• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 7
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phase stability and composition of tin sulfide for thin-film solar cells

Burton, Lee January 2014 (has links)
This thesis details an investigation into the factors that could be restricting the performance of tin sulfide thus far. It is shown that there is confusion in the literature with respect to the assignment of different tin sulfide phases, and that the presence of these phases cannot easily be discerned with routine diffraction methods. In order to better understand the behaviour of tin sulfide in devices, it is important to isolate these materials as separate components and to consider the distinct properties of each. %Indeed, even a fundamental property such as the colour of SnS is still subject to conflicting reports. Herein, the targeted synthesis of SnS, SnS2 and Sn2S3 by chemical vapour transport is used to produce phase-pure single crystals, which are characterised in terms of structural, optical and electrical properties. These are compared directly with results from modern simulation methods as well as the work of others to explore fully the possible origins of performance losses. It is found that the work function of SnS is significantly lower than those of alternate successful photovoltaic materials, which means that novel device architectures are necessary in order to unlock the full potential of this promising photo-absorber. Concerns are also raised regarding the stability of the tin monosulfide phase with respect to degradation and defect formation over time, processes that undoubtedly affect device performance and lifetimes if sufficient safeguards are not put in place to suppress them. Further results of this 3 year research project also provide a broader platform for achieving sustainable light harvesting devices from the abundant and cheap elements, tin and sulfur.
2

An investigation of tin chalcogenide precursors and thin film materials for applications in energy harvesting devices

Ahmet, Ibrahim January 2017 (has links)
This thesis ‘’An Investigation of Tin Chalcogenide Precursors and Thin Film Materials for Applications in Energy Harvesting Devices’’ encompasses a range of research areas. The report can be divided into two categories: The first is the design of novel heavy tin chalcogenide complexes and compounds that demonstrate the recent advances in main group chemistry and act as potential precursor candidates for CVD processes. The second category follows on from the previous, and focuses on materials deposited and their successive development, characterisation and optimisation for device applications. Subsequently, an array of metal chalcogenide thin films have been deposited and characterised within this project. By designing of a number of the tin chalcogenide precursors and precursor solutions it has been possible to selectively deposit thin films of Sn, α-SnS and cubic-SnS polymorphs, SnS2, SnSe, and SnTe via a low-cost deposition route known as aerosol assisted chemical vapour deposition (AA-CVD). It is proposed that the processes developed in this PhD can be adapted to deposit a wider spectrum of metal chalcogenide materials using cost effective techniques. Even though there is a wide scope of the possible applications for the aforementioned materials, the study has only been extended towards the characterisation of the optoelectronic properties of phase pure α-SnS and cubic-SnS samples, and SnS2 thin films deposited onto FTO, Mo and graphene substrates. The optimum deposition parameters for the application of these materials has been defined. In collaboration with a research group at the Institut de Recerca de Energia de Catalunya (iREC), Barcelona, Spain, an extended study of the photovoltaic properties of the α-SnS and Cubic-SnS samples is also presented, from which a series of SnS based thin film photovoltaic devices have been fabricated and characterised. This study present some of the few reports explicitly comparing the PV properties of the two α-SnS and Cubic-SnS polymorphs.
3

Synthesis and Characterization of Phase-pure Copper Zinc Tin Sulfide (Cu2ZnSnS4) Nanoparticles

Monahan, Bradley Michael January 2014 (has links)
No description available.
4

Thin Film Solar Cells with Earth Abundant Elements: from Copper Zinc Tin Sulfide to Organic-Inorganic Hybrid Halide Perovskite

Yu, Yue January 2017 (has links)
No description available.
5

Engineering of Earth-Abundant Electrochemical Catalysts

Rodene, Dylan D 01 January 2019 (has links)
Alternative energy research into hydrogen production via water electrolysis addresses environmental and sustainability concerns associated with fossil fuel use. Renewable-powered electrolyzers are foreseen to produce hydrogen if energy and cost requirements are achieved. Electrocatalysts reduce the energy requirements of operating electrolyzers by lowering the reaction kinetics at the electrodes. Platinum group metals (PGMs) tend to be utilized as electrocatalysts but are not readily available and are expensive. Ni1-xMox alloys, as low-cost and earth-abundant transition metal nanoparticles (NPs), are emerging as promising electrocatalyst candidates to replace expensive PGM catalysts in alkaline media. Pure-phase cubic and hexagonal Ni1-xMox alloy NPs with increasing Mo content (0–11.4%) were synthesized as electrocatalysts for the hydrogen evolution reaction (HER). In general, an increase in HER activity was observed with increasing Mo content. The cubic alloys were found to exhibit significantly higher HER activity in comparison to the hexagonal alloys, attributed to the higher Mo content in the cubic alloys. However, the compositions with similar Mo content still favored the cubic phase for higher activity. To produce a current density of -10 mA/cm2, the cubic and hexagonal alloy NPs require over-potentials ranging from -62 to -177 mV and -162 to -242 mV, respectively. The cubic alloys exhibited over-potentials that rival commercial Pt-based electrocatalysts (-68 to -129 mV at -10 mA/cm2). The cubic Ni0.934Mo0.066 alloy NPs showed the highest alkaline HER activity of the electrocatalysts studied and therefore a patent application was submitted. Bulk Ni–Mo phases have been known as electrocatalysts for the HER for decades, while recently transition metal phosphides (TMPs) have emerged as stable and efficient PGM alternatives. Specifically, Ni2P has demonstrated good HER activity and improved stability for both alkaline and acidic media. However, Ni2P electrocatalysts are a compromise between earth-abundance, performance (lower than Ni–Mo and PGMs) and stability. For the first time Ni–Mo–P electrocatalysts were synthesized with varying atomic ratios of Mo as electrocatalysts for alkaline HER. Specific phases, compositions and morphologies were studied to understand the intrinsic properties of TMPs leading to high HER activity. The Ni1.87Mo0.13P and Ni10.83Mo1.17P5 NPs were shown to be stable for 10 h at –10 mA cm-2 with over-potentials of –96 and –82 mV in alkaline media, respectively. The Ni1.87Mo0.13P and Ni10.83Mo1.17P5 NPs exhibited an improved performance over the synthesized Ni2P sample (–126 mV at –10 mA cm-2), likely a result of the overall phosphorous content and hetero-structured morphologies. A strong correlation between phase dependence and the influence of Mo on HER activity needs to be further investigated. Furthermore, understanding the intrinsic properties of electrocatalysts leading to high water splitting performance and stability can apply electrocatalysts in other research applications, such as photoelectrochemical (PEC) water splitting, water remediation and sustainable chemical processing applications. Contributions to photocatalytic water remediation and electrochemical chlorinated generation to halogenate pyridone-based molecules are reported. Electrochemical techniques were developed and reported herein to aid in understanding electrochemical performance, chemical mechanisms and the stability of electrocatalysts at the electrode-electrolyte interfaces.
6

Síntese e Investigação da Atividade de Eletrocatalisadores Formados por Elementos Abundantes do Tipo M-N-C para a Reação Redução de Oxigênio / Synthesis and Investigation of the electrocatalytic Activity of materials based by Abundant Elements of Type M-N-C for the oxygen reduction reaction

Oliveira, Francisca Elenice Rodrigues de 10 April 2018 (has links)
O desenvolvimento de células de combustível de formato direto encontra obstáculos importantes relacionados com a lenta cinética da reação de redução de oxigênio e baixa tolerância ao formato em cátodos baseados em Pt. Neste estudo, foram sintetizados eletrocatalisadores com diferentes estruturas, formados por elementos abundantes, e suas atividades e seletividades para a RRO foram testadas em meiacélulas e em células unitárias de formato / ar, em eletrólito alcalino. Os resultados mostraram que nanopartículas de liga de ferro-cobalto, encapsuladas por carbono grafítico, e nitretos metálicos nanoestruturados, suportados em carbono, (caracterizados por TEM e XRD) não apresentam atividades eletrocatalíticas superiores ao carbono puro (Vulcan amorfo ou grafitizado). Carbono dopado com nitrogênio (N-C) mostrou um aumento no potencial de meia-onda, evidenciando um influente papel do nitrogênio na eletrocatálise da RRO, mas com alto sobrepotencial. A inserção de oxigênio via tratamento térmico em ar, formando óxidos de FeCo nanoestruturados, suportados por carbono, produziu, como esperado, um aumento considerável na atividade, mostrando que a ligação do ferro ou cobalto com o oxigênio tem papel importante, provavelmente, na alta reatividade redox para a transferência de elétrons para o RRO. A adição de um precursor de nitrogênio durante a síntese (imidazol) resultou na formação de estruturas formadas por átomos de ferro e cobalto, coordenados por nitrogênio, inseridos em uma matriz de carbono, como revelado por EXAFS, mostrou que as estruturas M-N-C têm papel decisivo na atividade eletrocatalítica para a RRO (aproximando-se da Pt/C) e, também, mostrou alta tolerância à presença de íons formato. Experimentos em células a combustível unitárias, com difusão natural de formato e com cátodo aberto ao ar, com elétrodo de difusão de gás, mostraram densidades de potência de 15,5 e 10,5 mW cm-2 com eletrólitos à base de hidróxido e carbonato de potássio, respectivamente, e com estabilidade de operação maior que 120 h a 0,3 mA cm-2. Portanto, os resultados deste trabalho mostram o papel decisivo de estruturas M-NC (coordenadas) na alta atividade para a ORR, em altos potenciais, excluindo-se atividades atribuídas a nanoestruturas de nitretos metálicos e nanopartículas metálicas encapsuladas, incluindo as dopadas por nitrogênio na superfície. / The development of direct formate fuel cells encounters significant obstacles related to the slow kinetics of the oxygen reduction reaction (ORR) and low formate tolerance in Pt-based cathodes. In this study, electrocatalysts with different structures, composed of abundant elements, were synthesized, and their activities and selectivities for the ORR were tested in half-cells and in single cells in alkaline electrolyte. The results showed that carbon-encapsulated nanoparticles of iron-cobalt alloy and carbon-supported nanostructured metal nitrides (characterized by TEM and XRD) do not present electrocatalytic activities superior to pure carbon (amorphous or graphitized Vulcan). Nitrogen-doped carbon (N-C) showed an increase in the halfwave potential, evidencing an influential role of nitrogen in the electrocatalysis of the ORR, but with a high overpotential. The insertion of oxygen through heat treatment in air, forming carbon-supported nanostructured FeCo oxides, produced, as expected, an increase in activity, probably due to the high oxide reactivity for the electronic mediation processes for the ORR. The addition of a nitrogen precursor during the synthesis (imidazole) resulted in the formation of structures formed by iron and cobalt atoms, coordinated by nitrogen, inserted in a carbon matrix, as revealed by EXAFS, and showed that M-N-C structures play a decisive role in the electrocatalytic activity for the ORR (approaching Pt/C) and, also, showed high tolerance to the presence of ions format. Experiments in single cells with air-breathing cathode and with natural diffusion of formate, showed power densities of 15.5 and 10.5 mW cm-2 with hydroxide and carbonate-based electrolytes, respectively, and with operating stability higher than 120 h at 0.3 mA cm-2. Therefore, the results of this work show the decisive role of M-N-C structures (coordination) in the high activity for the ORR, in high potentials, excluding activities attributed to nanostructures of metallic nitrides and encapsulated metallic nanoparticles, including those doped by surface nitrogen.
7

Catalysts based on transition metals for applications in energy conversion / Catalisadores baseados em metais de transição para aplicações em processos de conversão de energia

Araújo, Thaylan Pinheiro 12 February 2019 (has links)
Energy conversion processes such as the water splitting and CO2 hydrogenation reactions have emerged as attractive approaches to mitigate environmental concerns on CO2 emissions as well as to provide an alternative source of renewable fuels. These strategic processes can capitalize on the energy of renewable resources (e.g solar and wind) to drive chemical reactions to generate, in a green and sustainable way, fuels and value-added chemicals. Economically feaseable heterogeneous catalysts play a central role in advancing such processes for globally-relevant production scales. Hence, in this work, we focused on the synthetic development of several catalyst systems based on cost-effective earth-abudant 3d transition metals such as nickel (Ni), cobalt (Co), iron (Fe) and zinc (Zn). Specifically, we turned our attention to produce a series of catalysts comprised of: i) NiFe oxyhydroxide supported on carbon for application in oxygen evolution reaction (OER), a bottleneck reaction for the water splitting process, and ii) Ni and Co nanoparticles supported on Zinc oxide (ZnO) for the CO2 hydrogenation reaction. Regarding the NiFe oxyhydroxide systems, we evaluated the catalytic performance of these materials towards the OER and benchmarked those with that of state-of-the-art OER electrocatalyts such as Ir/C. In addition to that, we also focused on rationalizing the key reasons for the significant enhancements in OER activity of such catalysts in terms of their surface and bulk compositions. For Co/ZnO and Ni/ZnO catalysts, aside from assessing their catalytic activity and selectivity behavior, we performed a systematic investigation of the catalytically important properties of such catalyst interfaces under typical CO2 hydrogenation reaction conditions using in situ ambient pressure X-ray photoelectron spectroscopy (AP-XPS). This allowed us to acquire important knowledge into the origin and the nature of the active sites associated with the catalytic activity and selectivity in these materials. / Processos de conversão de energia, como as reações de quebra de água e hidrogenação de CO2, têm surgirdo como abordagens atraentes para mitigar as preocupações ambientais das emissões de CO2, bem como para fornecer uma fonte alternativa de combustíveis renováveis. Esses processos estratégicos podem capitalizar a energia de recursos renováveis (por exemplo, solar e eólica) para realizar reações químicas que geram, de forma sustentável e ecológica, combustíveis e produtos químicos com valor agregado. Catalisadores heterogêneos economicamente viáveis desempenham um papel central no avanço de tais processos para escalas de produção globalmente relevantes. Assim, neste trabalho, nos concentramos no desenvolvimento sintético de vários sistemas catalisadores baseados em metais de transição 3d abudantes como o níquel (Ni), cobalto (Co), ferro (Fe) e zinco (Zn). Especificamente, voltamos nossa atenção para produzir uma série de catalisadores compostos de: i) oxi-hidróxido de NiFe suportado em carbono para aplicação na reação de evolução de oxigênio (OER), uma reação limitante para o processo de quebra de água, e ii) nanopartículas de Ni e Co suportadas em Óxido de zinco (ZnO) para a reação de hidrogenação do CO2. Com relação aos sistemas de oxi-hidróxido de NiFe, avaliamos o desempenho catalítico desses materiais frente a OER e comparamos estes com eletrocatalisadores para OER de última geração, como Ir/C. Além disso, também nos concentramos em racionalizar as principais razões para as melhorias significativas na atividade catalítica de tais catalisadores em termos de suas composições de superfície e volume. Para os catalisadores de Co/ZnO e Ni/ZnO, além de avaliar sua atividade catalítica e seletividade, realizamos uma investigação sistemática in situ das propriedades cataliticamente importantes de tais interfaces usando a Espectroscopia de Fotoelétrons de Raios X a Pressão Ambiente. (APXPS) sob condições típicas de reação de hidrogenação de CO2. Isso nos permitiu adquirir conhecimentos importantes sobre a origem e a natureza dos sítios ativos associados à atividade e seletividade catalítica nesses materiais.
8

Síntese e Investigação da Atividade de Eletrocatalisadores Formados por Elementos Abundantes do Tipo M-N-C para a Reação Redução de Oxigênio / Synthesis and Investigation of the electrocatalytic Activity of materials based by Abundant Elements of Type M-N-C for the oxygen reduction reaction

Francisca Elenice Rodrigues de Oliveira 10 April 2018 (has links)
O desenvolvimento de células de combustível de formato direto encontra obstáculos importantes relacionados com a lenta cinética da reação de redução de oxigênio e baixa tolerância ao formato em cátodos baseados em Pt. Neste estudo, foram sintetizados eletrocatalisadores com diferentes estruturas, formados por elementos abundantes, e suas atividades e seletividades para a RRO foram testadas em meiacélulas e em células unitárias de formato / ar, em eletrólito alcalino. Os resultados mostraram que nanopartículas de liga de ferro-cobalto, encapsuladas por carbono grafítico, e nitretos metálicos nanoestruturados, suportados em carbono, (caracterizados por TEM e XRD) não apresentam atividades eletrocatalíticas superiores ao carbono puro (Vulcan amorfo ou grafitizado). Carbono dopado com nitrogênio (N-C) mostrou um aumento no potencial de meia-onda, evidenciando um influente papel do nitrogênio na eletrocatálise da RRO, mas com alto sobrepotencial. A inserção de oxigênio via tratamento térmico em ar, formando óxidos de FeCo nanoestruturados, suportados por carbono, produziu, como esperado, um aumento considerável na atividade, mostrando que a ligação do ferro ou cobalto com o oxigênio tem papel importante, provavelmente, na alta reatividade redox para a transferência de elétrons para o RRO. A adição de um precursor de nitrogênio durante a síntese (imidazol) resultou na formação de estruturas formadas por átomos de ferro e cobalto, coordenados por nitrogênio, inseridos em uma matriz de carbono, como revelado por EXAFS, mostrou que as estruturas M-N-C têm papel decisivo na atividade eletrocatalítica para a RRO (aproximando-se da Pt/C) e, também, mostrou alta tolerância à presença de íons formato. Experimentos em células a combustível unitárias, com difusão natural de formato e com cátodo aberto ao ar, com elétrodo de difusão de gás, mostraram densidades de potência de 15,5 e 10,5 mW cm-2 com eletrólitos à base de hidróxido e carbonato de potássio, respectivamente, e com estabilidade de operação maior que 120 h a 0,3 mA cm-2. Portanto, os resultados deste trabalho mostram o papel decisivo de estruturas M-NC (coordenadas) na alta atividade para a ORR, em altos potenciais, excluindo-se atividades atribuídas a nanoestruturas de nitretos metálicos e nanopartículas metálicas encapsuladas, incluindo as dopadas por nitrogênio na superfície. / The development of direct formate fuel cells encounters significant obstacles related to the slow kinetics of the oxygen reduction reaction (ORR) and low formate tolerance in Pt-based cathodes. In this study, electrocatalysts with different structures, composed of abundant elements, were synthesized, and their activities and selectivities for the ORR were tested in half-cells and in single cells in alkaline electrolyte. The results showed that carbon-encapsulated nanoparticles of iron-cobalt alloy and carbon-supported nanostructured metal nitrides (characterized by TEM and XRD) do not present electrocatalytic activities superior to pure carbon (amorphous or graphitized Vulcan). Nitrogen-doped carbon (N-C) showed an increase in the halfwave potential, evidencing an influential role of nitrogen in the electrocatalysis of the ORR, but with a high overpotential. The insertion of oxygen through heat treatment in air, forming carbon-supported nanostructured FeCo oxides, produced, as expected, an increase in activity, probably due to the high oxide reactivity for the electronic mediation processes for the ORR. The addition of a nitrogen precursor during the synthesis (imidazole) resulted in the formation of structures formed by iron and cobalt atoms, coordinated by nitrogen, inserted in a carbon matrix, as revealed by EXAFS, and showed that M-N-C structures play a decisive role in the electrocatalytic activity for the ORR (approaching Pt/C) and, also, showed high tolerance to the presence of ions format. Experiments in single cells with air-breathing cathode and with natural diffusion of formate, showed power densities of 15.5 and 10.5 mW cm-2 with hydroxide and carbonate-based electrolytes, respectively, and with operating stability higher than 120 h at 0.3 mA cm-2. Therefore, the results of this work show the decisive role of M-N-C structures (coordination) in the high activity for the ORR, in high potentials, excluding activities attributed to nanostructures of metallic nitrides and encapsulated metallic nanoparticles, including those doped by surface nitrogen.
9

Optical Investigations of Cd Free Cu<sub>2</sub>ZnSnS<sub>4</sub> Solar Cells

Gangam, Srikanth January 2012 (has links)
No description available.
10

Earth Abundant Alternate Energy Materials for Thin Film Photovoltaics

Banavoth, Murali January 2013 (has links) (PDF)
Inexhaustible solar energy, which provides a clean, economic and green energy, seems to be an alternative solution, for current and future energy demands. Harvesting solar energy presents a challenge in using eco-friendly, earth abundant and inexpensive materials. Although present CdTe and Cu (In, Ga)Se2 (CIGS) technologies, provide light-to-electricity comparable to silicon technology, toxicity of Cd and scarcity of In limits the widespread utilization. Future tera-watt level module capacity would then be feasible by the low-cost technologies. The chalcogenide thin film technology would therefore provide the exceptional utilization in the large-area module monolithic integrations benefitting from the low material consumption owing to the direct band gap. The current thesis presents the results obtained from the quest of other thin film materials and their utilization to an unconventional Cd-free buffer layer. The films suitability for the future applications was assessed through photovoltaics device studies in a comparative manner. Chapter-1 deals with the motivation for the solar energy and the importance of thin film photovoltaics. Alternative materials which are abundantly available would help to reach the future tera watt level production, where the conventional silicon technology alone cannot satisfy the global energy demand. The utilization of non-conventional thin film based solar cells and their working principles were elucidated. The histories of the copper based alternative materials were introduced. Chapter-2 deals with the versatile thin film growth technique that has been designed fabricated and installed further which can handle the growth of the absorber and the top TCO layers with insitu sulphurisation. The methodology of the absorber deposition was discussed in detail. The experimental details for the co-sputtering of CuInAl alloy were presented. A novel selenization method, assisted by the combination of inert gases was developed for the annealing of CuInAl alloyed precursor films. Chapter-3 deals with the presentation of the results obtained on buffer and window layers. Chemical Bath deposition technique was employed for the growth and optimization of the conventional CdS and non-toxic buffer ZnS buffer layers. A) Cadmium sulphide thin films suitable for the utilization of high efficiency solar cells were optimized. Optimization of the buffer involved the effects of cadmium precursors, ammonia concentration and buffer capsule effect. A green route was presented so as to consume the precursors to the maximum extent possible. B) The alternative non-toxic buffer Zinc Sulphide (ZnS) thin films were successfully grown using the above optimized conditions. Moreover the window layer was also optimized for better device partner. Zinc Oxide was used as a n-type partner for the p-type CIS films. The ZnO films were grown by the RF-sputtering from the single cathode exhibited good crystallinity with Zincite structure (hexagonal ZnS, a= 3.249A0 and c= 5.205A0). All the grown films showed high resistivity. Al: ZnO thin films were optimized in two methods 1) by dc co-sputtering from the elemental cathodes, Zinc and Aluminum, 2) dc-sputtering from the single 2% Al-doped ZnO cathode. Low resistivity Al:ZnO thin films were deposited in both the cases. Effect of Aluminum doping into ZnO crystal lattice upon the optical and electrical properties were discussed. Chapter-4 deals with the synthesis of various absorber materials, characterizations and some properties. Briefly the A) Optimization of the CuIn1-xAlxSe2 phase with better adhesion and better crystallinity. Aluminum doping into the crystal lattice of CuInSe2 aided the wide band gap tuning of CIAS thin films. Morphological investigations were carried out for the different set of thin films before and after selenization. Effects of copper and Aluminum concentrations on the lattice parameter of the selenized thin films were addressed. The present chapter deals with the A) electrical properties of CIAS films and its heterojunction partners. Resistivity measurements and effects of Cu/In ratio and the effect of Al doping were described in detail. The CIAS/ZnO heterostructure, CIAS/Al:ZnO heterostructure junction properties as a function of different sun illuminations were discussed. B) The alternative earth abundant, eco-friendly, non-toxic elements Cu2ZnSnS4, absorber thin films synthesis and characterizations. Photo conductive photo measurements showed CZTS a potential candidate for near infra-red photodectection. C) Cu2CoSnS4 (CCTS) nanostructures and quantum dots were synthesized via simple chemical routes. CCTS quantum dots were tuned to exhibit the red edge effect and cold white phosphors. D) Cu3BiS3 nano rods were synthesized and characterized structurally and optically. The transport properties of Cu3BiS3 nanorods were tailored for showing the metallic to semiconducting transitions. Chapter-5 Discusses the A) Efforts made in understanding the CIAS based solar cells through interfaces such as CIAS/ZnO, Mo/CIAS, CIAS/CdS/i-ZnO/Al:ZnO and improving the open circuit voltage VOC upon a rotating substrate, involving the inline and in situ processes, for fabricating the cell/ module were discussed. The device statistics for various set of cells were analyzed. B) Solar cells of CTS absorber with the non-toxic buffer ZnS were fabricated and device properties were analyzed. C) CCTS quantum dots embedded in the polymer matrix were utilized for making the inverted hybrid solar devices in combination of ITO/AZnO bilayered contact replacing the acidic PEDOT: PSS. D) The solar cells made of CCTS hollow spheres by spin coating the absorber in the configuration SLG/Mo/CCTS/CdS/ iZno-AZnO/Ni-Al-Al showed a lower efficiency of 0.02%. Chapter-6 concludes with the summary of present investigations and the scope for future work.

Page generated in 0.052 seconds