• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 15
  • 12
  • 2
  • 2
  • Tagged with
  • 114
  • 34
  • 32
  • 22
  • 20
  • 19
  • 14
  • 14
  • 14
  • 13
  • 13
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Geovisualization of boreal peatland architecture in a three dimensional hydrogeological framework using ground penetrating radar and LiDAR at Mariana Lakes, Alberta, Canada

Shulba, William Paul 07 June 2021 (has links)
Communicating science in three-dimensional (3D) multimedia is an immersive and interactive way to explore scientific processes (Signals and Communication Technology, 2019). Geovisualization is an emerging 3D multimedia method for visual analysis, synthesis, and presentation of geospatial, geologic, and geophysical data (MacEachren & Kraak, 2001). There is an identified need to develop scientific communication tools to further understand boreal peatland evolution, hydrogeology, ecology, and geochemistry (Bubier et al., 2003) since the International Union of Conservation of Nature asserts that peatlands are among the most valuable ecosystems on Earth, critical for preserving global biodiversity, providing drinking water, minimising flood risk, preventing wildfire, and mitigating climate change (Hama et al., 2000). The intention of this thesis is to communicate a novel approach to geovisualize boreal peatland architecture using Light Detection and Ranging (LiDAR) and Ground Penetrating Radar (GPR). GPR and LiDAR have been used to create 3D subsurface geovisualizations for archaeology (Kenady et al., 2018; Schultz & Martin, 2011) and resource geology (Corradini et al., 2020; Koyan & Tronicke, 2020) although application to peatland hydrogeology is uncommon. Point-source hydrogeological and geochemical data were integrated with 3D geological models to estimate carbon and nitrogen storage in an archetypal boreal peatland near Mariana Lakes, Alberta. Peatland geometry resembled a shallow lake basin with depths greatest in fens (>10 m) and thinnest in bogs (<2 m). Hydraulic conductivity was only a few meters per year and vertical groundwater movement was limited. Sequestered carbon and nutrients increased with depth. The average concentration of dissolved ammonium was 3 grams per cubic metre of peat (g/m3), 5g/m3of Total Kjeldahl Nitrogen, 60g/m3 of dissolved organic carbon and 200g/m3 of dissolved inorganic carbon. Tritium detection from atmospheric atomic weapons radionuclide fallout revealed that in deeper anaerobic peat (catotelm), tritium was absent, signifying groundwater was older than 50 years and not mixed with meteoric waters. Fen catotelm channels are likely acting as gravity-driven hydraulic traps (Tóth, 1999). / Graduate
112

Diel Temperature and Dissolved Oxygen Patterns in Sites with and without Planktonic Life Stage of Thompsodinium intermedium in Comal Springs, TX

Gilpin, Cheryl 2012 May 1900 (has links)
Between July 2009 and October 2011, a new habitat was found for a rarely reported freshwater dinoflagellate species, Thompsodinium intermedium - Comal Springs (Comal County), Texas. In 2011, diel in-situ monitoring in monospecific blooms of this species revealed previously undetected negative impacts on endangered species habitat availability associated with conditions of low flow levels, recorded at the U.S. Geological Survey gage # 08169000 on Texas Commission on Environmental Quality river segment 1811 station 12655. During a period of low springflow in the summer of 2011, late afternoon and early morning measurements of dissolved oxygen and temperature and presence of dinoflagellate blooms were monitored at six sites. Significant differences in diel fluctuations were found in all of these parameters among sites with and without the planktonic blooms. These fluctuations increased risk of hypoxia and hyperthermia conditions at sites of planktonic bloom events. Arrays of in-situ continuous monitoring temperature/light probes were used inside and outside of blooms. Wildlife and human health implications are that hypoxia and hyperthermia are known to promote conditions favorable to harmful microbes which may be transported from springs to coastal bays. In-situ data demonstrated that T. intermedium blooms, hypoxia, and hyperthermia occurred in the upper Comal headwaters. These natural environmental stressors may be avoidable if adequate springflows are maintained to buffer against these impacts.
113

Remote sensing & GIS applications for drainage detection and modeling in agricultural watersheds

Roy, Samapriya 12 March 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The primary objective of this research involves mapping out and validating the existence of sub surface drainage tiles in a given cropland using Remote Sensing and GIS methodologies. The process is dependent on soil edge differentiation found in lighter versus darker IR reflectance values from tiled vs. untiled soils patches. Data is collected from various sources and a primary classifier is created using secondary field variables such as soil type, topography and land Use and land cover (LULC). The classifier mask reduces computational time and allows application of various filtering algorithms for detection of edges. The filtered image allows an efficient feature recognition platform allowing the tile drains to be better identified. User defined methods and natural vision based methodologies are also developed or adopted as novel techniques for edge detection. The generated results are validated with field data sets which were established using Ground Penetration Radar (GPR) studies. Overlay efficiency is calculated for each methodology along with omission and commission errors. This comparison yields adaptable and efficient edge detection techniques which can be used for similar areas allowing further development of the tile detection process.
114

Multispectral imaging of Sphagnum canopies: measuring the spectral response of three indicator species to a fluctuating water table at Burns Bog

Elves, Andrew 02 May 2022 (has links)
Northern Canadian peatlands contain vast deposits of carbon. It is with growing urgency that we seek a better understanding of their assimilative capacity. Assimilative capacity and peat accumulation in raised bogs are linked to primary productivity of resident Sphagnum species. Understanding moisture-mediated photosynthesis of Sphagnum spp. is central to understanding peat production rates. The relationship between depth to water table fluctuation and spectral reflectance of Sphagnum moss was investigated using multispectral imaging at a recovering raised bog on the southwest coast of British Columbia, Canada. Burns Bog is a temperate oceanic ombrotrophic bog. Three ecohydrological indicator species of moss were chosen for monitoring: S. capillifolium, S. papillosum, and S. cuspidatum. Three spectral vegetation indices (SVIs) were used to characterize Sphagnum productivity: the normalized difference vegetation index 660, the chlorophyll index, and the photochemical reflectance index. In terms of spectral sensitivity and the appropriateness of SVIs to species and field setting, we found better performance for the normalized difference vegetation index 660 in the discrimination of moisture mediated species-specific reflectance signals. The role that spatiotemporal scale and spectral mixing can have on reflectance signal fidelity was tested. We were specifically interested in the relationship between changes in the local water table and Sphagnum reflectance response, and whether shifting between close spatial scales can affect the statistical strength of this relationship. We found a loss of statistical significance when shifting from the species-specific cm2 scale to the spectrally mixed dm2 scale. This spatiospectral uncoupling of the moisture mediated reflectance signal has implications for the accuracy and reliability of upscaling from plot based measurements. In terms of species-specific moisture mediated reflectance signals, we were able to effectively discriminate between the three indicator species of Sphagnum along the hummock-to-hollow gradient. We were also able to confirm Sphagnum productivity and growth outside of the vascular growing season, establishing clear patterns of reflectance correlated with changes in the local moisture regime. The strongest relationships for moisture mediated Sphagnum productivity were found in the hummock forming species S. capillifolium. Each indicator Sphagnum spp. of peat has distinct functional traits adapted to its preferred position along the ecohydrological gradient. We also discovered moisture mediated and species-specific reflectance phenologies. These phenospectral characteristics of Sphagnum can inform future monitoring work, including the creation of a regionally specific phenospectral library. It’s recommended that further close scale multispectral monitoring be carried out incorporating more species of moss, as well as invasive and upland species of concern. Pervasive vascular reflectance bias in remote sensing products has implications for the reliability of peatland modelling. Avoiding vascular bias, targeted spectral monitoring of Sphagnum indicator species provides a more reliable measure for the modelling of peatland productivity and carbon assimilation estimates. / Graduate

Page generated in 0.0467 seconds