Spelling suggestions: "subject:"ecosystem amodelling"" "subject:"ecosystem bmodelling""
11 |
Effects of a pulsing hydroperiod on a created riparian river diversion wetlandFink, Daniel Francis 05 January 2007 (has links)
No description available.
|
12 |
Impacts du changement global sur la biodiversité en mer Méditerranée : une approche par modélisation End-to-End / Impacts of global change on biodiversity in the Mediterranean Sea : and End-to-End modelling approachMoullec, Fabien 10 July 2019 (has links)
Sous les effets combinés de la surexploitation des ressources marines et du changement climatique la mer Méditerranée se transforme progressivement en un point chaud du changement global. En dépit d’un grand nombre de modèles développés localement ou régionalement en mer Méditerranée, aucun ne s’est encore attelé aux modifications d'assemblages d’espèces à l’échelle du bassin avec une modélisation intégrée des écosystèmes de la physique jusqu’aux prédateurs et représentant explicitement les dimensions à la fois multi-spécifique, spatiale, et trophique. Ces travaux de thèse présentent donc un triple enjeu : (i) mettre en œuvre une telle modélisation de la richesse spécifique en Méditerranée basée sur les traits de vie et représentant l'intégralité du cycle de vie d’espèces en interaction ; (ii) projeter les conséquences des changements physiques et biogéochimiques induits par le changement climatique sur la distribution spatiale des espèces et sur la structure et le fonctionnement trophique de l'écosystème méditerranéen ; (iii) explorer des scénarios de gestion des pêches visant à reconstituer certains stocks d'intérêts commerciaux dans un contexte de changement climatique. Pour répondre à ces enjeux, un modèle end-to-end, OSMOSE-MED, s’appuyant sur le couplage d’un modèle de hauts niveaux trophiques OSMOSE à des modèles de physique et de biogéochimie NEMOMED12 et ECO3M-S, a été développé. Avec cent espèces modélisées, représentant près de 95 % des captures effectuées en Méditerranée, il s’agit du premier modèle trophique de ce type intégrant une aussi grande richesse spécifique, sur une échelle spatiale aussi vaste (la mer Méditerranée dans son ensemble) et à fine résolution (20x20 km²). Selon le scénario d'émissions de gaz à effet de serre RCP8.5, les projections réalisées avec le modèle OSMOSE-MED mettent en évidence une augmentation globale de la biomasse et des captures, respectivement de 22% et 7% d'ici la fin du siècle. Ces augmentations masquent néanmoins de grandes disparités géographiques. Le bassin oriental se démarque par une augmentation globale de la biomasse associée aux espèces exotiques. Au regard des captures, le modèle prévoit des augmentations dans le bassin oriental et une diminution importante dans la partie occidentale. Un changement de la composition spécifique des captures pourrait apparaître au cours du 21ème siècle avec l'apparition d'espèces gagnantes (e.g. anchois) et perdantes (e.g. merlu). Les espèces gagnantes seraient principalement les espèces de petits pélagiques, thermophiles et/ou exotiques, de plus petites tailles et de plus bas niveaux trophiques tandis que les espèces perdantes seraient généralement les grands démersaux et pélagiques, pouvant pâtir d'un décalage spatial avec leurs proies potentielles à la suite d'une contraction ou d'un déplacement de leur aire de répartition géographique. Dans ce contexte, les projections de scénarios de gestion des pêches mettent en évidence les avantages d'une plus grande sélectivité ou d'une réduction de la mortalité par pêche pour reconstituer certains stocks d'intérêts commerciaux, en particulier parmi les organismes appartenant au groupe des démersaux, benthiques et grands pélagiques. Une réduction de la mortalité par pêche pourrait en outre inverser les tendances projetées à la baisse de la biomasse et des captures totales en Méditerrannée occidentale. / Under the combined effects of overexploitation of marine resources and climate change the Mediterranean Sea is gradually becoming a hotspot of global change. Despite a large number of models developed locally or regionally in the Mediterranean Sea, no previous studies have addressed changes in species assemblages at the basin scale with an integrated ecosystem modelling from physics to predators and explicitly representing the multi-species, spatial, and trophic dimensions. This thesis work presents a threefold challenge: (i) implementing such a model of the species richness in the Mediterranean Sea based on life history traits and representing the entire life cycle of interacting species; (ii) projecting the consequences of physical and biogeochemical changes induced by climate change on the spatial distribution of species and on the structure and trophic functioning of the Mediterranean ecosystem; (iii) exploring fisheries management scenarios aiming at rebuilding some stocks of commercial interest in a climate change context. To address these challenges, an end-to-end model, OSMOSE-MED, based on the coupling of a high trophic level OSMOSE model with NEMOMED12 and ECO3M-S physical and biogeochemical models, has been developed. With 100 modelled species, representing nearly 95% of the catches made in the Mediterranean Sea, it is the first trophic model of this type to integrate such a large diversity of species, on such a large spatial scale (the Mediterranean Sea as a whole) and at fine resolution (20x20 km²). According to the greenhouse gas emissions scenario RCP8.5, projections made with the OSMOSE-MED model show an overall increase in biomass and catches of 22% and 7% respectively by the end of the century. However, these increases mask large geographical disparities. The eastern basin is characterized by an overall increase in biomass associated with exotic species. With regard to catches, the model projects increase in the eastern basin and a significant decrease in the western part. A change in the species composition of catches could appear during the 21st century with winner (e.g. anchovy) and loser (e.g. hake) species. Winner species would mainly belong to the small pelagics group, are thermophilic and/or exotic, of smaller sizes and of low trophic level while loser species are generally large-sized, some of them of great commercial interest, and could suffer from a spatial mismatch with potential prey subsequent to a contraction or shift of their geographic range. Fisheries management scenario projections highlight the benefits of greater selectivity or reduced fishing mortality for the recovery of certain stocks of commercial interest, particularly among organisms belonging to the demersal, benthic and large pelagic groups. A reduction in fishing mortality could also reverse the projected decline in biomass and total catches in the Western Mediterranean.
|
13 |
Membrane Computing Models: ImplementationsZhang, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Verlan, S., Konur, Savas, Hinze, T., Gheorghe, Marian 17 March 2022 (has links)
No / Presents comprehensive descriptions of the most significant membrane computing tools developed for various models
Describes the most relevant applications, facilitating a better understanding of how the tools are used in building, experimenting with and analysing membrane computing models of complex problems arising in robotics, automatic design of P systems, image processing, ecosystem modelling, systems and synthetic biology, and bioinformatics
Discusses efficient software and hardware solutions, together with the algorithms and platforms used
|
14 |
Integrated process-based simulation of soil carbon dynamics in river basins under present, recent past and future environmental conditionsPost, Joachim January 2006 (has links)
Soils contain a large amount of carbon (C) that is a critical regulator of the global C budget. Already small changes in the processes governing soil C cycling have the potential to release considerable amounts of CO2, a greenhouse gas (GHG), adding additional radiative forcing to the atmosphere and hence to changing climate. Increased temperatures will probably create a feedback, causing soils to release more GHGs. Furthermore changes in soil C balance impact soil fertility and soil quality, potentially degrading soils and reducing soils function as important resource.
Consequently the assessment of soil C dynamics under present, recent past and future environmental conditions is not only of scientific interest and requires an integrated consideration of main factors and processes governing soil C dynamics. To perform this assessment an eco-hydrological modelling tool was used and extended by a process-based description of coupled soil carbon and nitrogen turnover. The extended model aims at delivering sound information on soil C storage changes beside changes in water quality, quantity and vegetation growth under global change impacts in meso- to macro-scale river basins, exemplary demonstrated for a Central European river basin (the Elbe). As a result this study:
▪ Provides information on joint effects of land-use (land cover and land management) and climate changes on croplands soil C balance in the Elbe river basin (Central Europe) presently and in the future.
▪ Evaluates which processes, and at what level of process detail, have to be considered to perform an integrated simulation of soil C dynamics at the meso- to macro-scale and demonstrates the model’s capability to simulate these processes compared to observations.
▪ Proposes a process description relating soil C pools and turnover properties to readily measurable quantities. This reduces the number of model parameters, enhances the comparability of model results to observations, and delivers same performance simulating long-term soil C dynamics as other models.
▪ Presents an extensive assessment of the parameter and input data uncertainty and their importance both temporally and spatially on modelling soil C dynamics.
For the basin scale assessments it is estimated that croplands in the Elbe basin currently act as a net source of carbon (net annual C flux of 11 g C m-2 yr-1, 1.57 106 tons CO2 yr-1 entire croplands on average). Although this highly depends on the amount of harvest by-products remaining on the field. Future anticipated climate change and observed climate change in the basin already accelerates soil C loss and increases source strengths (additional 3.2 g C m-2 yr-1, 0.48 106 tons CO2 yr-1 entire croplands). But anticipated changes of agro-economic conditions, translating to altered crop share distributions, display stronger effects on soil C storage than climate change. Depending on future use of land expected to fall out of agricultural use in the future (~ 30 % of croplands area as “surplus” land), the basin either considerably looses soil C and the net annual C flux to the atmosphere increases (surplus used as black fallow) or the basin converts to a net sink of C (sequestering 0.44 106 tons CO2 yr-1 under extensified use as ley-arable) or reacts with decrease in source strength when using bioenergy crops. Bioenergy crops additionally offer a considerable potential for fossil fuel substitution (~37 PJ, 1015 J per year), whereas the basin wide use of harvest by-products for energy generation has to be seen critically although offering an annual energy potential of approximately 125 PJ. Harvest by-products play a central role in soil C reproduction and a percentage between 50 and 80 % should remain on the fields in order to maintain soil quality and fertility.
The established modelling tool allows quantifying climate, land use and major land management impacts on soil C balance. New is that the SOM turnover description is embedded in an eco-hydrological river basin model, allowing an integrated consideration of water quantity, water quality, vegetation growth, agricultural productivity and soil carbon changes under different environmental conditions.
The methodology and assessment presented here demonstrates the potential for integrated assessment of soil C dynamics alongside with other ecosystem services under global change impacts and provides information on the potentials of soils for climate change mitigation (soil C sequestration) and on their soil fertility status. / Böden speichern große Mengen Kohlenstoff (C) und beeinflussen wesentlich den globalen C Haushalt. Schon geringe Änderungen der Steuergrößen des Bodenkohlenstoffs können dazu führen, dass beträchtliche Mengen CO2, ein Treibhausgas, in die Atmosphäre gelangen und zur globalen Erwärmung und dem Klimawandel beitragen. Der globale Temperaturanstieg verursacht dabei höchstwahrscheinlich eine Rückwirkung auf den Bodenkohlenstoffhaushalt mit einem einhergehenden erhöhten CO2 Fluss der Böden in die Atmosphäre. Weiterhin wirken sich Änderungen im Bodenkohlenstoffhaushalt auf die Bodenfruchtbarkeit und Bodenqualität aus, wobei eine Minderung der Bodenkohlenstoffvorräte wichtige Funtionen des Bodens beeinträchtigt und folglich den Boden als wichtige Ressource nachhaltig beinflusst.
Demzufolge ist die Quantifizierung der Bodenkohlenstoffdynamik unter heutigen und zukünftigen Bedingungen von hohem Interesse und erfordert eine integrierte Betrachtung der wesentlichen Faktoren und Prozesse. Zur Quantifizierung wurde ein ökohydrologisches Flusseinzugsgebietsmodell erweitert. Ziel des erweiterten Modells ist es fundierte Informationen zu Veränderungen des Bodenkohlenstoffhaushaltes, neben Veränderungen der Wasserqualität, der Wasserverfügbarkeit und des Vegetationswachstums unter Globalem Wandel in meso- bis makroskaligen Flusseinzugsgebieten bereitzustellen. Dies wird am Beispiel eines zentraleuropäischen Flusseinzugsgebietes (der Elbe) demonstriert. Zusammenfassend ergibt diese Arbeit:
▪ eine Quantifizierung der heutigen und zukünftigen Auswirkungen des Klimawandels sowie von Änderungen der Landnutzung (Bodenbedeckung und Bodenbearbeitung) auf den Bodenkohlenstoffhaushalt agrarisch genutzter Räume im Einzugsgebiet der Elbe.
▪ eine Beurteilung welche Prozesse, und zu welchem Prozessdetail, zur integrierten Simulation der Bodenkohlenstoffdynamik in der meso- bis makroskala zu berücksichtigen sind. Weiterhin wird die Eignung der Modellerweiterung zur Simulation dieser Prozesse unter der Zuhilfenahme von Messwerten dargelegt.
▪ darauf begründet wird eine Prozessbeschreibung vorgeschlagen die die Eigenschaften der Bodenkohlenstoffspeicher und deren Umsetzungsrate mit in der betrachteten Skala zur Verfügung stehenden Messdaten und Geoinformationen verbindet. Die vorgeschlagene Prozessbeschreibung kann als robust hinsichtlich der Parametrisierung angesehen werden, da sie mit vergleichsweise wenigen Modelparametern eine ähnliche Güte wie andere Bodenkohlenstoffmodelle ergibt.
▪ eine umfassende Betrachtung der Modell- und Eingangsdatenunsicherheiten von Modellergebnissen in ihrer räumlichen und zeitlichen Ausprägung.
Das in dieser Arbeit vorgestellte Modellsystem erlaubt eine Quantifizierung der Auswirkungen des Klima- und Landnutzungswandels auf den Bodenkohlenstoffhaushalt. Neu dabei ist, dass neben Auswirkungen auf den Bodenkohlenstoffhaushalt auch Auswirkungen auf Wasserverfügbarkeit, Wasserqualität, Vegetationswachstum und landwirtschaftlicher Produktivität erfasst werden können. Die im Rahmen dieser Arbeit dargelegten Ergebnisse erlauben eine integrierte Betrachtung der Auswirkungen des Globalen Wandels auf wichtige Ökosystemfunktionen in meso- bis makro-skaligen Flusseinzugsgebieten. Weiterhin können hier gewonnene Informationen zur Potentialabschätzung der Böden zur Linderung des Klimawandels (durch C Festlegung) und zum Erhalt ihrer Fruchtbarkeit genutzt werden.
|
15 |
Fish harvest and replacement of top piscivorous predators in aquatic food webs: implications for restoration and fisheries managementMcGregor, Andrea M Unknown Date
No description available.
|
16 |
Leaf Area Index, Carbon Cycling Dynamics and Ecosystem Resilience in Mountain Pine Beetle Affected Areas of British Columbia from 1999 to 2008Czurylowicz, Peter 30 November 2011 (has links)
The affect on leaf area index (LAI) and net ecosystem production (NEP) of the mountain pine beetle (Dendroctonus ponderosae) (MPB) outbreak in British Columbia affecting lodgepole pine (Pinus contorta var. latifolia) forests was examined from 1999 to 2008. The process-based carbon (C) cycle model – Boreal Ecosystem Productivity Simulator (BEPS) with remotely sensed LAI inputs was used to produce annual NEP maps, which were validated using field measurements. The annual NEP ranged from 2.43 to -8.03 MtC between 1999 and 2008, with sink to source conversion in 2000. The inter-annual variability for both LAI and NEP displayed initial decreases followed by a steadily increasing trend from 2006 to 2008 with NEP returning to near C neutrality in 2008 (-1.84 MtC). The resistance of LAI and NEP to MPB attack was attributed to ecosystem resilience in the form of secondary overstory growth and increased production of non-attacked host trees.
|
17 |
Leaf Area Index, Carbon Cycling Dynamics and Ecosystem Resilience in Mountain Pine Beetle Affected Areas of British Columbia from 1999 to 2008Czurylowicz, Peter 30 November 2011 (has links)
The affect on leaf area index (LAI) and net ecosystem production (NEP) of the mountain pine beetle (Dendroctonus ponderosae) (MPB) outbreak in British Columbia affecting lodgepole pine (Pinus contorta var. latifolia) forests was examined from 1999 to 2008. The process-based carbon (C) cycle model – Boreal Ecosystem Productivity Simulator (BEPS) with remotely sensed LAI inputs was used to produce annual NEP maps, which were validated using field measurements. The annual NEP ranged from 2.43 to -8.03 MtC between 1999 and 2008, with sink to source conversion in 2000. The inter-annual variability for both LAI and NEP displayed initial decreases followed by a steadily increasing trend from 2006 to 2008 with NEP returning to near C neutrality in 2008 (-1.84 MtC). The resistance of LAI and NEP to MPB attack was attributed to ecosystem resilience in the form of secondary overstory growth and increased production of non-attacked host trees.
|
Page generated in 0.0725 seconds