• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 27
  • 16
  • 15
  • 13
  • 9
  • 9
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 292
  • 81
  • 79
  • 72
  • 56
  • 56
  • 53
  • 53
  • 53
  • 37
  • 33
  • 33
  • 32
  • 32
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Swelling and Contraction Properties for Polyelectrolytes Multilayers and Polymer Thin Films Measured by In-situ Ellipsometry

Ma, Yubing January 2016 (has links)
No description available.
132

Spectroscopic Ellipsometry Studies of II-VI Semiconductor Materials and Solar Cells

Chen, Jie January 2010 (has links)
No description available.
133

Enhancement of the Deposition Processes of Cu(In,Ga)Se2 and CdS Thin Films via In-situ and Ex-situ Measurements for Solar Cell Application

Ranjan, Vikash 18 May 2011 (has links)
No description available.
134

Characterization of a Nanocomposite Coating for PV Applications

Jarvis, Victoria M. 10 October 2014 (has links)
<p>The development of nanocomposite materials has had significant influence on modern material design. Novel properties can be achieved and controlled for a diverse range of applications. The work presented here focused on characterization of polyurethane based coatings with ITO nano-inclusions. The coatings displayed high transparency in the visible range, and UV/IR shielding properties when studied with UV-Vis spectroscopy. UV/IR shielding improved with greater ITO density, with minor affect on visible transmittance. The effective medium approximation was successfully applied to ellipsometry modeling. Coatings with varying fractions of nanoparticles were analyzed. The modeled volume percent of the nanoparticles followed a strong linear trend with the known weight percentages. SEM and TEM imaging determined that majority of the particles existed in clusters. The nanoparticles were oblong shaped, 10-20nm big, randomly distributed, with no segregation to interfaces. Agglomerates varied in size, with the largest observed agglomerate being 250nm.</p> <p>Thermal stability was studied by TGA and DSC. No degradation occurred until 238°C. DSC revealed that the matrix continued to undergo modifications with consecutive runs. It was inconclusive whether the changes were from the polyurethane or dispersive agents in the system. Electron micrographs showed that segregation did not occur post-annealing. Average surface roughness increased from 3.5nm to 5nm after annealing at 120°C for several weeks. Ellipsometry results showed that film thickness decreased 20nm and 50nm before equilibriating for the 80°C and 120°C anneals respectively. The optical and thermal measurements demonstrated that the coating has great potential for improving the PV performance.</p> / Master of Applied Science (MASc)
135

Surface Modification and Transport Modeling of Micron- and Nano-Sized Materials

Guardado, Erick Salvador Vasquez 17 August 2013 (has links)
Nanoparticle-based technologies are an emerging field with the promise to impact a wide range of application areas. However, that potential is somewhat married to a host of research questions that remain to be answered. This work explores the surface modification of magnetic nanoparticles in a controlled fashion to produce hybrid nanoparticle (metal/polymer) systems with different morphologies, understand in-situ behavior of stimuli-responsive polymers grafted to a substrate, and obtain better computational methods for particle-tracking and -deposition. Nanoparticle surface modification was performed using ATRP, obtaining homo-, block-co-, and ‘twoaced/biphasic’ polymer structures on the nanoparticle surfaces. Biphasic Janus nanoparticles (JPs) were formed using a magnetic nanoparticle core and an innovative technique combining non-covalent solid protection with sequential controlled radical polymerization to form the two surface-grafted polymer phases. Surface-confined polymerizations were conducted using pH- and thermo-responsive materials. Poly(methacrylic acid) (PMAA) and a series of (aminoalkyl) methacrylate polymers were used as pH responsive polymers. Additionally, poly(N-isopropylacrylamide) (PNIPAM) was selected as the thermo-responsive material for this study. In-situ characterization techniques, including atomic force microscopy (AFM), dynamic light scattering (DLS), and ellipsometry, were used to evaluate the thermo- and pH-responsiveness of these stimuli responsive materials. A new general-oscillator (GENOSC) model was used to determine swelling ratio, thickness, and optical constant changes in the polymer brush as pH was changed in-situ. AFM was used to study morphological changes due to changes in pH and temperature. Nanoparticle temperature responsiveness was investigated using DLS. A related effort involved the use of computational fluid dynamic (CFD) methods to track (micron-sized) particles in certain geometries, including a human lung morphology. Predicted particle transport and deposition was compared to Lagrangian computational approaches and available experimental data. The Eulerian particle phase modeling method developed resulted in the accurate prediction of both near-wall particle tracking and wall deposition. This Eulerian-Eulerian model is a new tool that has potential for particle tracking in physiological morphologies. This combination of experimental and computational research has led to new nano- and micro-particle surface modification methods and particle transport modeling.
136

Study of the Optical Properties of sp2-Hybridized Boron Nitride

Antunez de Mayolo, Eduardo January 2014 (has links)
Nitride-based semiconductor materials make it possible to fabricate optoelectronic devices that operate in the whole electromagnetic range, since the band gaps of these compounds can be modified by doping. Among these materials, the sp2-hybridized boron nitride has properties that make it a potential candidate for integration in devices operating in the short-wavelength limit, under harsh environment conditions, due to the strength of the B-N bond.  Nevertheless, this binary compound has been the less studied material among the nitrides, due to the lack of complete control on the growth process. This thesis is focused on the study of the optical properties of sp2-hybridized boron nitride grown by hot-wall chemical vapor deposition (CVD) method, at the Department of Physics, Chemistry and Biology, at Linköping University, Sweden. The samples received for this study were grown on c-plane aluminum nitride as the buffer layer, which in turn was grown by nitridation on c- plane oriented sapphire, as the substrate material. The first objective of the research presented in this thesis was the development of a suitable ellipsometry model in a spectral region ranging from the infrared to the ultraviolet zones of the electromagnetic spectrum, with the aim of obtaining in the process optical properties such as the index of refraction, the energy of the fundamental electronic interband transition, the frequencies for the optical vibrational modes of the crystal lattice, as well as their broadenings, and the numerical values of the dielectric constants; and on the other hand, structural parameters such as the layers thicknesses, and examine the possibility of the presence of roughness or porosity on the boron nitride layer, which may affect the optical properties, by incorporating their effects into the model. The determination of these parameters, and their relation with the growth process, is important for the future adequate design of heterostructure-based devices that incorporate this material. In particular, emphasis has been put on the modeling of the polar lattice resonance contributions, with the TO- LO model, by using infrared spectroscopic ellipsometry as the characterization technique to study the phonon behavior, in the aforementioned spectral region, of the boron nitride. On the other hand, spectroscopic ellipsometry in the visible-ultraviolet spectral range was used to study the behavior of the material, by combining a Cauchy model, including an Urbach tail for the absorption edge, and a Lorentz oscillator in order to account for the absorption in the material in the UV zone. This first step on the research project was carried out at Linköping University.  The second objective in the research project was to carry out additional studies on the samples received, in order to complement the information provided by the ellipsometry model and to improve the model itself, provided that it was possible. The characterization techniques used were X-ray diffraction, which made it possible to confirm that in fact boron nitride was present in the samples studied, and made it possible to verify the crystalline quality of the aforementioned samples, and in turn relate it to the quality of the ellipsometry spectra previously obtained; the Raman spectroscopy made it possible to further verify and compare the crystalline qualities of the samples received, as well as to obtain the frequency for the Raman active B-N stretching vibration in the basal plane, and to compare this value with that corresponding to the bulk sp2-boron nitride; scanning electron microscopy made it possible to observe the rough surface morphologies of the samples and thus relate them to some of the conclusions derived from the ellipsometry model; and finally cathodoluminescence measurements carried out at low temperature (4 K) allowed to obtain a broad band emission, on all the samples studied, which could be related to native defects inside the boron nitride layers, i.e., boron vacancies. Nevertheless, no trace of a free carrier recombination was observed. Considering that the hexagonal-boron nitride is nowadays considered to be a direct band gap semiconductor, it may be indirectly concluded, in principle, that the dominant phase present in the samples studied was the rhombohedral polytype. Moreover, it can be tentatively concluded that the lack of an observable interband recombination may be due to the indirect band gap nature of the rhombohedral phase of the boron nitride. Spectroscopic ellipsometry does not give a definite answer regarding this issue either, because the samples analyzed were crystalline by nature, thus not being possible to use mathematical expressions for the dielectric function models that incorporate the band gap value as a fitting parameter. Therefore, the nature of the band gap emission in the rhombohedral phase of the boron nitride is still an open research question. On the other hand, luminescent emissions originating from radiative excitonic recombinations were not observed in the cathodoluminescence spectra. This second step of the project was carried out at the Leroy Eyring Center for Solid State Science at Arizona State University.
137

Optical Characterization and Optimization of Display Components : Some Applications to Liquid-Crystal-Based and Electrochromics-Based Devices

Valyukh, Iryna January 2009 (has links)
This dissertation is focused on theoretical and experimental studies of optical properties of materials and multilayer structures composing liquid crystal displays (LCDs) and electrochromic (EC) devices. By applying spectroscopic ellipsometry, we have determined the optical constants of thin films of electrochromic tungsten oxide (WOx) and nickel oxide (NiOy), the films’ thickness and roughness. These films, which were obtained at spattering conditions possess high transmittance that is important for achieving good visibility and high contrast in an EC device. Another application of the general spectroscopic ellipsometry relates to the study of a photo-alignment layer of a mixture of azo-dyes SD-1 and SDA-2. We have found the optical constants of this mixture before and after illuminating it by polarized UV light. The results obtained confirm the diffusion model to explain the formation of the photo-induced order in azo-dye films. We have developed new techniques for fast characterization of twisted nematic LC cells in transmissive and reflective modes. Our techniques are based on the characteristics functions that we have introduced for determination of parameters of non-uniform birefringent media. These characteristic functions are found by simple procedures and can be utilised for simultaneous determination of retardation, its wavelength dispersion, and twist angle, as well as for solving associated optimization problems. Cholesteric LCD that possesses some unique properties, such as bistability and good selective scattering, however, has a disadvantage – relatively high driving voltage (tens of volts). The way we propose to reduce the driving voltage consists of applying a stack of thin (~1µm) LC layers. We have studied the ability of a layer of a surface stabilized ferroelectric liquid crystal coupled with several retardation plates for birefringent color generation. We have demonstrated that in order to accomplish good color characteristics and high brightness of the display, one or two retardation plates are sufficient.
138

Self-assembling monolayers of helical oligopeptides with applications in molecular electronics

Strong, Andrew Edward January 1997 (has links)
No description available.
139

The electrical properties of thin hydrogenated amorphous carbon (a-C:H) insulating films on semiconductor and metal substrates

Magill, Donna Patricia January 2000 (has links)
No description available.
140

Mesures, modélisations et simulations numériques des propriétés optiques effectives de métamatériaux auto-assemblés / Measurements, modeling and numerical simulations of effective optical properties of self-assembled metamaterials

Ehrhardt, Kevin 15 December 2014 (has links)
Ce travail de thèse a été consacré à l’étude expérimentale, théorique et numériquede métamatériaux auto-assemblés constitués de nanoparticules d’or, opérant dans la gammedu visible. Nous nous sommes intéressés à trois types de structures différentes et avons analyséleurs propriétés optiques par ellipsométrie spectroscopique.Nous avons étudié expérimentalement et numériquement l’effet de la proximité d’un substratde haut indice sur la réponse plasmonique d’une nanoparticule, grâce à un système expérimentalconstitué de monocouches de nanoparticules d’or sur une multicouche de polyélectrolytes.Nous avons discuté d’un effet d’exaltation de la section efficace d’absorption des nanoparticulesaux plus faibles distances au substrat. Nous avons montré que des films composites denses depolymère et de nanoparticules d’or ont des réponses contrôlées par la fraction en or et qu’ilsse comportent, à haute fraction en or, soit comme des diélectriques soit comme des métauxselon la gamme de fréquence. Nous avons développé un modèle phénoménologique, adapté àde nombreuses situations, qui décrit bien les propriétés optiques des films. Enfin, nous avonsétudié des nanocomposites lamellaires à base de copolymères à blocs et de nanoparticules d’or.Nous avons montré comment avoir accès, pour certains systèmes, à l’extraction et la modélisationde leur anisotropie de permittivité, qui est affectée par la résonance plasmonique desnanoparticules. / This PhD work was dedicated to the experimental, theoretical and numerical studyof the optical properties of self-assembled metamaterials made of gold nanoparticles, operatingat visible frequencies. We were interested in three different structure types and analyzed theiroptical properties experimentally by spectroscopic ellipsometry.We studied the effect of a high index substrate proximity on the plasmonic response of goldnanoparticles, both experimentally and numerically, on nanoparticle monolayers deposited ontopolyelectrolytes multilayers. We discuss an enhancement effect of the nanoparticle absorptioncross-section for small distances to the substrate. Dense polymer/gold nanoparticles compositefilms were shown to have tunable optical properties depending on their gold filling fractionand to behave, at high filling fraction, like a dielectric or a metal depending on the frequencyrange. We developed a phenomenological model, adapted to a large number of cases, whichsuccessfully describes the films optical properties. Finally, lamellar films made of block copolymersand gold nanoparticles were studied. We have shown how to access, for certain structuralconditions, the extraction and the modelisation of the effective permittivity anisotropy, affectedby the resonance of the nanoparticles.

Page generated in 0.0239 seconds