• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 101
  • 26
  • 17
  • 13
  • 9
  • 6
  • 5
  • 5
  • 3
  • 1
  • Tagged with
  • 358
  • 358
  • 95
  • 80
  • 43
  • 41
  • 38
  • 35
  • 32
  • 31
  • 31
  • 30
  • 28
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Flexible Electronics: Materials and Device Fabrication

Sankir, Nurdan Demirci 05 January 2006 (has links)
This dissertation will outline solution processable materials and fabrication techniques to manufacture flexible electronic devices from them. Conductive ink formulations and inkjet printing of gold and silver on plastic substrates were examined. Line patterning and mask printing methods were also investigated as a means of selective metal deposition on various flexible substrate materials. These solution-based manufacturing methods provided deposition of silver, gold and copper with a controlled spatial resolution and a very high electrical conductivity. All of these procedures not only reduce fabrication cost but also eliminate the time-consuming production steps to make basic electronic circuit components. Solution processable semiconductor materials and their composite films were also studied in this research. Electrically conductive, ductile, thermally and mechanically stable composite films of polyaniline and sulfonated poly (arylene ether sulfone) were introduced. A simple chemical route was followed to prepare composite films. The electrical conductivity of the films was controlled by changing the weight percent of conductive filler. Temperature dependent DC conductivity studies showed that the Mott three dimensional hopping mechanism can be used to explain the conduction mechanism in composite films. A molecular interaction between polyaniline and sulfonated poly (arylene ether sulfone) has been proven by Fourier Transform Infrared Spectroscopy and thermogravimetric analysis. Inkjet printing and line patterning methods also have been used to fabricate polymer resistors and field effect transistors on flexible substrates from poly-3-4-ethyleneoxythiophene/poly-4-sytrensulfonate. Ethylene glycol treatment enhanced the conductivity of line patterned and inkjet printed polymer thin films about 900 and 350 times, respectively. Polymer field effect transistors showed the characteristics of traditional p-type transistors. Inkjet printing technology provided the transfer of semiconductor polymer on to flexible substrates including paper, with high resolution in just seconds. / Ph. D.
142

A Passive Microfluidic Device for Buffer Transfer of Cells

Thattai Sadagopan, Sudharsan 12 November 2021 (has links)
Buffer transfer of cells is a critical process in many biomedical applications such as dielectrophoresis experiments, optical trapping, and flow cytometry. Existing methods for buffer transfer of cells are time consuming, require skilled technicians and involve expensive equipment such as centrifuge and bio safety hoods. Furthermore, even a minute error in transferring the cells can easily result in cell lysis and decrease in viability. In this work, a lab-on-a-chip device is proposed that uses a textit{passive microfluidic approach} to effectively transfer cells from a growth medium to a desired buffer for downstream cDEP analysis. This eliminates the need for any external fields, expensive equipment, and significantly reduces manual efforts. Computational studies were carried out to analyze the impact of device geometry, channel configuration, and flowrate on the effectiveness of buffer transfer. The proposed device was evaluated through a parametric sweep and the device configurations were identified that induce low values of fluid shear stress, support high throughput, and maintains minimal diffusion. Finally, a method for fabricating the device in the laboratory using PDMS was illustrated. The outcome of this study helps further the development of highly effective microfluidic devices capable of performing buffer transfer of multiple cell lines. / Master of Science / Prior to performing biomedical experiments, cells often need to be transferred from the chemical solution in which they are grown to a different buffer that is customized for the analysis technique. This process is called buffer transfer and it is a critical process that needs to be performed before running many cell experiments. The way in which buffer transfer is carried out in most labs is time consuming, requiring skilled technicians and expensive machines. Moreover, even a small error while performing buffer transfer can easily cause the cells to die and reduce the cell count available for performing experiments. In this work, we propose an easy-to-use device that can perform the buffer exchange process without the need for expensive technologies or skilled technicians. The device achieves this exchange by leveraging fluid flow the channel to filter the cells out of the growth medium and transferring the cells to the desired chemical solution while washing the unwanted chemical solution away. We used CAD modeling and computational analysis to develop the device. The performance of the device was enhanced through a parametric analysis such that the device induces low shear stress, supports high flow through the channels and limits the mixing between the growth medium and the buffer. Finally, we have also illustrated a method for building the device in the laboratory. The results of this research work would help in furthering current efforts in the buffer transfer of cells.
143

Physical, electrical and electrochemical characterizations of transition metal compounds for electrochemical energy storage

Yuan, Qifan 03 February 2015 (has links)
Electrochemical energy storage has been widely used in various areas, including new energy sources, auto industry, and information technology. However, the performance of current electrochemical energy storage devices does not meet the requirements of these areas that include both high energy and power density, fast recharge time, and long lifetime. One solution to meet consumer demands is to discover new materials that can substantially enhance the performance of electrochemical energy storage devices. In this dissertation we report four transition metal materials systems with potential applications in electrochemical energy storage. Nanoscale and nanostructured materials are expected to play important roles in energy storage devices because of their enhanced and sometimes unique physical and chemical properties. Studied here is the comparative electrochemical cation insertion into a nanostructured vanadium oxide, a promising electrode material candidate, for the alkali metal ions Li+, Na+ and K+ and the organic ammonium ion, in aqueous electrolyte solutions. Observed are the distinctive insertion processes of the different ions, which yield a correlation between physical degradation of the material and a reduction of the calculated specific charge. The results reveal the potential of this nanostructured vanadium oxide material for energy storage. Vanadium based electrochemical systems are of general interest, and as models for vanadium based solid-state electrochemical processes, the solution state and the solid-state electrochemical properties of two cryolite-type compounds, (NH4)3VxGa1-xF6, and Na3VF6, are studied. The electrochemical behavior of (NH4)3VxGa1-xF6 explored the possibility of using this material as an electrolyte for solid state energy storage systems. Zeolite-like materials have large surface to volume ratios, with ions and neutral species located in the nanometer sized pores of the 3-dimensional framework, potentially yielding high energy density storage capabilities. Yet the insulating nature of known zeolite-like materials has limited their use for electrical energy storage. Studied here are two vanadium based zeolite-like structures, the oxo-vanadium arsenate [(As6V15O51)-9]∞, and the oxo-vanadium phosphate [(P6V15O51)-9]∞, where the former shows electronic conduction in the 3-dimensional framework. Mixed electronic and ionic conductivity, from the framework and from the cations located within the framework, respectively, is measured in the oxo-vanadium arsenate, and allows the use of this material in electrochemical double-layer capacitor configuration for energy storage. By contrast, the oxo-vanadium phosphate shows ionic conduction only. Lastly, a new strontium manganese vanadate with a layered structure exhibiting mixed protonic and electronic conductivity is studied. The various transition metal compounds and materials systems experimentally studied in this thesis showcase the importance of novel materials in future energy storage schemes. / Ph. D.
144

Investigation of Poultry Litter Bochar as a Potential Electrode for Direct Carbon Fuel Cells

Abdellaoui, Hamza 25 January 2013 (has links)
Direct carbon fuel cell (DCFC) is a high temperature fuel cell (around 700 "C) that produces electrical energy from the direct conversion of the chemical energy of carbon. DCFC has a higher achievable efficiency of 80% compared to other fuel cells and the corresponding CO2 emission is very low compared to conventional coal-burning power plants. Moreover, a DCFC can use diversified fuel resources even waste material, which is advantageous compared to other types of fuel cells which are limited to specific fuels. DCFCs are still under development due to a number of fundamental and technological challenges such as the efficiency of carbon fuels and the effect of impurities on the performance and lifetime of the DCFC. These are key factors for the development and commercialization of these devices. In this study, three biochars obtained from the pyrolysis of poultry litters (PL) collected from Tunisian and US farmers, were characterized to see whether they can be potential anode fuels for DCFC or not. PL biochars have low fixed carbon contents (19-35 wt%) and high ash contents (32.5-63 wt%). These ashes contain around 40 wt% catalytic oxides for carbon oxidation reaction, however, these oxides have very low electrical conductivities, which resulted in the very low (negligible) electrical conductivity of the PL biochars (7.7x10-9-70.56x10-9 S/cm) at room temperature. Moreover, the high ash contents resulted in low surface areas (3.34-4.2 m"/g). These findings disqualified PL biochar from being a potential anode fuel for DCFCs. Chemical demineralization in the sequence HF/HCl followed by carbonization at 950" C of the PL biochars will result in higher fixed carbon content, higher surface area, and higher electrical conductivities. Moreover, the treated PL biochars would contain a potential catalyst (Calcium in the form of CaF2) for carbon oxidation. All these criteria would qualify the treated PL biochars to be potential fuels for DCFC. / Master of Science
145

Suction Cup Lysimeter Method for Extracting Pine Bark Substrate Solution

Stanley, Mary H. 01 May 2002 (has links)
The objective of this study was to determine the effectiveness of suction cup lysimeters (SCL) in extracting substrate solution from pine bark substrates. Lysimeter types tested were 4.8-cm diameter with a ½ or 1-bar air-entry value (AEV) and 2.2-cm diameter also with a ½ or 1-bar AEV. Sufficient volume could be obtained when a vacuum pressure of 30, 40 or 50 cb was applied to lysimeters with a minimum extraction time of five minutes. The 2.2-cm lysimeters were found to be suitable for extracting solution if smaller sample volumes were needed. To determine effect of vacuum pressure and extraction time on volume extracted, the 4.8-cm ½-bar lysimeters were installed in containers with pine bark substrate and Quercus phellos L. (willow oak) trees. Volumes extracted were somewhat erratic and not strongly dependent upon centibars of vacuum or extraction time. Lysimeters immersed in water demonstrated that variability was not due to individual lysimeters, but to the coarse nature of the pine bark substrate. Substrate EC levels were not affected when volume of substrate solution extracted by the SCL's varied from 10 to190 ml.â To determine the effectiveness of SCL's to monitor nutrient status of container-grown shade trees, two-year-old container-grown willow oak trees were grown in a pine bark substrate and fertilized with 0, 50, 100, 150, 200, 250 or 300 grams Osmocote Plus Northern (15N – 3.9P – 9.8K). Plant height and trunk diameter increased with up to 200 grams of Osmocote per container. There was a good relationship between solution EC and plant growth / Master of Science
146

Material property dependent design space for dielectric simulations of bushings

Carlsson, Adam, Jansson, August, Dominik, Paropatic January 2024 (has links)
The aim in this project is to find a design space for a condenser type bushing given by HitachiEnergy. The design space shows which combinations of air and silicon-rubber (SiR) conductivity remain under a specified electric field strength value. This range of value represents how humidity affects air and SiR conductivity. Hitachi energy provided two different models, one with foils and one without foils. The design space for these models consists of how humidity affects the conductivity of both air and SiR. The values of air conductivity are gathered from different studies with different air humidity and external effects that affect the conductivity such as high aerosol concentration and high radon concentration. The values used for simulation will be approximated because of the different external effects and will range from 10^(−12)–10^(−13) S/m for humid conditions, 10^(−14) S/m for average humidity conditions and 10^(−15)–10^(−16) S/m for dry conditions. The range of SiR conductivity and the correlated weather conditions was given by Hitachi Energy and range from 10^(−11)–10^(−15) S/m where 10^(−11) S/m is for humid conditions, 10^(−12)–10^(−14) S/m for average humidity conditions and 10^(−15) S/m for dry conditions. For each of these combinations of conductivity the maximum electric field strength is calculated using COMSOL Multiphysics and compared to the threshold value of 2 kV/mm. Using these parameters the maximum electric field strength on the sheds of the bushing was calculated using COMSOL Multiphysics for all combinations of SiR and air conductivity. The results shows a pattern for both models. SiR conductivity must be higher or equal to the air conductivity to be below the threshold of 2 kV/mm.
147

Groundwater occurrence and quality in Bulawayo province, Zimbabwe

Nygren, Anton, Nordenskjöld, Edvard, Östblom, Erik January 2016 (has links)
This study focused on determining the groundwater flow paths in the crystalline subsurface rocks of the Bulawayo metropolitan, Zimbabwe, through analysing the discontinuities of the electrical properties of the ground, as well as in the magnetic field of the underlying rocks. Further, borehole water quality was analysed by measuring and mapping several chemical parameters, specifically TDS, salinity and the electrical conductivity. The electrical and magnetic anomalies were measured at two field sites within the Bulawayo province, the Harry Allen Golf Course and the Barbour Fields dumpsite, while 120 boreholes were sampled for water quality in a large part the province. Two magnetometers were used to measure the magnetic field and the time and location of the measurements, which resulted, after processing in SURFER, into the magnetic field map of these areas. This was used, in conjunction with the geologic map of the Bulawayo province, in order to determine useful locations for the electrical resistivity surveys. These included electrical resistivity tomography and vertical electrical sounding and were performed with an earth resistivity/induced polarization (IP) meter in order to measure the electrical resistivity of the ground. Inverse modelling was used in the RES2DINV software program to produce the topographic image of resistivity. The results for the borehole sampling showed that the maps for the three chemical parameters were very similar, with the western and northern parts of the mapped area displaying higher concentration values. The results of the electrical resistivity surveying showed probable areas of groundwater flow with its relationship to electric conductivity.
148

Development and characterisation of an A-site deficient perovskite as alternative anode material for solid oxide fuel cells

Aljaberi, Ahmed D. A. January 2013 (has links)
The research presented in this thesis is a collection of many different, yet connected, parts that stemmed from the development of a new alternative material intended to be utilised as anode material in solid oxide fuel cells. The main part is the research conducted in the development and characterisation of the novel A-site deficient La₀.2₂Sr₀.₇₋ₓCaₓTiO₃. Calcium introduction resulted in reducing this perovskite unit cell volume which, at the beginning, enhanced its electrical conductivity in reducing conditions. However, the ideal cubic symmetry coud not be maintained, as in the starting material LA₀.₂Sr₀.₇TiO₃, as a result of the increased A-site ionic radius mismatch and two lower symmetries were observed at room temperature. These were the tetragonal I4/mcm for 0.1 ≤ x ≤ 0.35 and orthorhombic Pbnm for 0.4 ≤ x ≤ 0.7. Higher temperature NPD data showed that the orthorhombic samples transformed into higher symmetries with Pbnm → I4/mcm → Pm3-m phase transitions. Detailed crystallographic analysis is discussed; where the different unit cells showed changes to the tilts of the BO₆ octahedra, along with distortions to these octahedra. DC conductivity measurements showed a high electrical conductivity of 27.5 S/cm for a pre-reduced composition La₀.₂Sr₀.₂₅Ca₀.₄₅TiO₃ at 900°C and pO₂ = 10⁻¹⁹ atm. This material showed very encouraging features; which makes it a very promising anode material for SOFCs. A study was also done which explores the best renewable energy options for the United Arab Emirates given its local climate and other aspects. The reliance on seawater desalination is argued to by unsustainable for different reasons. Thus, water security should be a main element in the planning process for adopting renewable energy technologies. A system that combines different technologies; with a focus on fuel cells technology; is outlined which is thought of to be a very promising basis for a broader system that will secure power and water in a very environment friendly way. Different compositions of the system La₀.₂Sr₀.₇₋ₓCaₓTiO₃ were also studied using AC impedance spectroscopy in order to establish whether or not this system can show a ferroelectric behaviour. Results showed a variation in the dielectric constant of different samples with temperature; however, no Curie point was observed. Nonetheless, the results did show that the different compositions were very homogeneous when fully oxygenated and there were some indications of possible symmetry changes at sub-ambient temperatures. The final part of this thesis outlined the work done towards the development of a new analytical instrument. An existing TGA instrument was altered in order to provide a simultaneous thermogravimetric analysis and DC conductivity measurement for solid solutions at controlled temperature and oxygen partial pressure. Results were obtained for different samples of the system La₀.₂Sr₀.₇₋ₓCaₓTiO₃ which showed a great dependence of the electrical conductivity on the oxygen stoichiometry in these oxides. Also, a direct method is possible with this instrument to estimate the oxygen chemical diffusion coefficient using the electrical conductivity relaxation method. This new setup will be very useful for different electrochemical and thermal studies which can broaden the understanding of the different mechanisms that affect the performance of different solid state materials.
149

Effect of ultra-short laser nanostructuring of material surfaces on the evolution of their thermoelectric properties / Effet de la nanostructuration par faisceaux laser ultra-courts sur l’évolution des propriétés thermoélectriques des matériaux

Talbi, Abderazek 11 December 2017 (has links)
Aujourd’hui, les énergies renouvelables comme l’énergie éolienne, l’énergie solaire, l’énergie hydroélectrique et la thermoélectricité jouent un rôle essentiel dans la couverture de nos besoins en énergie. Parmi ces différentes sources d’énergie, la thermoélectricité, qui permet de convertir la chaleur en électricité ou inversement, attire une grande attention grâce à son large champ d’application. Les actuelles avancées dans la recherche thermoélectrique visent l’amélioration du rendement de conversion des modules thermoélectriques, à travers l’optimisation des propriétés thermoélectriques intrinsèques des matériaux utilisés (coefficient de Seebeck, conductivité électrique et conductivité thermique). Pour cela, différentes approches ont été étudiées (dopage, nouveau alliages, nanostucturation …). Parmi ces approches, la nanostructration des matériaux a été largement étudiée pour mener à bien cet objectif. Dans ce travail de thèse, nous nous sommes intéressés à étudier l’effet de la nanostructuration de surface des matériaux (silicium mesoporeux et oxyde de titane déposé en couches minces) par faisceaux laser ultra-court (picoseconde et femtoseconde) sur l’évolution de leurs propriétés thermoélectriques. Dans un premier temps, nous nous sommes focalisés sur l’étude des différents phénomènes physiques impliqués durant l’interaction laser-matière ainsi que sur la formation des différentes nanostructures résultantes (en forme de ripples, spikes, dots et autres) en fonction de la dose laser appliquée (la fluence et le nombre de pulses). La formation de ces nanostructures a été étudiée suivant deux régimes (stationnaire et dynamique). Après l’optimisation des paramètres conduisant à la formation de ces nanostructures, la caractérisation du coefficient de Seebeck et la conductivité électrique avant et après la nanostructuration de ces matériaux a été réalisée grâce à un nouveau dispositif de mesure (ZT-meter) développé au laboratoire GREMI. Les résultats de mesures montrent une importante amélioration du coefficient de Seebeck et la conductivité électrique après la nanostrucutration. Un facteur d’augmentation de la puissance thermoélectrique a été observé pour les deux matériaux étudiés ; notamment dans le cas de couches minces d’oxyde de titane (jusqu’à 500 fois). / Today, renewable energies such as wind, solar, hydropower and thermoelectricity play an essential role to cover our energy needs. Among these different sources of energy, thermoelectricity, which offers the ability to convert a heat into electricity or vice versa, has attracted a great attention due to its wide field of potential applications. The current advances in thermoelectric research are focusing on the improvement of the conversion efficiency of thermoelectric devices through optimizing and improving the thermoelectric properties of the thermoelectric materials (Seebeck coefficient, electrical conductivity and thermal conductivity). For this, different approaches (doping, new materials, nanostucturing...) have been investigated in the literature. Among these approaches, nanostructuring of materials is the most studied in the literature in order to improve the thermoelectric properties of materials. In this thesis work, we aimed to study the effect of surface nanostructuring of materials (mesoporous silicon and titanium oxide deposited in thin film) by ultra-short laser beams (picosecond and femtosecond) on the evolution of their thermoelectric properties. First, we focused on the study of various physical phenomena involved during the laser-matter interaction that yield to the formation of very different nanostructures in form of ripples, spikes, dots and others as function of the applied laser dose (fluence and number of pulses). The formation of these nanostructures has been studied in two regimes (stationary and dynamic). After optimizing the laser parameters leading to the formation of such nanostructures, a characterization of Seebeck coefficient and the electrical conductivity before and after the nanostructuring of these materials was carried out by using a new experimental setup (ZT-meter) designed and validated in GREMI laboratory. The results of measurements showed an important improvement of Seebeck coefficient and electrical conductivity after nanostructuring. This important improvement observed with the both materials leaded to a strong increase in the thermoelectric power factor (reaching roughly 50000%).
150

Obtenção de fios em ligas cobre-magnésio para utilização em linhas de transmissão de energia elétrica / Obtention of copper-magnesium alloys wires used in eletrical transmission lines

Fernandes, Marcos Gonzales 20 July 2010 (has links)
O objetivo desse trabalho foi o de obter-se fios de cobre em três composições químicas distintas da liga Cu-Mg a partir de cobre eletrolítico e de magnésio. Foram avaliadas as etapas envolvidas, começando com a fusão de botões em forno a arco na composição do eutético Cu-Mg, diluição destes botões em forno resistivo, vazamento em lingoteira de cobre, seguido de tratamento térmico de homogeneização em forno resistivo a 910 ºC por 2 h. Os tarugos foram posteriormente trabalhados mecanicamente por forjamento rotativo seguido de um passe final de acabamento por trefilação, para obtenção do fio. As análises químicas realizadas nos lingotes indicaram que a rota de preparação dos fios mostrou-se adequada aos estudos em escala de laboratório, suficiente para a confecção de fios com área de seção transversal de 4 mm2 por 10 m de comprimento, para cada composição de liga. Os fios foram caracterizados mecanicamente por ensaio de tração e de dureza após tratamento térmico de recristalização a 510 ºC por 1 h. Os fios também tiveram as condutividades elétricas medidas na condição recristalizada e os resultados foram comparados com dados experimentais da literatura. Os materiais obtidos mostraram-se adequados à utilização como fio condutor de energia elétrica. Os limites de escoamento e de resistência a tração tiveram seus valores melhorados com o aumento do teor de magnésio na liga, 11 % e 24 %, respectivamente, enquanto houve queda nos valores de condutividade elétrica para cerca de 60 % IACS (International Annealed Copper Standard). / The aim of this work was to obtain copper wires in three different chemical compositions starting from electrolytic copper and magnesium. The mains steps were evaluated, starting from the melting of small eutectic cooper-magnesium specimens in an electric arc furnace, followed by further dilution of this buttons in a resistive furnace and casting it in a copper mould. The as cast billets were homogenized in a resistive furnace at 910 ºC for 2 h. The billets were mechanically cold worked by swaging and a final drawing step to attain a round shape and a reasonable surface quality. The cast ingots chemical analysis indicated that the processing route showed to be adequate, in laboratory scale, to obtain wires with cross sectional area of 4 mm2 and 10 m in length. The wires in both conditions as cold worked and after a recovering heat treatment at 510 ºC for 1 h, were mechanically characterized by tensile testing and hardness. The wires had also the electric conductivity assessed in the recovered heat-treated state and the results were compared to the literature data. The obtained material showed to be adequate to be used as electric conductor. The yield strain and ultimate tensile strength were improved with the increasing amount of Mg in the alloy, 11 % and 24 %, respectively, while the electric conductivity decreased to 60 % IACS (International Annealed Copper Standard).

Page generated in 0.0435 seconds