• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 27
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Sobre l'ordenació de les arrels reals de les derivades de polinomis a coeficients reals.

Rubió Massegú, Josep 10 February 2005 (has links)
Alguns problemes clàssics sobre teoria analítica de polinomis estan relacionats amb un problema més general: determinar com estan ordenades les arrels reals d'un polinomi a coeficients reals i les arrels reals de totes les seves derivades. Si ens restringim a l'ordenació entre arrels de derivades consecutives d'un polinomi, aquest problema pot formular-se de la següent manera. Sigui n un nombre natural no nul. Per a cada j=0,1,.,n-1 considerem variables indeterminades xj,1,xj,2,...,xj,m(j), que anomenarem variables de derivació j, i que considerarem lligades per les desigualtats xj,1<xj,2<···<xj,m(j). Definir un ordre entre variables de derivacions consecutives significa especificar, per a dues variables qualssevol de derivacions consecutives, diguem xj,k i xj+1,s, una de les tres ordenacions següents: (i) xj,k<xj+1,s, (ii) xj,k=xj+1,s, o (iii) xj,k>xj+1,s. Llavors, el problema consisteix en determinar per a quines ordenacions entre variables de derivacions consecutives existeix un polinomi P(x), de grau n, de manera que si les arrels reals de cada derivada P(j), 0&#8804;j&#8804;n-1, són els nombres yj,1<yj,2<···<yj,r(j), aleshores r(j)=m(j) i entre arrels de derivades consecutives es verifiquen els lligams proposats. És a dir, si (i) xj,k<xj+1,s, (ii) xj,k=xj+1,s, o (iii) xj,k>xj+1,s, aleshores s'ha de complir (a) yj,k<yj+1,s, (b) yj,k=yj+1,s, o (c) yj,k>yj+1,s respectivament. Si tal polinomi existeix aleshores es diu que l'ordenació proposada és representable per un polinomi. El teorema de Rolle imposa restriccions a l'ordenació de les variables en el cas que aquesta ordenació sigui representable per polinomis. Concretament, si xj,k<xj,k' són dues variables de derivació j, aleshores ha d'existir una variable de derivació j+1, xj+1,s, tal que xj,k<xj+1,s<xj,k'. No obstant, les restriccions imposades pel teorema de Rolle no són suficients per a que una ordenació de les variables sigui representable per un polinomi.En aquest sentit, ens proposem assolir els tres objectius següents:(1) Caracteritzar les ordenacions entre variables de derivacions consecutives que són representables per polinomis.(2) Classificar els polinomis en base a l'ordenació de les arrels de derivades consecutives i trobar certs nombres d'interès relacionats amb aquesta classificació, com per exemple el nombre de classes en que queden classificats els polinomis de grau n i el nombre de classes obertes de grau n (classes estables per pertorbacions).(3) Estudiar què succeeix quan es consideren ordenacions que inclouen lligams entre variables de derivacions no consecutives.L'objectiu (1) s'ha assolit establint que les ordenacions entre variables de derivacions consecutives representables per polinomis coincideixen amb les ordenacions que satisfan les restriccions imposades per un resultat que generalitza el teorema de Rolle. Essencialment, s'ha obtingut el recíproc del teorema que diu que entre cada dues arrels reals consecutives d'un polinomi hi ha un nombre senar d'arrels de la derivada comptant multiplicitats.L'objectiu (2) s'ha assolit classificant els polinomis segons l'ordenació que presenten les arrels de les seves derivades consecutives. Els nombres d'interès relacionats amb aquesta classificació s'han obtingut a partir de fórmules recurrents.L'objectiu (3) s'ha assolit determinant els nombres n per als quals la mencionada generalització del teorema de Rolle és suficient per a que una ordenació de les variables que inclogui lligams entre variables de derivacions no consecutives sigui representable per un polinomi. / Some classical problems in analytic theory of polynomials are related to a more general one that consists in determining how the real roots of a real polynomial and the roots of all its derivatives are ordered.If we restrict our attention to the ordering amongst the roots of consecutive derivatives of a polynomial, this problem can be stated as follows: Let n be a nonzero natural number. For each j=0,1,.,n-1 we consider some indeterminate variables xj,1,xj,2,...,xj,m(j), called variables of derivative j, which will be linked by the inequalities xj,1<xj,2<···<xj,m(j). To define an order amongst variables of consecutive derivatives means to specify, for any two variables of consecutive derivatives, say xj,k and xj+1,s, one of the following three relations: (i) xj,k<xj+1,s, (ii) xj,k=xj+1,s, or (iii) xj,k>xj+1,s. Then, the problem consists in determining for which of those orderings amongst variables of consecutive derivatives there exists a polynomial of degree n, say P(x), so that if the real roots of each derivative P(j), 0&#8804;j&#8804;n-1, are the numbers yj,1<yj,2<···<yj,r(j), then r(j)=m(j) and between roots of consecutive derivatives the suggested connections hold. That is, if (i) xj,k<xj+1,s, (ii) xj,k=xj+1,s, or (iii) xj,k>xj+1,s, then (a) yj,k<yj+1,s, (b) yj,k=yj+1,s, or (c) yj,k>yj+1,s must hold respectively. If such a polynomial exists, then we say that the suggested ordering is represented by a polynomial.Rolle's theorem sets up restrictions to the ordering of the variables in the case when this ordering is represented by polynomials. More precisely, if xj,k<xj,k+1 are two consecutive variables of the same derivative j, then there must exist a variable of derivative j+1, namely xj+1,s, such that xj,k<xj+1,s<xj,k+1. However, the restrictions imposed by Rolle's theorem are not sufficient to ensure that an ordering of the variables is represented by a polynomial.In this sense, we intend to achieve the following goals:(1) To characterize the orderings amongst variables of consecutive derivatives that are represented by polynomials.(2) To classify the polynomials according to the ordering of the roots of consecutive derivatives and to find certain numbers of interest related to this classification, such as the number of classes of equivalence in which polynomials of degree n are classified and the number of classes of equivalence which are open as subsets of the space of polynomials of degree at most n.(3) To study what happens when we consider orderings that include connections between variables of non-consecutive derivatives.Goal (1) has been achieved by showing that the orderings amongst variables of consecutive derivatives that are represented by polynomials coincide with the orderings that satisfy the restrictions imposed by a result which generalizes Rolle's theorem. Essentially, we have obtained the inverse of the theorem that states that between every two consecutive real roots of a polynomial, there is an odd number of roots of its derivative counting their multiplicities.Goal (2) has been attained by classifying the polynomials according to the ordering of the roots of their consecutive derivatives. The numbers of interest related to this classification have been obtained by means of recurrent formulae.Goal (3) has been attained by determining all numbers n for which Rolle's theorem generalization, mentioned above, is sufficient to ensure that an ordering of the variables that include connections between variables of non-consecutive derivatives, be represented by a polynomial.
12

Ozkan, Meltem 01 December 2006 (has links) (PDF)
This thesis investigates the evolution of the main square (Z&ograve / calo) in M&egrave / xico City, Mexico, from pre-colonial times to the present in terms of its spatial characteristics and public life. This thesis introduces wide-ranging information about Pre-hispanic America, mainly Aztecs and their urban culture / Spaniards, their background in Europe, and their colonial urban culture in America / and the culture of the Mexican Revolution. After 1810, the &amp / #8216 / independence soul&amp / #8217 / created a nation of so-called &amp / #8216 / cosmic race&amp / #8217 / , whose aspirations were concretized through new political and social transformation of the main square. The new naming of the square as Plaza de la Constitucion and the demolition of the P&agrave / rian introduced this new concept. Even though later social and political developments changed the main character of the square, colonial urban texture still exists. Z&ograve / calo faced major modifications in its eventful history, but still demonstrates the traces of the transformation from Aztec Great Sacred Center, first to colonial town square (Plaza Mayor), second to the national square (Plaza de la Constitucion), and finally to the public arena (Z&ograve / calo).
13

Sedimentological And Cyclostratigraphic Analysis Of Upper Part Of The Kartal Formation (sw Of Ankara)

Aghayev, Rufat 01 November 2008 (has links) (PDF)
The Montian Kartal Formation lies in the south-west of Ankara region and overlies the Upper Cretaceous Beyobasi Formation and is overlain by Thanetian Kirkkavak Formation conformably in the studied region (Kayabasi village, NW of town of Haymana). A 283 m stratigraphic section, which is mainly composed of an alternation siliciclastic and carbonate rocks has been measured in the Kartal Formation within the Haymana-Polatli basin. The aim of this study is to carry out the sedimentological and cyclostratigraphical analyses of the upper part of the Kartal Formation within Haymana-Polatli basin which represents a well developed cyclic pattern. In this study, detailed lithofacies analyses were performed and four different facies were recognized along the measured section: sandstones, limestones, mudrocks and conglomerates. Sedimentological analyses, such as modal, provenance, palaeocurrent, grain-size and grain parameters were also performed and their relation with the depositional environment and change in depositional conditions were discussed. Interpretations of the depositional environment revealed that the deposition occurred by low sinuosity rivers and waves. Additional environmental interpretations suggested that the sediments were deposited in shallow marine and/or coastal (beach) environments. High resolution cyclostratigraphy studies based on meter scale cyclic and rhytmic occurrences of lithofacies along the measured section were performed. The whole section, which is 283 m thick, was divided into large-scale hierarchy-cycles which comprise smaller-scale fining upward and deepening upward cyclic and rhythmic beds.
14

The necessity of Imāmah according to Twelver-Shī'ism : with special reference to Tajrīd al-I'tiqād of Naṣīr al-Dīn al-Tūsī

Yunus, Muhammad Rafii. January 1976 (has links)
This thesis is a study of one aspect of the Twelver-Shi'i doctrine of imamah.
15

Naṣīr al-Dīn Ṭūsī : his supposed political role in the Mongol invasion of Baghdad / Naṣīr al-Dīn Ṭūsī and the Mongol invasion of Baghdad

Ḥāʾirī, ʻAbd al-Hādī January 1968 (has links)
No description available.
16

The necessity of Imāmah according to Twelver-Shī'ism : with special reference to Tajrīd al-I'tiqād of Naṣīr al-Dīn al-Tūsī

Yunus, Muhammad Rafii. January 1976 (has links)
No description available.
17

Imām and Avatāra : a study of divine-human configurations in Naṣīr al-Dīn Ṭūsī (d. 1274 CE) and Rāmānuja (d. 1137 CE)

Kassam-Hann, Zainool Rahim January 1994 (has links)
Note:
18

Aportaciones a la representabilidad de juegos simples y al cálculo de soluciones de esta clase de juegos

Puente del Campo, M. Albina (María Albina) 11 April 2000 (has links)
La memoria está enmarcada en el contexto de la Teoría de Juegos Simples, aunque varios de los resultados obtenidos pueden ser trasladados a campos como la Electrónica o Fiabilidad de Sistemas. Está estructurada en cinco capítulos. El primero de ellos es un resumen de los principales resultados necesarios para el seguimiento del trabajo.Partiendo de los resultados obtenidos por Hu en el campo de la Electrónica, en el 2º capítulo determinamos el máximo porcentaje permitido en la variación de los pesos y la cuota de una representación estricta de un juego de mayoría ponderada que hace que el juego no cambie. Se mejoran los resultados existentes, a la vez que se definen los conceptos de amplitud, amplitud coalicional y amplitud coalicional con suma de pesos constante de representaciones estrictas de juegos de mayoría ponderada. Determinamos la cuota que hace que la amplitud sea máxima cuando los pesos están fijados.En el capítulo tercero partimos de los resultados obtenidos por Carreras y Freixas en el estudio y caracterización de los juegos simples completos, para definir y caracterizar los juegos completos con mínimo. A partir de la relación de desplazamiento y, teniendo en cuenta que a jugadores indiferentes les corresponde el mismo vector de pago, consideramos el vector normalizado del nucleolo y lo obtenemos como solución de un sistema determinado de ecuaciones.Dado que en un juego completo sin clases triviales el núcleo y el pre-núcleo coinciden y que ambos respetan la relación de desplazamiento, podemos definir el núcleo maximal de un juego completo y caracterizar su maximalidad en función de los jugadores con veto y de los jugadores nulos.Proporcionamos un método para calcular los semivalores, que es suficiente realizarlo para cada I-clase, puesto que jugadores indiferentes tienen asociado el mismo semivalor, y a su vez, el semivalor de una I-clase está definido aditivamente a partir de los semivalores individuales.El cuarto capítulo está dedicado al cálculo de la dimensión de ciertos juegos simples. En el primer bloque determinamos la dimensión de los juegos completos con mínimo. Como consecuencia inmediata de este resultado se deduce que para todo natural, n, existe un juego completo (con mínimo) cuya dimensión es n. Este hecho demuestra que la complejidad de la dimensión del juego no está directamente relacionada con que la relación de desplazamiento sea total.En el segundo bloque se establecen de nuevo conexiones con la Fiabilidad. Las dos clases de juegos que estudiamos aquí pueden interpretarse como un caso particular de los juegos simples compuestos, y que denominamos composición de juegos de unanimidad vía individualismo y composición de juegos individualistas vía unanimidad. Ambos generan juegos simples de cualquier dimensión.La dimensión obtenida para composición de juegos de unanimidad vía individualismo nos permite generar juegos simples monótonos de dimensión exponencial y mejorar los resultados existentesEn el capítulo quinto definimos y caracterizamos mediante coeficientes ponderados a los semivalores para juegos simples, estudiando su comportamiento ante una serie de postulados y paradojas. Estos coeficientes de ponderación nos permitirán definir los semivalores binomiales y calcularlos a partir de la extensión multilineal del juego. Este resultado podrá extenderse al resto de los semivalores teniendo en cuenta que todo semivalor es combinación lineal de n semivalores binomiales linealmente independientes. Finalmente presentamos una serie de aplicaciones de los semivalores a la Fiabilidad de Sistemas.
19

Aportaciones al estudio de soluciones para juegos cooperativos

Giménez Pradales, José Miguel 14 December 2001 (has links)
El objetivo del trabajo consiste en la generalización y el estudio de modelos y métodos que han mostrado su eficiencia respecto a las soluciones para los juegos cooperativos propuestas por Shapley o por Banzhaf, así como el desarrollo de propiedades derivadas de su generalización. Estos y otros conceptos se extienden a una clase más amplia de soluciones para los juegos cooperativos: los semivalores. Conforme a la idea general que se ha establecido, la memoria se estructura en seis capítulos. El primer capítulo contiene una introducción a los conceptos básicos de la teoría de juegos cooperativos con utilidad transferible. El segundo capítulo aborda el estudio de los semivalores y las estructuras de coalición. Aquí se consideran familias de semivalores a partir de las cuales se forman sistemas de referencia consiguiendo, además, establecer semivalores inducidos en espacios de juegos con menor cardinal del conjunto de jugadores, con independencia del sistema de referencia escogido. Estas actuaciones permiten generalizar el proceso que lleva del valor de Shapley al valor coalicional de Owen, dando lugar al concepto de semivalor modificado para juegos con estructura de coalición. El capítulo finaliza estableciendo unas propiedades que consiguen caracterizar axiomáticamente la modificación de la solución de Banzhaf para juegos con estructura de coalición. En el tercer capítulo se emplean de modo particular técnicas y resultados provenientes del segundo con el objetivo de estudiar, desde el punto de vista de cualquier semivalor, las consecuencias de la formación de una única coalición bipersonal estable. Además de conseguir el cálculo efectivo de los resultados tanto a partir de la función característica como de la EML, este estudio consigue caracterizar diferentes semivalores en atención a su comportamiento respecto a esta situación de cooperación modificada. El cuarto capítulo se centra en otra situación de cooperación modificada: la cooperación parcial modelizada por grafos. Allí se prueba que todo semivalor cumple propiedades deseables según la formulación de Myerson (1977). También se afirma que la normalización aditiva de cualquier semivalor verifica esas mismas propiedades, resultando que normalización aditiva y cooperación parcial son conceptos ampliamente compatibles. Además, se consigue determinar qué jugadores resultan más beneficiados o más perjudicados por la supresión de una arista de un grafo de cooperación. El quinto capítulo está dedicado al potencial. Se define y estructura un concepto de potencial para cada semivalor construido de modo recurrente, en modo análogo a como Hart y Mas-Colell (1988) y Dragan (1995) introducen esos conceptos para las soluciones de Shapley y de Banzhaf, respectivamente. También se ofrece un procedimiento para calcular el potencial para cada semivalor mediante manipulaciones adecuadas de la EML. Otras nociones derivadas del potencial, como base potencial o espacio nulo, se extienden a todos los semivalores. Se resuelven problemas inversos como la determinación de los juegos que tienen una solución prefijada o la determinación del juego conocido el poder de éste y de sus juegos restringidos. El sexto capítulo trata el problema de la determinación del subespacio intersección de todos los espacios nulos por semivalores. En esta intersección se encuentran los juegos que no pueden distinguirse del nulo por ningún semivalor. Resuelto el problema anterior con la introducción de los juegos de conmutación, se consideran semivalores modificados para juegos con estructura de coalición y se busca determinar el subespacio de indistinguibles del nulo por este tipo de soluciones. Para los juegos de más de cuatro jugadores, la introducción de las estructuras de coalición consigue reducir de modo significativo la dimensión de cada subespacio de juegos indistinguibles del nulo. / The objective of the work consists of the generalization and the study of models and methods that have shown their efficiency with respect to the solutions for the cooperative games proposed by Shapley or Banzhaf, as well as the development of properties derived from its generalization. These and other concepts extend to a more ampler class of solutions for the cooperative games: the semivalues. According to the general objective that one has settled down, the memory structure in six chapters.The first chapter contains an introduction to the basic concepts of the theory of cooperative games with transferable utility. The second chapter undertakes the study of the semivalues and the coalition structures. Here, we consider families of semivalues obtaining reference systems for semivalues; in addition, we establish induced semivalues in spaces of games with minor cardinal of the set of players, independently of the chosen system of reference. These performances allow to generalize the process that takes of the value of Shapley to the coalition value of Owen, giving rise to the concept of modified semivalue for games with coalition structure. The chapter finalizes establishing properties that are able axiomatically to characterize the modification of the solution of Banzhaf for games with coalition structure.In the third chapter it is used, of particular way, technical and results of the second with the objective of to study, from the point of view of any semivalue, the consequences of the formation of a unique stable two-person coalition. We obtain the effective calculation of the results from the function characteristic and from the EML; this study it is able to characterize different semivalues in attention from his payment with respect to this situation of modified cooperation. In the fourth chapter one studies another situation of modified cooperation: the partial cooperation expressed by graphs. There, we prove that all semivalue, as allocation rule for these situations of cooperation, verify desirable properties according to the formulation of Myerson (1977). Also, one affirms that the normalization additive of any semivalue verifies those same properties; thus, normalization additive and partial cooperation are widely compatible concepts. In addition, one is able to determine what players are more benefited or more harmed by the suppression of an edge of a graph of cooperation.The fifth chapter is dedicated to the potential. A concept of potential for each semivalue is defined and constructed of recurrent way, in analogous way to as Hart and Mas-Colell (1988) and Dragan (1995) introduce those concepts for the solutions of Shapley and Banzhaf, respectively. Also a procedure is offered to calculate the potential for each semivalue by means of suitable manipulations of the EML. Other notions derived from the potential, as potential basis or null space, extend to all semivalues. Inverse problems like the determination of the games that have a concrete solution or the determination of the game from the power, are solved. The sixth chapter deals with the problem of the determination of the subspace intersection of all the null spaces by semivalues. In this intersection are the games that cannot be distinguished from the null game by semivalues. Solved the previous problem with the introduction of the commutation games, semivalues modified for games with coalition structure are considered and it looks for to determine the subspace of indistinguishable from the null game by this type of solutions. For games with five or more players, the introduction of coalition structures is able to reduce of significant way the dimension of each subspace of indistinguishable games from the null game.
20

Contribución al problema de interpolación de Birkhoff

Palacios Quiñonero, Francesc 20 December 2004 (has links)
El objetivo de esta tesis es desarrollar la interpolación de Birkhoff mediante polinomios lacunarios.En la interpolación algebraica de Birkhoff se determina un polinomio de grado menor que n, para ello se emplean n condiciones que fijan el valor del polinomio o sus derivadas. Los problemas clásicos de interpolación de Lagrange, Taylor, Hermite, Hermite-Sylvester y Abel-Gontcharov son casos particulares de interpolación algebraica de Birkhoff.Un espacio de polinomios lacunarios de dimensión n es el conjunto de los polinomios que pueden generarse por combinación lineal de n potencias distintas de grados, en general, no consecutivos. En particular, cuando tomamos potencias de grados 0,1,.,n-1, se obtiene el espacio de polinomios de grado menor que n, empleado en la interpolación algebraica clásica. En la interpolación algebraica clásica, el número de condiciones determina el espacio de interpolación. En contraste, en la interpolación mediante polinomios lacunarios las condiciones de interpolación determinan únicamente la dimensión del espacio de interpolación y pueden existir una infinidad de espacios sobre los que realizar la interpolación. Esto nos permite construir mejores estrategias de interpolación en ciertos casos, como la interpolación de funciones de gran crecimiento (interpolación de exponenciales y de ramas asintóticas).La aportación de la tesis consiste en la definición de un marco teórico adecuado para la interpolación de Birkhoff mediante polinomios lacunarios y en la extensión al nuevo marco de los principales elementos de la interpolación algebraica de Birkhoff. En concreto, se generaliza la condición de Pólya, se caracteriza la regularidad condicionada, se establecen condiciones suficientes de regularidad ordenada que extienden el teorema de Atkhison-Sharma, se extiende la descomposición normal y se establecen condiciones suficientes de singularidad en los casos indescomponibles.

Page generated in 0.0202 seconds