Spelling suggestions: "subject:"ecuaciones No lineales"" "subject:"ecuaciones No pineales""
1 |
La ecuación de Benjamín-Bona-Mahony generalizada. Existencia de solucionesMontealegre Scott, Juan 25 September 2017 (has links)
No description available.
|
2 |
Comportamiento asintótico de la solución global de un sistema dispersivo no lineal de tipo Benjamin-Bona-MahonyVega Guadalupe, Segundo Teófilo 15 April 2013 (has links)
El objetivo de este trabajo consiste en estudiar el comportamiento asintótico de las soluciones de un sistema dispersivo no lineal de tipo Benjamin-Bona- Mahony cuando t se aproxima al infinito. / Tesis
|
3 |
Comportamiento asintótico de la solución de una generalización de la ecuación de Benjamín-Bona-MahonyRodríguez Fernández, Carlos 25 September 2017 (has links)
Se estudia el comportamiento asintótico de la solución global del problema no lineal L∂tu + ∂ₓu +a (t) uP∂ₓu =O, X ϵ R, t > O u(O) = φ(x) donde φ ϵ Hs (R), p es un entero positivo y L : Hs(R) → L²(R) es el operador seudo-diferencial definido por Lu(y) = m(y)u(y)u ϵ Hs(R). Para esto se utiliza el método de la fase estacionaria.
|
4 |
DISEÑO, IMPLEMENTACIÓN Y CONVERGENCIA DE MÉTODOS ITERATIVOS PARA RESOLVER ECUACIONES Y SISTEMAS NO LINEALES UTILIZANDO FUNCIONES PESOArtidiello Moreno, Santiago de Jesús 17 November 2014 (has links)
Resumen
La resolución de ecuaciones y sistemas de ecuaciones no lineales figura entre los problemas
más importantes, tanto desde un punto de vista teórico como práctico, de las matemáticas
aplicadas, así como también de muchas ramas de las ciencias, la ingeniería, la física, la
informática, la astronomía, las finanzas,.... Un vistazo a la bibliografía y la lista de grandes
matemáticos que han trabajado en este tema pone de manifiesto un alto nivel de interés
contemporáneo en el mismo. Aunque el rápido desarrollo de las computadoras digitales llevó a
la aplicación efectiva de muchos métodos numéricos, en la realización práctica, es necesario
analizar diferentes problemas tales como la eficiencia computacional basado en el tiempo
usado por el procesador, el diseño de métodos iterativos que posean una rápida convergencia
a la solución deseada, el control de errores de redondeo, la información sobre las cotas de
error de la solución aproximada obtenida, las condiciones iniciales que garanticen una
convergencia segura, etc. Dichos problemas constituyen el punto de partida de este trabajo.
El objetivo general de esta memoria es diseñar métodos iterativos eficientes para resolver una
ecuación o un sistema de ecuaciones no lineales. El esquema más conocido para resolver
ecuaciones no lineales es el método de Newton, su generalización a sistemas de ecuaciones
fue propuesta por Ostrowski.. En los últimos años, como muestra la amplia bibliografía, ha
aumentado de manera considerable la construcción de métodos iterativos, tanto de un paso
como multipaso, con el fin de conseguir una convergencia de orden óptimo así como una mejor
eficiencia computacional. En general, en esta memoria hemos utilizado la técnica de funciones
peso para diseñar métodos de resolución de ecuaciones y sistemas, tanto libres de derivadas
como apareciendo éstas en su expresión iterativa.
En el Capítulo 2 introducimos los conceptos previos que sustentan el desarrollo de los distintos
temas. Entre ellos, cabe destacar los relacionados con los métodos iterativos de resolución de
problemas no lineales, en una y varias variables; el concepto de método óptimo (basado en la
conjetura de Kung y Traub); las técnicas de demostración empleadas para probar el orden de
convergencia local, así como también el operador diferencias divididas [x,y;F], y los conceptos
básicos de la dinámica compleja de funciones racionales que utilizaremos para analizar el
comportamiento dinámico del operador asociado a cualquier método iterativo.
En los Capítulos 3 y 4 hemos desarrollado métodos iterativos óptimos de órdenes 4 y 8, con y
sin derivadas, para la resolución de ecuaciones no lineales. En ambos capítulos comenzamos
refiriéndonos al estado del arte, para mostrar a continuación los nuevos métodos diseñados,
que incluyen familias conocidas pero también nuevos esquemas iterativos, posteriormente
continuamos con el análisis de la convergencia de dichas clases de métodos, estableciendo
algunos casos particulares, que son analizados en detalle y finalizamos con las pruebas
numéricas relacionadas con los esquemas iterativos propuestos. Específicamente, en el
Capítulo 3, se presentan los resultados obtenidos al modificar el método clásico de Gauss para
la determinación de órbitas preliminares, de manera que incluya en su proceso esquemas
iterativos de alto orden de convergencia. Por su parte, en el Capítulo 4 se muestran las
propiedades dinámicas de algunos de los esquemas iterativos diseñados de orden 8, así como
sus propiedades de estabilidad que son verificadas sobre diferentes funciones test.
En el Capítulo 5, presentamos métodos iterativos óptimos de alto orden, con operador
derivada, para resolver ecuaciones no lineales. Tras el diseño de estos métodos y el análisis de
su convergencia, se transforma dicha clase de esquemas iterativos en otra libre de derivadas,
manteniendo su optimalidad. Finalmente, se muestran los resultados de algunas pruebas
numéricas, que incluyen la determinación de órbitas preliminares de satélites.
El comportamiento dinámico del operador asociado a un método iterativo al ser aplicado sobre
la función no lineal a resolver nos proporciona importante información acerca de la estabilidad y
fiabilidad de éste. El análisis dinámico de un método iterativo se centra en el estudio del
comportamiento asintótico de los puntos fijos (raíces, o no, de la ecuación) del operador, así
como en las cuencas de atracción asociadas a los mismos. En el caso de familias paramétricas
de métodos iterativos, el análisis de los puntos críticos libres nos permite seleccionar los
miembros más estables de dichas familias. El análisis de la dinámica compleja de los métodos
diseñados para ecuaciones no lineales se lleva a cabo en el Capítulo 6, donde nos centramos en una de las familias de métodos óptimos presentada en capítulos anteriores. Así, una vez
establecido el teorema del escalado, analizamos el comportamiento del operador racional
asociado al método actuando sobre polinomios cuadráticos, calculando sus puntos fijos y
críticos y analizando su estabilidad. Mostramos los planos de parámetros de los diferentes
puntos críticos libres y estudiamos algunos casos particulares mediante planos dinámicos
concretos en los que significamos algunas cuencas de atracción que no corresponden a las
raíces.
A continuación, en el Capítulo 7 se extienden a sistemas las técnicas iterativas diseñadas en el
caso escalar, si bien ahora utilizamos funciones peso matriciales. Así construimos métodos de
cualquier orden añadiendo sucesivos pasos con la misma estructura. Finalmente, se utiliza el
operador diferencias divididas para extender al caso multivariable algunos esquemas iterativos
que, a priori, no pueden ser extendidos de forma directa. Todos estos métodos forman parte
del estudio numérico que se presenta al final del capítulo, en el que se confirman los resultados
teóricos.
Esta memoria termina con un capítulo dedicado a problemas abiertos y a líneas futuras de
trabajo. Algunos de estos problemas han surgido como consecuencia de los avances
obtenidos. / Artidiello Moreno, SDJ. (2014). DISEÑO, IMPLEMENTACIÓN Y CONVERGENCIA DE MÉTODOS ITERATIVOS PARA RESOLVER ECUACIONES Y SISTEMAS NO LINEALES UTILIZANDO FUNCIONES PESO [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/44230
|
5 |
ANÁLISIS DINÁMICO Y APLICACIONES DE MÉTODOS ITERATIVOS DE RESOLUCIÓN ECUACIONES NO LINEALESChicharro López, Francisco Israel 26 June 2017 (has links)
Many problems in science, engineering or economy involve the search of the solution of an equation. Since ancient times, the modelling of nature problems has attracted a lot of interest, in order to predict the behaviour of a system. There are several techniques to find the solution of an equation. We are focusing in the iterative methods.
From an iterative scheme we are able to know the solution of a nonlinear function, provided there exist suitable methods. In addition to the well-known Newton's and Steffensen's methods, we are implementing methods with higher order of convergence.
The classification of the methods depending on their intrinsic features is giving us the chance to evaluate the goodness or the convenience of an iterative method. As in every engineering or mathematical problem, we will find a tradeoff solution.
Another way to classify methods, complementary to the previous one, is the complex dynamics study. The fixed point operator associated to every iterative methods when it is applied over a nonlinear function is the seed for developing tools to characterize every scheme on the complex plane.
The graphical representation of the iterative methods dynamics has occupied a broad part of the time of the current research. The dynamical plane is a powerful tool to visualize the stability of a method, the size of their basins of attraction or the suitability of some starting points to initialize the iterations. As well, for uniparametric families, the parameters plane will cooperate in the chose of the right member of the family.
Dynamical planes can be interpreted as an approach to fractals. The fractal dimension is being introduced as a way to measure how intricate is the Julia set of an iterative method. Fractals belong to the borderline between the determinism and the theory of chaos. So we are transferring concepts of both issues on the fractal study.
As an application of the iterative methods and the complex dynamics, we are showing the preliminary orbit determination of artificial satellites. From the position of a satellite in two different times, it is possible to guess the parameters of the ellipse described by the satellite. For this purpose, we are applying an algorithm that includes a classical resolution method. Our contribution consists in the use of our iterative methods to improve the performance of the system.
The possible applications of iterative methods for finding solutions of equations are beyond orbital mechanics. The design of digital filters, the digital image processing or the characterization of radio-frequency links are some of the examples.
From the previous concepts, we introduce this Doctoral Thesis for gaining the title of Philosophae Doctor in Mathematics. First chapters contextualize the involved topics, while the following ones present the papers published in international scientific journals as the fruit of the research. / Numerosos problemas de la ciencia, la ingeniería o la economía requieren de la búsqueda de soluciones de una ecuación. Desde tiempos remotos se ha tratado de modelizar problemas presentes en la naturaleza con expresiones que, al fin y al cabo, permitan conocer a priori cómo se va a comportar un sistema. Entre las técnicas utilizadas para dicha búsqueda de soluciones encontramos los métodos iterativos.
Iterar a partir de una serie de expresiones nos va a permitir conocer la solución de una función no lineal a partir de esquemas adecuados para ello. Además de los conocidos métodos de Newton y Steffensen, se van a implementar métodos con mayor orden de convergencia.
Clasificar los métodos iterativos en función de sus características intrínsecas nos va a permitir valorar la bondad o la conveniencia del uso de un método iterativo u otro. Como en todos los problemas de ingeniería y matemáticas, tendremos que obtener una solución de compromiso.
Otra de las caracterizaciones existentes, complementaria a la anterior, es el estudio de la dinámica compleja. El operador de punto fijo asociado a cada uno de los métodos iterativos cuando se aplica sobre una función no lineal va a permitir que caractericemos cada uno de los esquemas en el plano complejo.
Buena parte del trabajo desarrollado se ha centrado en la representación gráfica de la dinámica de los métodos iterativos. El plano dinámico es una herramienta que nos permite visualizar la estabilidad de un método, el tamaño de sus cuencas de convergencia o la idoneidad de determinados puntos iniciales para comenzar a iterar. Asimismo, para familias de métodos uniparamétricas, el plano de parámetros va a colaborar en la elección del miembro de la familia más adecuado.
Interpretando los planos dinámicos como una aproximación a los fractales, presentaremos la dimensión fractal como un factor de medida de lo intrincado que puede resultar el conjunto de Julia asociado a un método iterativo. Los fractales pertenecen a la frontera entre el determinismo y la teoría del caos, de forma que podremos transferir conceptos de ambas disciplinas sobre el estudio fractal.
Mostraremos como aplicación de los métodos iterativos y la dinámica compleja la determinación de órbitas preliminares de satélites artificiales. A partir de la posición de un satélite en dos instantes diferentes, es posible determinar los parámetros de la elipse que describe. Para ello, utilizaremos un algoritmo en el que se incluye un método clásico de resolución para, a continuación, mejorar sus prestaciones con nuestras propuestas de métodos iterativos.
Basándonos en la búsqueda de soluciones y en los métodos iterativos como técnica de obtención de soluciones, las aplicaciones abarcan campos más allá de la mecánica orbital. El diseño de filtros digitales, el procesado digital de imágenes o la caracterización de enlaces de radiofrecuencia son algunos de los ejemplos de aplicación.
A partir de los conceptos anteriores, presentamos esta Tesis Doctoral para la obtención del título de Doctor en Matemáticas, contextualizando la temática en los primeros capítulos para, a continuación, presentar las publicaciones en revistas internacionales como fruto de la investigación. / Nombrosos problemes de la ciència, la ingenieria o l'economia requereixen de la cerca de solucions d'una ecuació. Des de temps llunyans s'ha tractat de modelitzar problemes presents a la natura amb expressions que, al cap i a la fi, permeten conèixer a priori el comportament d'un sistema. Entre les tècniques emprades per tal cerca de solucions trobem els mètodes iteratius.
Iterar a partir d'una sèrie d'expressions ens permetrà conèixer la solució d'una funció no lineal a partir d'esquemes adequats. A més dels coneguts mètodes de Newton i Steffensen, s'implementaran mètodes amb major ordre de convergència.
Classificar els mètodes iteratius en funció de les seues característiques intrínseques ens permetrà avaluar la bondat o la conveniència de l'ús d'un mètode iteratiu o d'un altre. Com a la majoria de problemes d'ingenieria i matemàtiques, haurem de trobar una solució de compromís.
Altra de les caracteritzacions existents, complementària a l'anterior, és l'estudi de la dinàmica complexa. L'operador de punt fix associat a cadascun dels mètodes iteratius quan s'aplica sobre una funció no lineal permetrà la caracterització de cada esquema al pla complex.
Bona part del treball desenvolupat s'ha centrat en la representació gràfica de la dinàmica dels mètodes iteratius. El pla dinàmic es una eina que ens permet visualitzar l'estabilitat d'un mètode, la mida de les seues conques de convergència o la idoneïtat de determinats punts inicials per a començar a iterar. Així mateix, per a famílies de mètodes uniparamètriques, el pla de paràmetres col·laborarà en l'elecció del membre de la família més adequat.
Interpretant els plànols dinàmics com una aproximació als fractals, presentarem la dimensió fractal com un factor per a mesurar quant d'intrincat es troba el conjunt de Julia associat a un mètode iteratiu. Els fractals pertanyen a la frontera entre el determinisme i la teoria del caos, de manera que podrem transferir conceptes d'ambdues disciplines sobre l'estudi fractal.
Mostrarem com aplicació dels mètodes iteratius i la dinàmica complexa la determinació d'òrbites preliminars de satèl·lits artificials. A partir de la posició d'un satèl·lit en dos instants diferents, és possible determinar els paràmetres de l'el·lipse que descriu. Per això, utilitzarem un algoritme en el qual s'inclou un mètode clàssic de resolució per, a continuació, millorar les seues prestacions amb les nostres propostes de mètodes iteratius.
Basant-nos en la cerca de solucions i en els mètodes iteratius com a tècnica d'obtenció de solucions, les aplicacions abasten camps més enllà de la mecànica orbital. El disseny de filtres digitals, el processament digital d'imatges o la caracterització d'enllaços de radiofrequència son alguns dels exemples d'aplicació.
A partir dels conceptes anteriors, presentem aquesta Tesi Doctoral per a l'obtenció del títol de Doctor en Matemàtiques, contextualitzant la temàtica als primers capítols per, a continuació, presentar les publicacions en revistes internacionals com a fruit de la investigació. / Chicharro López, FI. (2017). ANÁLISIS DINÁMICO Y APLICACIONES DE MÉTODOS ITERATIVOS DE RESOLUCIÓN ECUACIONES NO LINEALES [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/83582
|
6 |
Comportamiento asintótico de la solución global de un sistema dispersivo no lineal de tipo Benjamin-Bona-MahonyVega Guadalupe, Segundo Teófilo 15 April 2013 (has links)
El objetivo de este trabajo consiste en estudiar el comportamiento asintótico de las soluciones de un sistema dispersivo no lineal de tipo Benjamin-Bona- Mahony cuando t se aproxima al infinito. / Tesis
|
7 |
Análisis dinámico y numérico de familias de métodos iterativos para la resolución de ecuaciones no lineales y su extensión a espacios de BanachGarcía Maimo, Javier 28 November 2017 (has links)
Since the appearance of Newton-Rapshon's method more than 300 years ago, iterative methods have become almost unassailable in most branches of science. The development of computing has made it possible to solve problems of increasing complexity, and this has been accompanied by the need for more efficient and reliable methods. Several tools of discrete dynamics can be used to perform a dynamic analysis of methods and families of iterative methods for solving equations and nonlinear systems, with the aim of extracting information about their stability and classifying them.
In this memory a biparametric family of iterative methods is designed that contains the schemes of Ostrowski and Chun as particular cases. The convergence of the family is analyzed and extended to make it suitable for the resolution of systems of nonlinear equations. Dynamic tools are used and developed to carry out a scalar and multivariate study, and problems are solved applied to verify the results of the dynamic study. Finally, the semilocal convergence in Banach spaces of the Chun method is determined.
Chapter 2 sets out the basic concepts from which the rest of the chapters will be developed. The Newton method and its derivative free version, the Steffensen method, are transferred to the multivariable case, and the tools of complex and real dynamics are applied to them.
In the Chapter 3 a dynamic study of King's family of iterative methods is performed for the resolution of nonlinear equations. The family is applied on a generic quadratic polynomial, and members with a more stable behavior are selected.
In the Chapter 4 a biparametric family of iterative methods is designed combining the methods of Ostrowski and Chun and an extension of the family to the multivariable case is done by the use of the operator divided differences. Numerical tests are performed on academic problems and applied to confirm the theoretical results.
In the Chapter 5 a dynamic study of the Ostrowski-Chun biparametric family is made and the most stable members are applied to the solution of the Bratu equation, whereas in Chapter 6 a real dynamic study of the family is made in the multivariable case, and in this case the most stable members apply to the resolution of Fischer's equation.
In the Chapter 7 the semilocal convergence of the well-known method of Chun, member of the Ostrowski-Chun family, is proved, and the results obtained in the resolution of an integral Hammerstein-type equation are proved. Finally, conclusions and open lines of research are presented. / Desde la aparición del método de Newton-Rapshon hace más de 300 años los métodos iterativos se han hecho poco menos que imprescindibles en la mayoría de las ramas de la ciencia. El desarrollo de la computación ha permitido resolver problemas de complejidad cada vez mayor, y este hecho ha venido acompañado de la necesidad de disponer de métodos más eficientes y fiables. Varias herramientas de la dinámica discreta se pueden utilizar para realizar un análisis dinámico de métodos y familias de métodos iterativos para la resolución de ecuaciones y sistemas no lineales, con el objetivo de extraer información sobre su estabilidad y clasificarlos.
En esta Tesis Doctoral se diseña una familia biparamétrica de métodos iterativos que contiene los esquemas de Ostrowski y Chun como casos particulares. Se analiza la convergencia de la familia y se extiende para hacerla apta para la resolución de sistemas de ecuaciones no lineales. Se utilizan y desarrollan herramientas dinámicas para llevar a cabo un estudio escalar y multivariable, y se resuelven problemas aplicados para comprobar los resultados del estudio dinámico. Finalmente, se determina la convergencia semilocal en espacios de Banach del método de Chun.
En el Capítulo 2 se exponen los conceptos básicos a partir de los cuales se van a desarrollar el resto de capítulos. Se transfieren al caso multivariable el método de Newton y su versión libre de derivada, el método de Steffensen, y se van aplicando sobre ellos las herramientas de la dinámica compleja y de la real.
En el Capítulo 3 se realiza un estudio dinámico de la familia de métodos iterativos de King para la resolución de ecuaciones no lineales. Se aplica la familia sobre un polinomio cuadrático genérico, y se seleccionan los miembros que presentan un comportamiento más estable.
En el Capítulo 4 se diseña una familia biparamétrica de métodos iterativos combinando los métodos de Ostrowski y Chun y se hace una extensión de la familia al caso multivariable mediante el uso del operador diferencias divididas. Se realizan pruebas numéricas en problemas académicos y aplicados para confirmar los resultados teóricos.
En el Capítulo 5 se hace un estudio dinámico de la familia biparamétrica de Ostrowski-Chun y se aplican los miembros más estables a la solución de la ecuación de Bratu, mientras que en el Capítulo 6 se hace un estudio dinámico real de la familia en el caso multivariable, y en este caso los miembros más estables se aplican a la resolución de la ecuación de Fischer.
En el Capítulo 7 se prueba la convergencia semilocal del conocido método de Chun, miembro de la familia de Ostrowski-Chun, y se comprueban los resultados obtenidos en la resolución de una ecuación integral de tipo Hammerstein. Finalmente, se presentan las conclusiones y las líneas abiertas de investigación / Des de l'aparició del mètode de Newton-Rapshon fa més de 300 anys els mètodes iteratius s'han fet poc menys que imprescindibles en la majoria de les branques de la ciència. El desenvolupament de la computació ha permès resoldre problemes de complexitat cada vegada més gran, i aquest fet ha vingut acompanyat de la necessitat de disposar de mètodes més eficients i fiables. Diverses eines de la dinàmica discreta es poden utilitzar per realitzar una anàlisi dinàmica de mètodes i famílies de mètodes iteratius per a la resolució d'equacions i sistemes no lineals, amb l'objectiu d'extreure informació sobre la seva estabilitat i classificar-los.
En aquesta tesi doctoral es dissenya una família biparamétrica de mètodes iteratius que conté els esquemes de Ostrowski i Chun com casos particulars. S'analitza la convergència de la família i s'estén per fer-la apta per a la resolució de sistemes d'equacions no lineals. S'utilitzen i desenvolupen eines dinàmiques per dur a terme un estudi escalar i multivariable, i es resolen problemes aplicats per comprovar els resultats de l'estudi dinàmic. Finalment, es determina la convergència semilocal en espais de Banach del mètode de Chun.
En el capítol 2 s'exposen els conceptes bàsics a partir dels quals es desenvoluparan la resta de capítols. Es transfereixen al cas multivariable el mètode de Newton i la seva versió lliure de derivada, el mètode de Steffensen, i es van aplicant sobre ells les eines de la dinàmica complexa i de la real.
En el capítol 3 es realitza un estudi dinàmic de la família de mètodes iteratius de King per a la resolució d'equacions no lineals. S'aplica la família sobre un polinomi quadràtic genèric, i se seleccionen els membres que presenten un comportament més estable.
En el capítol 4 es dissenya una família biparamétrica de mètodes iteratius combinant els mètodes d'Ostrowski i Chun i es fa una extensió de la família al cas multivariable mitjançant l'ús de l'operador diferències dividides. Es realitzen proves numèriques en problemes acadèmics i aplicats per confirmar els resultats teòrics.
En el capítol 5 es fa un estudi dinàmic de la família biparamétrica d'Ostrowski-Chun i s'apliquen els membres més estables a la solució de l'equació de Bratu, mentre que en el capítol 6 es fa un estudi dinàmic real de la família en el cas multivariable, i en aquest cas els membres més estables s'apliquen a la resolució de l'equació de Fischer.
En el capítol 7 es prova la convergència semilocal del conegut mètode de Chun, membre de la família de Ostrowski-Chun, i es comproven els resultats obtinguts en la resolució d'una equació integral de tipus Hammerstein. Finalment, es presenten les conclusions i les línies obertes d'investigació. / García Maimo, J. (2017). Análisis dinámico y numérico de familias de métodos iterativos para la resolución de ecuaciones no lineales y su extensión a espacios de Banach [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/91483
|
8 |
Métodos iterativos para la resolución de problemas aplicados transformados a sistemas no linealesCevallos Alarcón, Fabricio Alfredo 22 May 2023 (has links)
[ES] La resolución de ecuaciones y sistemas no lineales es un tema de gran interés teórico-práctico, pues muchos modelos matemáticos de la ciencia o de la industria se expresan mediante sistemas no lineales o ecuaciones diferenciales o integrales que, mediante técnicas de discretización, dan lugar a dichos sistemas. Dado que generalmente es difícil, si no imposible, resolver analíticamente las ecuaciones no lineales, la herramienta más extendida son los métodos iterativos, que tratan de obtener aproximaciones cada vez más precisas de las soluciones partiendo de determinadas estimaciones iniciales. Existe una variada literatura sobre los métodos iterativos para resolver ecuaciones y sistemas, que abarca conceptos como, eficiencia, optimalidad, estabilidad, entre otros importantes temas. En este estudio obtenemos nuevos métodos iterativos que mejoran algunos conocidos en términos de orden o eficiencia, es decir que obtienen mejores aproximaciones con menor coste computacional. La convergencia de los métodos iterativos suele estudiarse desde el punto de vista local. Esto significa que se obtienen resultados de convergencia imponiendo condiciones a la ecuación en un entorno de la solución. Obviamente, estos resultados no son aplicables si no la conocemos. Otro punto de vista, que abordamos en este trabajo, es el estudio semilocal que, imponiendo
condiciones en un entorno de la estimación inicial, proporciona un entorno de dicho punto que contiene la solución y garantiza la convergencia del método iterativo a la misma. Finalmente, desde un punto de vista global, estudiamos el comportamiento de los métodos iterativos en función de la estimación inicial, mediante el estudio de la dinámica de las funciones racionales asociadas a estos métodos. La presente memoria recoge los resultados de varios artículos de nuestra autoría, en los que se tratan distintos aspectos de la materia, como son, las peculiaridades de la convergencia en el caso de raíces múltiples, la posibilidad de aumentar el orden de un método óptimo de orden cuatro a orden ocho, manteniendo la optimalidad en el caso de raíces múltiples, el estudio de la convergencia semilocal en un método de alto orden, así como el comportamiento dinámico de algunos métodos iterativos. / [CA] La resolució d'equacions i sistemes no lineals és un tema de gran interés teoricopràctic, perquè molts models matemàtics de la ciència o de la indústria s'expressen mitjançant sistemes no lineals o equacions diferencials o integrals que, mitjançant tècniques de discretizació, donen lloc a aquests sistemes. Atés que generalment és difícil, si no impossible, resoldre analíticament les equacions no lineals, l'eina més estesa són els mètodes iteratius, que tracten d'obtindre aproximacions cada vegada més precises de les solucions partint de determinades estimacions inicials. Existeix una variada literatura sobre els mètodes iteratius per a resoldre equacions i sistemes, que abasta conceptes com ordre d'aproximació, eficiència, optimalitat, estabilitat, entre altres importants temes. En aquest estudi obtenim nous mètodes iteratius que milloren alguns coneguts en termes d'ordre o eficiència, és a dir que obtenen millors aproximacions amb menor cost computacional. La convergència dels mètodes iteratius sol estudiar-se des del punt de vista local. Això significa que s'obtenen resultats de convergència imposant condicions a l'equació en un entorn de la solució. Òbviament, aquests resultats no són aplicables si no la coneixem. Un altre punt de vista, que abordem en aquest treball, és l'estudi semilocal que, imposant condicions en un entorn de l'estimació inicial, proporciona un entorn d'aquest punt que conté la solució i garanteix la convergència del mètode iteratiu a aquesta. Finalment, des d'un punt de vista global, estudiem el comportament dels mètodes iteratius en funció de l'estimació inicial, mitjançant l'estudi de la dinàmica de les funcions racionals associades a aquests mètodes. La present memòria recull els resultats de diversos articles de la nostra autoria, en els quals es tracten diferents aspectes de la matèria, com són, les peculiaritats de la convergència en el cas d'arrels múltiples, la possibilitat d'augmentar l'ordre d'un mètode òptim d'ordre quatre a ordre huit, mantenint l'optimalitat en el cas d'arrels múltiples, l'estudi de la convergència semilocal en un mètode d'alt ordre, així com el comportament dinàmic d'alguns mètodes iteratius. / [EN] The resolution of nonlinear equations and systems is a subject of great theoretical and practical interest, since many mathematical models in science or industry are expressed through nonlinear systems or differential or integral equations that, by means of discretization techniques, give rise to such systems. Since it is generally difficult, if not impossible, to solve nonlinear equations analytically, the most
widely used tool is iterative methods, which try to obtain increasingly precise approximations of the solutions based on certain initial estimates. There is a varied literature on iterative methods for solving equations and systems, which covers concepts of order of approximation, efficiency, optimality, stability, among other important topics. In this study we obtain new iterative methods that improve some known ones in terms of order or efficiency, that is, they obtain better approximations with lower computational cost. The convergence of iterative methods is usually studied locally. This means that convergence results are obtained by imposing conditions on the equation in a neighbourhood of the solution. Obviously, these results are not applicable if we do not know it. Another point of view, which
we address in this work, is the semilocal study that, by imposing conditions in a neighbourhood of the initial estimation, provides an environment of this point that contains the solution and guarantees the convergence of the iterative method to it. Finally, from a global point of view, we study the behaviour of iterative methods as a function of the initial estimation, by studying the dynamics of the rational functions associated with these methods. This report collects the results of several articles of our authorship, in which different aspects of the matter are dealt with, such as the peculiarities of convergence in the case of multiple roots, the possibility of increasing the order of an optimal method from order four to order eight, maintaining optimality in the case of multiple roots, the study of semilocal convergence in a high-order method, as well as the dynamic behaviour of some iterative methods. / Cevallos Alarcón, FA. (2023). Métodos iterativos para la resolución de problemas aplicados transformados a sistemas no lineales [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/193495
|
9 |
High Performance Multidimensional Iterative Processes for Solving Nonlinear EquationsTriguero Navarro, Paula 16 June 2023 (has links)
[ES] En gran cantidad de problemas de la matemática aplicada, existe la necesidad de resolver ecuaciones y sistemas no lineales, dado que numerosos problemas, finalmente, se reducen a estos. Conforme aumenta la dificultad de los sistemas, la obtención de la solución analítica se vuelve más compleja. Además, con el aumento de las herramientas computacionales, las dimensiones de los problemas a resolver han crecido de manera exponencial, por lo que se vuelve más necesario obtener una aproximación a la solución de manera sencilla y que no requiera mucho tiempo y coste computacional. Esta es una de las razones por las que los métodos iterativos han aumentado su importancia en los últimos años, ya que se han diseñado multitud de procesos con el fin de que converjan rápidamente a la solución y, de esta forma, poder resolver problemas que con las herramientas clásicas resultaría más costoso.
La presente Tesis Doctoral, se centra en estudiar y diseñar numerosos métodos iterativos que mejoren a los esquemas clásicos en cuanto a su orden de convergencia, accesibilidad, cantidad de soluciones que obtienen o aplicabilidad a problemas con características especiales, como la no diferenciabilidad o la multiplicidad de las raíces. Entre los procesos que se estudian en esta memoria, se pueden encontrar desde una familia de métodos multipaso óptimos para la resolución de ecuaciones, hasta una familia paramétrica libre de derivadas de esquemas con función peso a la que se introduce memoria para la resolución de sistemas no lineales. Se destacan otros métodos en esta memoria como esquemas iterativos que obtienen raíces con diversas multiplicidades para ecuaciones y procesos que aproximan raíces de forma simultánea, tanto para ecuaciones como para sistemas, y, tanto para raíces simples como para múltiples. Además, parte de esta memoria se centra en cómo realizar el análisis dinámico para métodos iterativos con memoria que resuelven sistemas de ecuaciones no lineales, a la par que se realiza dicho estudio para diversos esquemas iterativos conocidos. Este análisis dinámico permite visualizar y analizar los posibles comportamientos de los procesos iterativos en función de las aproximaciones iniciales.
Los resultados anteriormente descritos forman parte de esta Tesis Doctoral para la obtención del título de Doctora en Matemáticas. / [CA] En gran quantitat de problemes de la matemàtica aplicada, existeix la necessitat de resoldre equacions i sistemes no lineals, atés que nombrosos problemes, finalment, es redueixen a aquests. Conforme augmenta la dificultat dels sistemes, l'obtenció de la solució analítica es torna més complexa. A més, amb l'augment de les eines computacionals, les dimensions dels problemes a resoldre han crescut de manera exponencial, per la qual cosa es torna més necessari obtindre una aproximació a la solució de manera senzilla i que no requerisca molt temps i cost computacional. Aquesta és una de les raons per les quals els mètodes iteratius han augmentat la seua importància en els últims anys, ja que s'han dissenyat multitud de processos amb la finalitat que convergisquen ràpidament a la solució i, d'aquesta manera, poder resoldre problemes que amb les eines clàssiques resultaria més costós.
La present Tesi Doctoral, es centra en estudiar i dissenyar nombrosos mètodes iteratius que milloren als esquemes clàssics en quant al seu ordre de convergència, accessibilitat, quantitat de solucions que obtenen o aplicabilitat a problemes amb característiques especials, com la no diferenciabilitat o la multiplicitat de les arrels. Entre els processos que s'estudien en aquesta memòria, es poden trobar des d'una família de mètodes multipas òptims per a la resolució d'equacions, fins a una família paramètrica lliure de derivades de esquemes amb funció pes a la que s'introdueix memòria per a la resolució de sistemes no lineals. Es destanquen altres mètodes en aquesta memòria com esquemes iteratius que obtenen arrels amb diverses multiplicitats per a equacions i processos que aproximen arrels de manera simultània, tant per a equacions com per a sistemes, i, tant per a arrels simples com per a múltiples. A més, part d'aquesta memòria es centra en com realitzar l'anàlisi dinàmic per a mètodes iteratius amb memòria que resolen sistemes d'equacions no lineals, al mateix temps que es realitza aquest estudi per a diversos esquemes iteratius coneguts. Aquest anàlisi dinàmic permet visualitzar i analitzar els possibles comportaments dels mètodes iteratius en funció de les aproximacions inicials.
Els resultats anteriorment descrits formen part d'aquesta Tesi Doctoral per a l'obtenció del títol de Doctora en Matemàtiques. / [EN] In a large number of problems in applied mathematics, there is a need to solve nonlinear equations and systems, since many problems eventually are reduced to these. As the difficulty of the systems increases, obtaining the analytical solution becomes more complex. Furthermore, with the growth of computational tools, the dimensions of the problems to be solved have increased exponentially, making it more essential to obtain an approximation to the solution in a simple way that does not require significant time and computational cost. That is one of the reasons why iterative methods have increased their importance in recent years, as a multitude of schemes have been designed to converge rapidly to the solution and, in this way, to be able to solve problems that would be more arduous to solve using classical tools.
This Doctoral Thesis focuses on the study and design of numerous iterative methods that improve classical schemes in terms of their order of convergence, accessibility, number of solutions obtained or applicability to problems with special characteristics, such as non-differentiability or multiplicity of roots. The procedures studied in this report range from a family of optimal multi-step methods for solving equations, to a parametric derivative-free family of weight function schemes, to which memory is introduced for solving nonlinear systems. Additional procedures are described in this report such as iterative schemes that obtain roots with different multiplicities for equations and methods that approximate roots simultaneously for equations as well as for systems, and for simple as well as for multiples roots. In addition, part of this report focuses on how to perform the dynamical analysis for iterative schemes with memory that solve systems of nonlinear equations, as well as this study is carried out for different known iterative procedures. This dynamical analysis allows us to visualise and analyse the possible behaviours of the iterative methods depending on the initial approximations.
The results described above form part of this Doctoral Thesis to obtain the title of Doctor in Mathematics. / Triguero Navarro, P. (2023). High Performance Multidimensional Iterative Processes for Solving Nonlinear Equations [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/194267
|
Page generated in 0.0711 seconds