase Inhibition in a Neoadjuvant Trial

Lara-Guerra, Humberto 10 January 2012 (has links)
EGFR TKIs are standard therapy for advanced NSCLC. In order to define their role in early disease, we implemented a phase II trial of neoadjuvant gefitinib in clinical stage I NSCLC. Tumour shrinkage was seen in 43% of patients, with 11% achieving RECIST partial response (PR). Analysis of molecular markers showed EGFR TKD mutations in 17% of cases, being the only associated with PR. For the first time we defined the histopathological response of NSCLC to these agents, characterized by reduction in tumour cellularity and proliferative index as well as presence of non-mucinous BAC histology. Clinical PR tumours also presented large areas of stromal fibrosis with presence of focal residual tumour. In a characterization of intracellular signalling response, EGFR dephosphorylation in the residues Y1068 and Y1173 was not concordant and only the former was significantly reduced. pAkt Ser473/Akt and Thr308/Akt ratios were significantly reduced but observed among both, clinical responders and resistant patients. Interestingly, reduction in pEGFR Y1068 was significantly associated with increase in tumour cellularity (p=0.047), Ki-67 index (p=0.018) and tumour growth (p=0.019) with a residual perinuclear localization been detected, suggesting a novel mechanism of resistance involving receptor internalization. Finally, we determined that the EGFR protein remains stable up to one hour of post resection ischemia but two to three tumour samples are necessary for an adequate tumour representation. Furthermore, EGFR cytoplasmic compartment presented the best association with clinical response in our cohort. Taking all together, we were able to generate the first clinical trial exploring the use of an EGFR TKI in early NSCLC, characterizing for the first time the histopathological and signalling responses to these agents with an evidence of a potential novel mechanism of resistance. Finally, we observed that multiple samples collection for an adequate tumour representation, and assessment of the cytoplasmic compartment, are warrant.
49

Gene profiling in soft tissue sarcoma: predictive value of EGFR in sarcoma tumour progression and survival

Das Gupta, Paromita, Clinical School - Prince of Wales Hospital, Faculty of Medicine, UNSW January 2007 (has links)
Despite improvements in the clinical management of soft tissue sarcomas (STS), 50% of patients will die of metastatic disease that is largely unresponsive to conventional chemotherapeutic agents. The aims of this study were to identify genes and pathways that are dysregulated in progressive and metastatic STS. In addition to this, cell lines from fresh tumours were initiated and established, thus increasing the repository of cell lines available for functional studies. Recent advances in the understanding of the molecular biology of STS have thus far not resulted in the use of molecular markers for clinical prognostication. Identifying novel genes and pathways will lead to molecular diagnostic methods to better stratify prognostic groups and could identify cellular targets for more efficacious treatments. Gene expression profiling of sarcoma cell lines of increasing metastatic potential revealed over-expression of genes involved in the epidermal growth factor (EGF) and transforming growth factor beta (TGFb) pathways. Factors involved in invasion and metastasis such as integrins and MMPs were over-expressed in the cell lines with higher metastatic potential. The developmental Notch pathway and cell cycle regulators were also dysregulated. NDRG1 was significantly over-expressed in the high grade sarcoma cell line, a novel finding in sarcomas. The expression of EGFR, NDRG1 and other genes from the above pathways was validated using quantitative RT-PCR in real time (qRT-PCR). A tissue microarray (TMA) comprising STS of varying tumour grades was constructed for high throughput assessment of target proteins. EGFR, its activated form and its signal transducers were investigated using immunohistochemistry (IHC). Activated EGFR (HR 2.228, p < 0.001) and phosphorylated Akt (HR 2.032, p = 0.003) were found to be independent predictors of overall survival and both correlated with tumour grade. Of the several STS cultures initiated and maintained, two of these cell lines were fully characterised in terms of cytogenetics, telomerase and alternate lengthening of 5 telomeres (ALT) status, KIT and TP53 mutation and the expression of certain biomarkers using both qRT-PCR and IHC. In summary, transcript profiling identified several potential biomarkers of tumour progression and metastasis in STS. Crucially, activated EGFR and pAkt were found in a cohort of STS samples to correlate with clinical outcome, identifying them as potential diagnostic and therapeutic targets in the treatment of STS. Activated EGFR can be used as a diagnostic marker for patient selection, as well as for target effect monitoring. Furthermore, the cell lines established in this project will serve as valuable tools in future preclinical studies.
50

Gene profiling in soft tissue sarcoma: predictive value of EGFR in sarcoma tumour progression and survival

Das Gupta, Paromita, Clinical School - Prince of Wales Hospital, Faculty of Medicine, UNSW January 2007 (has links)
Despite improvements in the clinical management of soft tissue sarcomas (STS), 50% of patients will die of metastatic disease that is largely unresponsive to conventional chemotherapeutic agents. The aims of this study were to identify genes and pathways that are dysregulated in progressive and metastatic STS. In addition to this, cell lines from fresh tumours were initiated and established, thus increasing the repository of cell lines available for functional studies. Recent advances in the understanding of the molecular biology of STS have thus far not resulted in the use of molecular markers for clinical prognostication. Identifying novel genes and pathways will lead to molecular diagnostic methods to better stratify prognostic groups and could identify cellular targets for more efficacious treatments. Gene expression profiling of sarcoma cell lines of increasing metastatic potential revealed over-expression of genes involved in the epidermal growth factor (EGF) and transforming growth factor beta (TGFb) pathways. Factors involved in invasion and metastasis such as integrins and MMPs were over-expressed in the cell lines with higher metastatic potential. The developmental Notch pathway and cell cycle regulators were also dysregulated. NDRG1 was significantly over-expressed in the high grade sarcoma cell line, a novel finding in sarcomas. The expression of EGFR, NDRG1 and other genes from the above pathways was validated using quantitative RT-PCR in real time (qRT-PCR). A tissue microarray (TMA) comprising STS of varying tumour grades was constructed for high throughput assessment of target proteins. EGFR, its activated form and its signal transducers were investigated using immunohistochemistry (IHC). Activated EGFR (HR 2.228, p < 0.001) and phosphorylated Akt (HR 2.032, p = 0.003) were found to be independent predictors of overall survival and both correlated with tumour grade. Of the several STS cultures initiated and maintained, two of these cell lines were fully characterised in terms of cytogenetics, telomerase and alternate lengthening of 5 telomeres (ALT) status, KIT and TP53 mutation and the expression of certain biomarkers using both qRT-PCR and IHC. In summary, transcript profiling identified several potential biomarkers of tumour progression and metastasis in STS. Crucially, activated EGFR and pAkt were found in a cohort of STS samples to correlate with clinical outcome, identifying them as potential diagnostic and therapeutic targets in the treatment of STS. Activated EGFR can be used as a diagnostic marker for patient selection, as well as for target effect monitoring. Furthermore, the cell lines established in this project will serve as valuable tools in future preclinical studies.

Page generated in 0.4133 seconds