• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1420
  • 1193
  • 434
  • 222
  • 161
  • 87
  • 64
  • 38
  • 35
  • 35
  • 35
  • 35
  • 35
  • 35
  • 33
  • Tagged with
  • 4461
  • 1156
  • 1064
  • 807
  • 497
  • 487
  • 359
  • 320
  • 284
  • 242
  • 210
  • 210
  • 191
  • 180
  • 172
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Concentration and Recovery of Rare Earth Elements from Eastern US Coal Refuse

MacCormac, Brendan Lloyd 02 November 2020 (has links)
Recent studies funded by the US Department of energy have shown that coal and coal byproducts contain elevated contents of Rare Earth Elements (REEs), making them a potential resource for these critical materials. The approach employed in this research focused on the concentration and extraction of REEs from fine coal refuse derived from various preparation plants in the Appalachian coal basin of the United States. Initial efforts in this research focused on the identification and characterization of REEs in various fine coal refuse streams from nine distinct industrial preparation plants in Appalachia. The average REE content in these materials was determined to be approximately 200 ppm, but the REE content showed a strong correlation to the aluminum content, suggesting that the REEs are closely associated with the clay minerals present in the refuse. Given the relatively low REE concentrations, initial efforts sought to concentrate the REEs through decarbonization and dispersive liberation steps. In these tests, high-shear agitation in the presence of a polyelectrolyte, followed by sedimentation was able to isolate the REE-enriched fine clay particles from siliceous gangue minerals. Following the dispersive liberation step, all samples were found to have an REE content greater than 300 ppm, a benchmark used for many initial exploratory studies. In one case, the REE content was increased by more than 125%. Subsequent extraction tests initially utilized a direct ion-exchange leaching approach with ammonium sulfate as lixiviant. In all cases, the simple ion-exchange leaching process failed to recover significant quantities of rare earth elements, ultimately suggesting that the REEs in fine coal waste may be passivated or bound in a colloidal phase. To access this colloidal phase, several alternative approaches were evaluated, including leaching with alternative ion-exchange lixiviants, reductive leaching, gas-purged leaching, and others. The approach that showed the most promise was strong alkaline pretreatment, followed by ion-exchange leaching with ammonium sulfate at pH 4. A combination of strong alkali and high-temperatures treatment successfully liberated the REEs, converting them to a form amenable to ion-exchange leaching. The highest REE recovery achieved with this method was determined to be 39%. Lastly, bench-scale solvent extraction tests were used to further concentrate REEs in the leach solution and demonstrate that mixed rare earth concentrates can be successfully produced from fine coal refuse. / Master of Science / Since the introduction of personal electronics, rare earth elements (REEs) have become essential raw materials for modern life. They are used in many common household goods such as cell phones, computers, and flat screen TVs. They are also vital components in various industrial, medical, and military applications. Currently, the majority of the world's supply is obtained from China, which has raised concerns on the vulnerability of the supply chain and the potential impacts of supply disruption on clean energy technologies. In light of this risk, the US Department of Energy has classified a number of REEs as critical elements and has subsequently funded research to investigate ways to diversify the supply chain through alternative resources. The approach employed in this research seeks to extract and recover REEs from fine coal refuse. This industrial waste is a byproduct of the coal mining and beneficiation processes. Given the long legacy of coal mining in the Appalachian region, hundreds of millions of tons of fine waste are currently being stored in surface impoundments, and millions of tons of additional fine coal waste is being produced each year from active mining and beneficiation operations. By valorizing this waste material through REE recovery, mining companies will be incentivized to reprocess existing impoundments, ultimately promoting superior economic and environmental outcomes. Despite their name, rare earths are not "rare" from the standpoint of raw abundance; however, their scarcity is derived from the complexity of the extraction and separation processes. In China, the majority of the heavy rare earth elements are produced from ion-exchangeable clays. These clays have REEs weakly attached to the surface, so that they can be readily recovered by washing them with a salt solution that remove the positively charged rare earth ions from surface. The technical approach employed in this project sought to replicate this process for the clay materials found in fine coal refuse. Additional steps were needed to properly concentrate, activate, and extract the REEs; however, the end-to-end processing tests confirmed that mixed rare earth concentrates can be produced from fine coal wastes consisting primarily clay minerals.
382

Spherical Elements in the Affine Yokonuma-Hecke Algebra

Shaplin, Richard Martin III 08 July 2020 (has links)
In Chapter 1 we introduce the Yokonuma-Hecke Algebra and a Yokonuma-Hecke Algebra-module. In Chapter 2 we determine that the possible eigenvalues of particular elements in the Yokonuma-Hecke Algebra acting on the module. In Chapter 3 we find determine module subspaces and eigenspaces that are isomorphic. In Chapter 4 we determine the structure of the q-eigenspace. In Chapter 5 we determine the spherical elements of the module. / Master of Science / The Yokonuma-Hecke Algebra-module is a vector space over a particular field. Acting on vectors from the module by any element of the Yokonuma-Hecke Algebra corresponds to a linear transformation. Then, for each element we can find eigenvalues and eigenvectors. The transformations that we are considering all have the same eigenvalues. So, we consider the intersection of all the eigenspaces that correspond to the same eigenvalue. I.e. vectors that are eigenvectors of all of the elements. We find an algorithm that generates a basis for said vectors.
383

The Art of Designing a Meaningful Landscape through Storytelling

Garman, Keli L. 15 June 2006 (has links)
Meaning in the landscape is a concept that is receiving attention from many landscape architects asking the questions: how is meaning found in the landscape, or what makes a landscape meaningful? While there are many design processes that incorporate meaning into the design, it is the art of storytelling that the thesis investigates. The research for the thesis and a comparison analysis is performed on three texts, which explore meaning in the landscape. The three texts are Marc Treib's "Must Landscapes Mean?"; Matthew Potteiger and Jamie Purinton's Landscape Narratives, and Mark Francis and Randolph T. Hester, Jr.'s The Meaning of Gardens: Idea, Place, and Action. Applying these approaches to case studies has resulted in the finding of common ideas between the three texts. The commonalities led to my position that storytelling can be used as an approach to design, and that landscapes designed as a story narrative can be meaningful. The design project investigated the strength of the position on a site in the West Potomac Park in Washington DC. The story for the project is a Japanese folktale that communicates the culture of Japan. The project is a case study that explores if the set of design principles within the storytelling approach can invest meaning into a landscape. / Master of Landscape Architecture
384

Dwelling within the Material City

Hawkins, Eric Keith 23 February 2011 (has links)
What does it mean to truly dwell within a city marked by the cycles of political turnover? How does one carve out for himself a unique sense of belonging in a city with such a grand history? Martin Heidegger suggests that in building "nests" for ourselves, we begin to build our lives. We build our own stories into the traditions and myths of a place. This thesis proposes four unique stories, or four dwelling typologies, stitched together by a common alley site. Each dwelling typology finds its primary expression in one of the Four Classical Elements — Earth, Water, Air, and Fire. The four are intended to be read as distinct artifacts within the urban fabric of Washington, D.C., yet also as siblings of the same architectural family. The four dwelling typologies include (1) a studio for an artist, (2) a residence above a small business, (3) loft apartments and (4) a boutique hotel. Each occupies an infill site along the District of Colombia's historic Blagden Alley. / Master of Architecture
385

Identification, Characterization, and Speciation of Rare Earth Elements in Coal Refuse

Russell, Alexandra Dawn 24 June 2021 (has links)
Rare earth elements are the 14 lanthanides on the periodic table, plus yttrium and scandium. These elements play a critical role in modern-day technologies such as liquid-crystal displays, GPS systems, and fiber optic cables. A majority of the mining of these elements is from China; however, due to decreasing reserves a need for alternative processes for extracting and processing rare earth elements (REEs) is becoming increasingly important. Special focus has been placed upon the identification of REEs within coal refuse, but the phase designation and speciation is not fully understood. This investigation focuses on the characterization, speciation, and morphology of REEs within fine and coarse coal refuse. During this study, physical and chemical characterization was conducted on coal refuse samples to understand characteristics, which influence REE phase designation. Experimental methods were chosen to specifically evaluate REE content and speciation across four key characteristics: size distribution, density, seam location, and thermal decomposition. Characterization of the refuse material was conducted in two campaigns: (1) an exploratory campaign, which focused on size distribution, and physical imaging of REEs within fine refuse, and (2) a detailed campaign, which utilized sequential chemical extraction methods alongside calcination to understand the phases in which REEs are present in coarse refuse. The results show that REEs within fine coal refuse are smaller than ten microns and found with phosphorus. In general, as size decreased REE content increased, likely due to increased clay content. Further conclusion could not be drawn from simple microscopic analysis. Consequently, detailed chemical characterization was conducted to fully understand REE speciation. The tests showed that a majority of REEs within coarse refuse were within insoluble species. A calcination treatment was found to greatly increase the recovery of REEs from the metal oxide fraction, thus increasing the overall soluble species contained within the coarse refuse material. / Master of Science / Due to increasing global demand and limited reserves, alternative sources for rare earth elements (REEs) have become an increasingly important research topic. REEs are a vital component of many modern technologies, including GPS systems, fiber optic cables, and LCD screens. Current mining of REEs is primarily from Chinese reserves which are becoming increasing depleted and are not strictly regulated for environmental impact. Due to these challenges, other resources of REEs are of increasing importance. Prior research has found coal and associated byproducts to have concentrations of REEs that could be economically exploited, reducing the rate of depletion of REE resources worldwide. To develop more efficient and cost-effective processing methods, fundamental information on the mineral composition of REE-bearing materials is needed. With this information, engineers can develop better processes that can specifically target REE-containing minerals while maximizing economic and environmental outcomes. This research seeks to overcome this knowledge gap through advanced material characterization and well-controlled laboratory process testing of coal refuse. The results show that REEs typically congregate in specific material fractions (e.g. fine size, moderate density), and these materials can be readily transformed through simple heat treatment. This transformation greatly improves the processability and provides a pathway for the economic recovery of REEs from coal wastes. The further development and deployment of these technologies can have societal benefits such as: more jobs, reduced reliance on foreign sources, and environmental cleanup of current coal waste deposits.
386

A finite element study of shell and solid element performance in crash-box simulations / En jämförande finita elementstudie av skal- och solidelement i simulering av krockboxar

Bari, Mahdi January 2015 (has links)
This thesis comprehends a series of nonlinear numerical studies with the finite element software's LS-Dyna and Impetus AFEA. The main focus lies on a comparative crash analysis of an aluminium beam profile which the company Sapa technology has used during their crash analysis. The aluminium profile has the characteristic of having different thickness over span ratios within the profile. This characteristic provided the opportunity to conduct a performance investigation of shell and solid elements with finite element analysis. Numerical comparisons were made between shell and solid elements where measurable parameters such as internal energy, simulation times, buckling patterns and material failures were compared to physical tests conducted prior to this thesis by Sapa technology. The performance investigation of shell and solid elements was initiated by creating models of the aluminium profile for general visualization and to facilitate the meshing of surfaces. The meshing procedure was considered to be an important factor of the analysis. The mesh quality and element orientations were carefully monitored in order to achieve acceptable results when the models were compared to physical tests. Preliminary simulations were further conducted in order to obtain a clear understanding of software parameters when performing crash simulations in LS-Dyna and Impetus AFEA. The investigated parameters were element formulations and material models. A general parameter understanding facilitated in the selection of parameters for actual simulations, where material failure and damage models were used. In conclusion, LS-Dyna was observed to provide a bigger internal energy absorption during the crushing of the beam with longer simulation times for solid elements when compared to shell elements. Impetus AFEA did on the other hand provide results close to physical test data with acceptable simulation times when compared to physical tests. The result difference obtained from the FE-software's in relation to physical crash experiments were considered to be varied but did indicate that shell elements were efficient enough for the specific profile during simulations with LS-Dyna. Impetus AFEA proved that the same time to be numerically efficient for energy approximations with solid elements refined with the third polynomial.
387

COMPUTER CONTROLLED LASER OPTOACOUSTIC SPECTROSCOPY FOR TRACE GAS ANALYSIS.

TILDEN, SCOTT BRADLEY. January 1983 (has links)
Optoacoustic spectroscopy is a relatively old technique first described by Alexander Graham Bell in 1881. However, over the intervening years, little use was made of the technique due to its low sensitivity. This was due to low source intensities of available infrared light sources which limited the optoacoustic signal strength. With the advent of laser infrared light sources in the 1960's, there has been a resurgence of interest in optoacoustics. No longer is low source intensity a major limitation to successful optoacoustic spectroscopy. Although adequate infrared light sources are available, the large window background signal observed in all optoacoustic systems has been the major limitation in extending trace gas detection limits to the ppb or sub-ppb level. Similarly, there has been little demonstration of the use of the optoacoustic technique in environments where mixtures of gases are present which have severe spectral overlap. This work will discuss a new windowless cell design that largely eliminates the signal background problem ubiquitous to all presently available optoacoustic cells. New methodologies will be discussed that allow analyses of mixtures to be performed even in cases where spectral overlap is severe. Limitations to both the windowless cell and the various multicomponent analysis strategies are discussed.
388

Estudo de problemas de escavação através da combinação elementos de contorno e elementos finitos / Study of excavation problems with a boundary element and finite element methods combination

Komatsu, José Sergio 15 September 1995 (has links)
Estuda-se uma combinação do método dos elementos finitos (MEF) com o método dos elementos de contorno (MEC) no acoplamento de uma estrutura reticulada em um domínio bidimensional. Para o caso em análise, os elementos uniaxiais são tratados através do MEF, enquanto que o MEC é utilizado na modelagem do meio contínuo que pode ser homogêneo ou não-homogêneo. Em problemas geomecânicos, é possível simular a sequência de escavação com as modificações estruturais necessárias. As equações do domínio bidimensional, com a influência das estruturas reticuladas, são agrupadas em um sistema que é resolvido pelo algoritmo proposto por Crotty. Utilizando-se o método dos elementos de contorno, a plasticidade do meio contínuo é analisada com um procedimento incremental e iterativo baseado no processo das tensões iniciais. / A combination of finite element method boundary element method (MEC) is studied (MEF) with the for the frame structure and two-dimensional domain. In the analyzed case, the uniaxial elements are treated by MEF, while the MEC be used to model the continuum media which can is homogeneous or not. In geomechanical problems, it is possible to simulate a sequence excavation with the necessary structural modifications. The equations of the two-dimensional domain with the influence of the frame structure, are assembled in the system which is solved by algorithm proposed by Crotty. Using the boundary element method, it is analyzed the plastic behavior of a continuum media by an incremental and iterative procedure, which is based in the initial stress process.
389

Estudo de problemas de escavação através da combinação elementos de contorno e elementos finitos / Study of excavation problems with a boundary element and finite element methods combination

José Sergio Komatsu 15 September 1995 (has links)
Estuda-se uma combinação do método dos elementos finitos (MEF) com o método dos elementos de contorno (MEC) no acoplamento de uma estrutura reticulada em um domínio bidimensional. Para o caso em análise, os elementos uniaxiais são tratados através do MEF, enquanto que o MEC é utilizado na modelagem do meio contínuo que pode ser homogêneo ou não-homogêneo. Em problemas geomecânicos, é possível simular a sequência de escavação com as modificações estruturais necessárias. As equações do domínio bidimensional, com a influência das estruturas reticuladas, são agrupadas em um sistema que é resolvido pelo algoritmo proposto por Crotty. Utilizando-se o método dos elementos de contorno, a plasticidade do meio contínuo é analisada com um procedimento incremental e iterativo baseado no processo das tensões iniciais. / A combination of finite element method boundary element method (MEC) is studied (MEF) with the for the frame structure and two-dimensional domain. In the analyzed case, the uniaxial elements are treated by MEF, while the MEC be used to model the continuum media which can is homogeneous or not. In geomechanical problems, it is possible to simulate a sequence excavation with the necessary structural modifications. The equations of the two-dimensional domain with the influence of the frame structure, are assembled in the system which is solved by algorithm proposed by Crotty. Using the boundary element method, it is analyzed the plastic behavior of a continuum media by an incremental and iterative procedure, which is based in the initial stress process.
390

Modélisation centrée sur l'homme par la méthode des éléments finis : application à la biomécanique des chocs dans un contexte civil et militaire / Numerical modelling of the human body using Finite Elements Method : application to impact biomechanics and high speed loadings in civil and military contexts

Awoukeng Goumtcha, Aristide 01 October 2015 (has links)
Dans le contexte de la biomécanique, les outils numériques constituent des moyens puissants et indispensables dans la compréhension des mécanismes de blessures. Ils permettent de pallier les freins que sont les expérimentations sur l'humain, liés à des raisons d'éthique qui limitent la possibilité d'essais sur des SHPM (Sujets Humain Post Mortem). Le développement de ces outils numériques a conduit à celui de plusieurs mannequins numériques permettant de stimuler diverses sollicitations (civiles ou militaires), nous donnant ainsi accès à des limites de tolérances.En vue d'explorer la réponse dynamique du corps humain soumis à des sollicitations diverses, un modèle de mannequin numérique a été développé au sein du laboratoire. Ce travail de thèse tente donc d'apporter une contribution dans la recherche sur la définition d'un critère de blessure et l'établissement de limites de tolérance du corps humain soumis aux chargements violents de la partie thoracique dans des contextes militaires. / The development of computer science has allowed an increase in the use of numerical approaches such as finite elements method in order to understand physical mechanisms. These numerical tools are often used to extend and complete experimental investigations wich are limited because of high financial cost and ethical issues. Thus, the use of simulation to avoid thes limitations becomes essential in biomechanics investigations. Many numericalmodels of the thorax/abdomen system have been developped over the last two decades. In that framework, a finite element model of the human body, dedicated to high speed loadings, has been developed in the laboratory. In this context, the objective of this Ph.D Thesis is to investigate the consequences of such loadings on the human body and to contribute to the research of injuries criteria and tolerance limit definition.

Page generated in 0.0692 seconds